

Flash Mobile

This page intentionally left blank

Flash Mobile
Developing Android and
iOS Applications

Matthew David

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
 PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

 Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher's permissions
policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-240-81568-8

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

11  12  13  14  15  5  4  3  2  1
Printed in the United States of America

Dedication

Life is comprised of moments. It is what is said and done in
these “moments” that defines our lives. My family is forever
blessed that the following people shared moments from their
lives with us:

Dick and Anne: You both ran the gauntlet with us and we all
made it through! We treasure your friendship in ways that
words will never be enough.
Marcia, my “mom-in-law”: You are always there, and you are
always supporting us. We love you deeply.
Arthur: At the hardest time, you were there. I will never forget.
My deepest thanks I give to my wife and children. I love you, hon.

v

This page intentionally left blank

vii

Author’s Note... xi

Foreword.. xiii

Section 1

Setting up Flash CS5 for Android Development.. 3
Designing and Developing for Android Hardware....................................... 7

Configuring the Android SDK Publish Setting... 12

Setting up Flash CS5 for Android Development.. 15

Installing Your AIR Application onto an Android OS.................................. 17

Building Your First Application for Android Using Flash CS5................... 18

Project 1:  Creating Your First App Using Flash CS5.. 27
Setting up Your Development Environment... 27

Creating the Graphics... 35

Building an Application.. 37

Running Your App on Your Android Phone... 43

Section 2

Rapid Android Development in Flash CS5... 49
Creating Content for Your Android Phone That Does
Not Require Programming... 49

Animation Techniques You Should Use on Mobile Devices...................... 50

Controlling Sound.. 71

Controlling Video.. 80

Working in the Third Dimension.. 83

What You Have Learned... 86

Contents

viii   Contents

Project 2: O ptimizing Animation, Audio, Video, and Component
Use in Your AIR for Android Apps... 89

Your Building Blocks... 89

Importing Files into Flash.. 91

Adding Animation... 94

Adding Audio.. 96

Adding Video... 96

Testing on Your Android Phone... 96

Section 3

Developing Mobile Apps using ActionScript... 101
Enabling Flash to Execute Solutions Faster with AVM 2.0...................... 102

What You Can Expect When You Use AS3.. 102

Controlling Data...113

Controlling Text..116

Drawing with the Shape Class..117

Using ActionScript to Control Animation, Audio, and
Video in Your Android Apps..118

Extending Flash with Open Source Libraries... 125

Summary... 125

Project 3:  Building Sprite’s 123... 127
Setting Up the Project to Run on an iPhone... 128

Setting Up the Timeline... 131

Adding Interaction to Your Number Screens... 134

Completing the Application... 137

Section 4

Leveraging Custom iPhone and Android Interface
Calls with ActionScript... 141

Using Gestures in Your Apps... 142

Working with Gestures... 146

	 Contents   ix

Which Way Is Up? Controlling Orientation with
the Android Accelerometer.. 150

Knowing Where You Are, Using Geolocation... 152

Loading RSS Data into Flash... 153

Adding Permissions to Your Apps... 156

Loading Web Pages into the StageWebView.. 157

Controlling the Use of the Microphone.. 159

Controlling the Camera.. 161

Additional Features on AIR 2.5 for Android.. 164

Summary... 164

Project 4:  Building a Gesture-Driven Application.. 165
Getting Started.. 165

Navigating Using the Tap Gesture... 167

Adding a Swipe Gesture to Move from One Screen to the Next............ 172

Adding Drag and Drop Gestures... 174

Using Geolocation to Find Where You Are... 176

Summary... 178

Section 5

Building Games with Flash for the Mobile Market....................................... 181
Getting Started with Game Development.. 181

Making It Easier to Write Code with Libraries.. 184

Using Game Engines.. 203

Developing Your Game... 240

Project 5:  Building a Mobile Game.. 241
Playing Space Rocket... 242

Getting Started.. 242

Game Assets and Default Layer Structure.. 244

Adding the Code to the Game... 245

Controlling the Missiles... 251

Controlling the Falling Rocks... 254

x   Contents

Section 6

Deploying Mobile Apps with Flash CS5... 259
Deploying Your Apps to Apple’s iTunes... 259

Deploying Your Apps to Google’s Android Market................................... 266

Building for iPad Devices... 268

Building for Tablets and TV.. 269

Adding Advertising to Your Apps... 270

Tracking Your App’s Success.. 270

Marketing Your Apps.. 271

Summary... 272

Project 6:  Publishing Your Apps into the Many Different App Stores....... 273
Choosing Where to Sell Your Application... 273

Publishing Android Apps in Your Own Store.. 274

Deploying to the Android Market.. 275

Running the Gauntlet That Is Apple’s iTunes
App Store Submission Process... 277

Index.. 283

Companion website: www.visualizetheweb.com/flashmobile

xi

Author’s Note
When I first used Flash, back in 1996 (it was called FutureSplash
back then), the only place you saw Flash was in a web page.
Today, Flash is in apps (thank you AIR), on phones (iPhones and
Android), tablets (iPad and BlackBerry PlayBook), and even in
your TV (hello Google TV!). It has come a long way and it feels like
it is just getting started.

This book was a blast to write. The technology is fun, and
developing for Android and iOS just feels right with Flash
Professional.

There are a lot of great people I need to thank who helped in
the creation of this book: first and foremost, Paul Temme, the guy
who trusted my idea and saw that the book got the breath of life
it needed; Carlin Reagan for pushing me to deliver on time; the
good folks at Focal who laid out the content; and all the readers
who sent e-mails and offered support. Thanks!

Always feel free to contact me with any questions:
matthewadavid@gmail.com

Cheers,
Matthew David
November 5, 2010

This page intentionally left blank

xiii

Foreword
Change: It’s what we expect from technology, from the PC to
the web, through to HD TV. But nothing has been as disruptive
as the change the iPhone and Android phones have brought.
For the first time the power of a computer will fit in your hand,
you are always connected to the Internet, and these devices are
loaded with hardware such as video cameras, microphones, GPS
chips, and accelerometers.

As a designer, the last few years have been both exciting
and frustrating. Adapting to new technologies has come at a
significant cost. For iOS development you need a Mac and a solid
understanding of Objective-C; Android requires learning Java;
and let’s not even get started with this mobile web thing.

Then a funny thing happened on the way to the AT&T store
to pick up an iPhone. Adobe had this teen-crazy idea: let’s put
Flash in your pocket. Unfortunately Apple was not going to
have anything to do with it. No Flash on the iPhone for you! So,
undaunted, Adobe did an end-around on Apple. If you could
not play a Flash movie on the iPhone, why not create an app
(containing a modified version of AIR) and stick the Flash content
in that way?

Crazy idea? Yes. Did it work? You betcha!
The problem was Steve Jobs. He did not like this idea at all. In

what has now become a famous open letter, Steve Jobs publicly
decried Flash as a “yesteryear” technology and banished Flash
apps from the iTunes App Store.

Undaunted by Mr. Jobs’ comments, Adobe changed direc-
tion and brought Adobe Integrated Runtime to the Android,
BlackBerry, and PalmOS operating systems. What must mean a
lot of gnashing teeth over at Apple, Flash content performs very
well on mobile devices. It is not slow, as Apple was making the
world believe. In fact, it is a designer’s dream. Now you can take
the content you develop for the web and desktops and port it to
an ever-increasing number of mobile devices. No need to learn
Java, Objective-C, or any other language. You can just leverage
your knowledge of Flash and ActionScript.

Android is fast catching up with Apple’s early lead. In addition,
other technologies such as Windows Phone 7 are proving to
be compelling alternatives to iOS. The thumbscrews are being
tightened on Apple.

xiv   Foreword

And then Apple blinked. In a shocking turn of face, Apple
changed its position on allowing Flash Professional built iOS apps
in the iTunes App Store. I guess Flash is good enough after all.

The opportunity this presents you, as a designer, is unprec-
edented. Today’s handheld phones are extremely powerful.
You have to take care as you convert your content from the web
to Android or iOS, but you can do it. In the future, as systems
become more powerful, you will be able to directly port desktop
AIR apps to your phone.

The focus of this book is to step you through what you need to
know in order to be a successful iOS and Android app developer.
You will learn how to build applications without using any code,
how to add deep complexity with ActionScript, how to build
games, and how to package your solutions for delivery in Apple’s
App Store and Google’s Android Market.

Now is the time to learn and apply mobile development skills.
Your computer is now resting in your hands.

Section

1

This page intentionally left blank

3
© 2011 Elsevier Inc. All rights reserved.

Today, there are 5 billion people around the world using
mobile phones. It is a staggering figure. No other technology is
advancing at the rapid speed the mobile industry is experiencing.
As a frame of reference, there are only 1.7 billion PCs being used
around the world.

A new category of mobile phone is rapidly growing: the smart
phone (Figure 1.1). Three years ago, a smart phone allowed you
to send e-mail. Today, when you think smart phone, you think
e-mail, web, games, MMS, video conferencing—you think of a
computer in your pocket.

There are a number of companies leading the next wave of smart
phone market. Google, Apple, RIM, Nokia, Microsoft, and HP (with
Palm) all have their own operating systems and hardware. It seems
almost every three to six months these companies leapfrog each
other. Consider this—at the end of 2009, a mobile phone running at
500 MHz with a 3 MB camera was considered screaming fast. Now,
you can pick up those same phones for less than $100. It you want

Setting up Flash CS5 for
Android Development

Figure 1.1  A small selection
of smart phones.

4   Setting up Flash CS5 for Android Development

something faster you go for 1 GHz with a 1 GB of RAM, an 8 MP
camera, front and rear facing cameras, proximity devices up the
wazoo, and sophisticated operating systems (OS) that rival, and
in some cases exceed, what you can accomplish on your desktop.
And in 2011, companies that make the ultra-efficient system-
on-chip designs used in mobile phones such as Qualcomm’s
Snapdragon are headed to 2 GHz with multicore infrastructures
housing accelerated GPUs, CPUs, and a ton of RAM.

This is not a mobile phone in your pocket. It is a screamingly
fast computer.

With this all said, the smart phone market is still very small.
You can take all the iPhones, Android phones (Figure 1.2), and
BlackBerrys and you will have less than 300 million devices
worldwide. With a global figure of 5 billion mobile users, it is clear
that the smart phone market has massive potential for growth.

So, what does it mean to develop for a smart phone? At the
end of the day, there are essentially two ways you can develop for
a smart phone:
•	 Develop directly to the software development kit (SDK)
•	 Develop using an intermediate technology

Each mobile device comes with an SDK that you can use for
development. An SDK comes with the development tools, bundling
tools, and emulators you need to test your code. When you need
access to the latest and greatest technology, you need to use an SDK.

Figure 1.2  A Samsung Android
phone.

	 Setting up Flash CS5 for Android Development   5

The challenge you have with using core SDKs is that you need
to use the native development language. This is different for each
SDK. For instance, Apple prefers you use Objective-C whereas
Google prefers you use Java.

The second way to develop mobile devices is to use an inter-
mediate technology that allows you to build for multiple devices
using only one language. An example of this is the 3D game
development technology called Unity 3D. Unity uses JavaScript
to let you to script your games and then converts the JavaScript
into code that will allow you to build iPhone, Android, and
Windows Desktop applications. The downside to using interme-
diate technologies is that you are dependent on the development
company to update their tools to the latest SDKs and technolo-
gies. This can be hard work as the SDKs are frequently updated.
For instance, Apple has updated its iOS operating system four
times in three years, and Google’s Android has been updated five
times in less than two years.

With that said, it is much easier to develop using interme-
diate languages. You can leverage skills you already have with-
out having to go through the learning curve of adopting a new
language.

In May 2010 at the Google I/O conference, Adobe announced
that it would be bringing both the Flash Player and AIR (Adobe
Integrated Runtime) to Google’s Android 2.2. This is really big
news for Flash developers for several reasons:
1.	 The version of Flash coming to the Android is the latest 10.1

version, not some crippled alternative.

Figure 1.3 H ere you can see a
collection of Android phones
from different providers that
are all capable of running Flash
and AIR.

6   Setting up Flash CS5 for Android Development

2.	 AIR gives you an immediate in-road into mobile device
development, leveraging the tools and knowledge you already
have.

3.	 Flash is coming to 19 other mobile device companies.
4.	 Android runs on tablets and TVs as well as phones.

The Flash Player that is now available for all Android 2.2 users,
shown in Figure 1.3, is very efficient. There has been a lot of noise
from companies such as Apple stating that Flash is a battery hog
and will kill your phone’s CPU. Is this true? The reality is that it
is not. Tests have been conducted showing that the Flash Player
on mobile devices is highly efficient and does not cause the CPU-
crippling results Apple is stating. The Flash Player works inside
the browser in Android. You trigger the use of the Flash Player by
tapping on the Flash content in the web page. For instance, you
can view a Hulu.com video by tapping on the content in the page.

Adobe’s modification of AIR for mobile devices was the really
big story at Google’s I/O. AIR is a very powerful, mobile tech-
nology. It reaches for the same goals that Java set in the 1990s:
write once, run anywhere. Unlike Java, AIR really achieves its
goal. AIR apps are built in the Flash Professional development
environment using Flash technologies you are already used to,
such as ActionScript to program your solutions, MPEG video for
video, and the same animation techniques you have been using
for years.

Adobe’s support for Flash on mobile devices will be coming
to 19 other mobile development companies. This means that
the techniques you learn in this book will be applicable beyond
just Android. Other entities that will be adopting Adobe’s tech-
nologies include RIM’s BlackBerry, Nokia, HP/Palm WebOS, and
Microsoft’s Windows Phones Series 7. Notably absent is Apple,
Inc. The year 2010 will go down as the year that Apple drew a line
in the sand and said very publicly, “We will not support Adobe’s
Flash.” It is a shame that Apple has made this stance, since Apple’s
iOS is a very important part of the mobile market. Let’s hope it
changes its mind.

Earlier I mentioned how rapidly the mobile market is growing.
Today, that market is predominantly composed of phones; but
there are additional tools joining this market. During 2010, Apple
released the massively popular iPad, a tablet computer that is
very mobile and very light. Not to be outdone, rival companies,
such as Nvidia, Samsung, Dell, and Cisco, are also coming out
with their own tablets. The devices range in size from 5 inches all
the way up to 11 inches and beyond. What they all share is that
they are running Android as their OS. They come prepackaged
with support for Flash.

Another device that is coming out of the mobile world is
Google TV. At its essence, Google TV is really a modified version

	 Setting up Flash CS5 for Android Development   7

of Android that runs directly on your TV. And, yes, your Flash
apps will run here, too. Last year you could run your Flash appli-
cations only on Windows and Mac computers. Today you can add
smart phones, tablets, and TVs. Your Flash can literally go with
you wherever you want to go.

It is not all roses, of course. To get your Flash apps running in
AIR on all these new devices, Adobe did choose to make one big
change: You must develop your solutions using ActionScript 3.0
(AS3). AS3 has been around since 2006. If you have not made the
jump to AS3, then I will help you as we step through this book.
You can no longer leverage the older AS1 and AS2 scripts that you
have been using for years. Time to start fresh.

The first section of the book explains how a Flash designer can
set up a Flash CS5 environment to publish Android apps. Later
you will step through the process of downloading, installing, and
running the Android SDK, necessary for your development. By
the end of this section you will have created your first Android
application using Flash CS5. At the end of this book you will have
the knowledge to build almost any type of Flash-based applica-
tion for the Android OS 2.2 and greater. How cool is that?

So, let’s get started.

Designing and Developing for
Android Hardware

Before we get involved with setting up your design and develop-
ment environment, let’s take a little time to review how you should
approach developing applications that run on an Android device.

Figure 1.4 T he Archos Android
tablet runs Flash and AIR.

8   Setting up Flash CS5 for Android Development

There are a number of design considerations you always want to
keep in the back of your mind as you work on your apps. They are:
•	 Different hardware
•	 Hardware acceleration
•	 Touch interaction

An Android phone is simply very different than a desktop, and
you need to develop your app to take advantage of these differences.

Working with Android Hardware
The Android platform has been available for less than two

years. In that time it has gone from being available on a few
phones to being installed on dozens of different phones available
on almost every mobile carrier. Today there are over 50 different
mobile phones running Android OS 1.5 and greater. Flash is sup-
ported on all phones that run Android 2.2. Table 1.1 gives you a list
of the Android phones that currently support Flash and AIR. The
table is broken down by manufacturer, name of the phone, screen
display (where available), and additional notes about the phone.

You can see from the devices listed in Table 1.1 that there is a
broad range of hardware specifications for Android phones.

The number one hardware difference you will need to keep in
mind is screen size. The default screen size for Android develop-
ment is 320 × 480 ppi (points per inch) but, as you can see from the
list, this is not always the case. Screen resolutions range from 240 ×
320 for the HTC Wildfire all the way up to 854 × 480 for the Motorola
Droid X. How do you design apps for this broad range? The trick
comes in how you use Flash to do the work for you. We will be get-
ting into that in more detail as you work your way through the book.
Just keep in mind that not all Android phones are created equal.

In addition to screen size, the second feature that you will find
different from one device to another is RAM and CPU. The more
RAM you have determines how much data can be crunched with
active apps. The multitasking feature in Android allows for six
core apps to be running simultaneously. But you may have many
more utilities running. To run more applications will require
more RAM. Current smart phones have 256 MB of RAM, with oth-
ers having as much as 1 GB of RAM. Future devices will have RAM
levels that rival desktop computers. For now, however, develop
applications that carefully manage the amount of RAM you use.

The CPU listed earlier is slightly misleading. Almost all smart
phones are developed with a system-on-chip design (SOC).
An SOC merges the CPU, GPU, RAM, and other systems into one
chip. This architecture is typically built on ARM CPUs. The ARM
architecture is highly energy efficient, allowing mobile phone
batteries to last longer. Intel, Nvidia, and AMD are also starting
to join the ultra-efficient mobile chip market. At first, the original

	 Setting up Flash CS5 for Android Development   9

Continued

Table 1.1 A ndroid Phones That Support Flash and AIR

Manufacturer Name Display Notes

Acer Inc Liquid E 320 × 480 Smart phone with underclocked 768 MHz
Snapdragon processor.

Acer Inc Liquid E Ferrari 320 × 480 A customized version of Liquid E with Ferrari
visual styling.

Acer Inc beTouch E400 320 × 480 SIM-free smart phone with a 600 MHz CPU,
3.2” resistive touch screen, and a 3.1 MP
camera.

Acer Inc Liquid Stream
(S110)

320 × 480 1 GHz SnapDragon CPU, 3.7” AMOLED WVGA
capacitive touch screen, 5 MP
camera.

Dell Thunder 320 × 480 4.1” WVGA OLED screen, and an 8 MP
camera.

Dell Flash 320 × 480 3.5” WVGA LCD screen, 5 MP autofocus cam,
512 MB of RAM and ROM with microSD
expansion up to 64 GB, WiFi, TV-out, an 800
MHz Qualcomm MSM7230 processor.

Dell Smoke 320 × 480 2.8” QVGA touch screen, 5 MP autofocus cam,
microSD expansion to 32 GB, WiFi, Bluetooth,
and an 800 MHz Qualcomm MSM7230
processor.

HTC Corporation HTC Aria 480 × 320
(HVGA) 3.2”

A mid-range AT&T exclusive, running on
Android 2.1 with HTC Sense; uses 600 MHz
MSM 7227 processor, 5 MP camera; similar to
HTC Legend.

HTC Corporation HTC Desire 480 × 800
(WVGA) 3.7”

Similar to Nexus One but adds HTC’s Sense UI
Optical trackpad and Hard buttons, but does not
have dual microphones as the Nexus One.

HTC Corporation HTC Hero,
HTC Droid Eris,
T-Mobile G2
Touch in Ireland,
the UK, Hungary,
The Netherlands,
and Germany

320 × 480
3.2” 180 ppi

The Hero has two design versions. The original
design is similar form factor to the Magic; the
U.S. release design is more curved at the edges
and has the controversial “chin” removed. Both
use HTC’s customized UI called HTC Sense,
which looks considerably different compared to
HTC Dream and Magic phones.

HTC Corporation Droid Incredible 800 × 480
3.7” AMOLED

Successor to the HTC Droid Eris; sports an
8.0 MP camera with dual-flash LED, FM
radio tuner, and 8 GB onboard flash memory,
3.7” AMOLED screen, native resolution of
480 × 800 px.

10   Setting up Flash CS5 for Android Development

Manufacturer Name Display Notes

HTC Corporation HTC Legend 480 × 320
(HVGA)
3.2” AMOLED

Announced at Mobile World Congress 2010 in
Barcelona.

HTC Corporation HTC Evo 4G
(formerly HTC
Supersonic)

480 × 800
4.3” 217 ppi

A high-end Android phone, includes the
HTC Sense UI, similar form factor to the
Droid Incredible and HTC HD2. Contains
many advanced phone features, including an
8 MP rear-facing camera along with a 1.3 MP
front-facing camera. The Evo 4G is currently
(as of 5/22/10) the only phone to offer 4G
Internet access (currently using Clearwire
WiMAX).

HTC Corporation Google Nexus One,
Codenamed HTC
Dragon, HTC
Passion

480 × 800
(WVGA)
3.7” 252 ppi

The first phone to be sold directly by Google,
the Nexus One was initially available
exclusively online, unlocked. It can now be
bought on subsidized contract with various
networks.

HTC Corporation myTouch 3G Slide 320 × 480
(HVGA) 3.4”

5 MP camera, QWERTY four-row keyboard, and
a Swype on-screen keyboard.

HTC Corporation HTC Wildfire 240 × 320
(QVGA) 3.2”

5 MP autofocus camera with LED flash,
802.11b/g WiFi, GPS/AGPS, Bluetooth 2.1+EDR,
512 MB Flash and 384 MB of RAM, microSD
expansion.

Motorola Motorola Droid,
Motorola
Milestone
worldwide GSM
version

854 × 480
3.7” 265 ppi

Motorola Motorola Droid X 854 × 480 4.3”
Motorola MOTO XT720,

Motoroi,
Motorola
Milestone XT720

320 × 480 8 MP camera(Flash), HDMI, FM radio, T-DMB,
available only in Korea.

Pantech Sirius Sky 480 × 800
(WVGA) 3.7”

1 GHz Snapdragon processor, 3.7” (WVGA
480 × 800, AMOLED), 5 MP camera, WiFi,
Bluetooth, GPS, and microSD expansion.

Pantech Sirius Izar 480 × 800
(WVGA) 3.7”

Qualcomm MSM7227(600 MHz), 3.2” (WVGA
480 × 800, LCD), 5 MP camera (AF), WiFi,
Bluetooth T-DMB and microSD expansion.

Table 1.1 A ndroid Phones That Support Flash
and AIR—continued

	 Setting up Flash CS5 for Android Development   11

SOCs in the 2007/2008 smart phone market were very slow com-
pared to a PC. Today, however, it is common to have a 1 GHz
CPU/SOC with 2 GHz multicore SOCs shipping 2011. For a good
Flash/AIR experience you need to be running a 1 GHz CPU/SOC
architecture. The Motorola Droid runs at 500 MHz, and can run
Flash, but you are better off testing with an HT Evo, Nexus One,
or Motorola Droid X, all of which run at 1 GHz or faster.

Android Hardware Acceleration
Phones come loaded with technology in the hardware. This

is awesome for you as a developer. Following are some key hard-
ware technologies that you will want to keep in mind as you
develop for the Android OS:
•	 Touch-sensitive screen
•	 Sound/microphone
•	 Vibration
•	 Camera
•	 GPS
•	 Accelerometer/compass

The touch-sensitive screen seems like an obvious hardware
feature, but it is your main input to your device and you use your
finger. More on that in a moment.

Every Android phone supports audio, both to listen through
speakers and to record with a microphone. We will cover audio
in more detail later in the book, but you will want to keep your

Manufacturer Name Display Notes

Pantech Sirius Alpha 480 × 800
(WVGA) 3.7”

Minor upgrade of Sirius Sky.

Samsung Group Galaxy A 3.7” AMOLED 5 MP camera, T-DMB, GPS, Bluetooth, 802.11n
Wi-Fi, and video calling. Will be available only
in South Korea.

Samsung Group i9200 320 × 480 4.3” AMOLED 1280 × 720, 2 GHz CPU, 1 GB
RAM, 4 GB ROM, 32 GB flash, microSD oraz
8 MP primary camera + 2.0 secondary camera

Samsung Group Galaxy S 480 × 800
(WVGA)
4.0” Super
AMOLED

1 GHz processor

Table 1.1 A ndroid Phones That Support Flash
and AIR—continued

12   Setting up Flash CS5 for Android Development

audio files in MP3 and WAV format. Unlike desktop computers,
where you cannot guarantee if there is a microphone installed by
the manufacturer, you can guarantee that there is a mic on every
Android device. Why? It’s a phone! You need one to speak through
when you make calls.

Haptic feedback is the method by which you can provide
vibrations to the end user through the phone. This is good for sit-
uations where the audio is turned off; the app is designed for the
deaf or hard of hearing. You can also add vibration to games to
add to the overall sensory experience.

All Android phones come with a camera, with many of them
supporting video and LED flash.

A Global Positioning System (GPS) allows you to create solu-
tions that are dependent on location. Want to develop an app
that shows you the movie theater nearest to your current loca-
tion? Use GPS to do the location work for you.

Accelerometers and compass hardware detect when the
phone is being moved and in which direction along three distinct
axes (X, Y, and Z). Expect newer phones to start shipping with
gyroscopes to add three more axes (pitch, yaw, and roll). These
three hardware features give you pinpoint control over your game
development. Think Wii Remote, but for phones.

These hardware features highlight the main tools you use from
the Android hardware. Adobe’s Flash will interact with all of these
special hardware features.

Touching Your Application
In the previous section we talked about using touch as the way

you interact with Android. This is a very important concept as
you look to develop solutions for the Android OS. No matter what
Steve Jobs will tell you, a finger is simply not as accurate as a sty-
lus. It is, however, much more convenient to use.

In addition to the actual size of the input area you develop
in your solutions, you will also want to bear in mind that not all
touch screens are created the same. The apps you will create in
this book are designed to work on all touch screens, no matter
what the device. If, however, your application requires very accu-
rate touches and gestures, such as swipe, then you will want to test
on several of the devices listed earlier. This is because vendors use
different touch screens. Some are more accurate than others.

Configuring the Android SDK Publish Setting
The core of your development completed in this book

requires only the use of Flash CS5. To test your applications you

	 Setting up Flash CS5 for Android Development   13

will need to have the Android SDK installed on your computer.
The SDK will allow you to complete the following:
•	 Run command line Flash build tools
•	 Test your Android App in an emulator
•	 Install your Android onto a physical device

Installing the Android SDK is not something to fear; you just
need to follow the steps. For the most part, Google has made this
a rather painless experience. This section will take you through
what you need to do to install Android onto your development
computer.

The first thing you need to do is see if your development envi-
ronment will support the Android SDK. The minimum require-
ments are:
•	 Windows XP (32-bit) or Vista (32- or 64-bit)
•	 Mac OS X 10.5.8 or later (x86 only)
•	 Linux (tested on Linux Ubuntu Hardy Heron)

You will want to also ensure that your computer is fairly fast.
I run my development on an iMac with 4 GB of RAM and 2.2 core
duo CPU. This works great for me. If your computer is new
within the last three years, then you should be fine. In addition,
you will need about 300 MB of hard drive space to install all the
software.

The next step before you even get to installation is to ensure
that you have the latest Java Developer Kit (JDK). Version 5 or 6
will work. You can download the latest JDK at http://java.sun.com/
javase/downloads/index.jsp. The Android SDK will not install if
you do not have the JDK installed.

Now, to download and install the Android SDK:
	 1.	 Start by going to http://developer.android.com/sdk/index.

html and downloading the latest SDK release (a ZIP file;
Figure 1.5).

	 2.	 Save the SDK to your hard drive.
	 3.	 From the root of your computer, create a folder called Developer.

Unzip the files from the Android SDK to this folder. There will
be a lot of files.

	 4.	 Open the Developer folder. Click the subfolder called Android
and then the folder called Tools.

	 5.	 Double-click the file called Android to access the Android SDK
and AVD manager. The role of the Android SDK manager is
to allow you to download and install Android SDK releases
(Figure 1.6).

	 6.	 When the Android SDK and AVD Manager opens, select
Available Packages on the left screen. You should see a link to
an XML file with a check mark to the left of it. If you do not see
anything, choose the Refresh button.

	 7.	 Select the check mark.

14   Setting up Flash CS5 for Android Development

	 8.	 The Android SDK will check which SDKs are available for
testing. You will see SDKs for Android Platforms 1.5, 1.6, 2.1,
and 2.2.

	 9.	 Select the check marks alongside the Android 2.2 SDK. Choose
the Install Selected button.

	10.	 The files will download and install onto your computer. This
may take some time depending on the speed of your Internet
connection.

When you have completed the installation you will have all the
files and tools needed to test your Flash applications in Android
simulators or on a physical Android device.

Figure 1.5 G oogle’s Android
SDK site.

	 Setting up Flash CS5 for Android Development   15

Setting up Flash CS5 for Android
Development

Adobe is going to great lengths to make is very easy for you to
develop Android applications. To this end, you can now develop
Android applications with either Flex or Flash CS5 Professional.
Flex development requires the use of a command line utility to
make the final Android application.

I hate command lines. So, to make life easier, you can stick
with Flash CS5 Professional. This is how we will be building appli-
cations for Android throughout this book.

Figure 1.6 E xtract the Android
SDK to your hard drive.

16   Setting up Flash CS5 for Android Development

Flash CS5 does not ship with native support for Android.
Ironically, it does ship with support for iPhone development—
but you cannot publish to the Apple iTunes Store. Trust me, I have
tried and failed.

You will need to install the tools needed for Flash CS5 to create
files for Android. Follow these steps to install the Android tools
you need:
1.	 You must be running the latest release version of Flash CS5

Professional. Run Adobe update tool to ensure that you have
the latest patches and updates.

2.	 If you have Flash CS5 running you will want to close it.
3.	 Go to Adobe’s AIR for Android web page at http://labs.adobe.

com/technologies/air2/android/ and download the MXI file.
4.	 Open the Adobe Extension Manager installed on your com-

puter. Open the MXI file and choose install (Figure 1.8).

Figure 1.7  You only need to
download Android 2.2.

	 Setting up Flash CS5 for Android Development   17

That’s it. You now have all the tools needed to build your first
Android application with Flash CS5 Professional.

Installing Your AIR Application onto
an Android OS

Flash uses AIR to create your applications for Android. By
default, AIR is not installed on the Android phone. This does not
stop you from installing your new app, it will simply stop you
from running it.

Fortunately, AIR is freely available in the Google Marketplace.
If your phone does not have AIR installed you will be prompted
to download and install it from the Marketplace. There are no

Figure 1.8 E xtract the Android
SDK to your hard drive.

18   Setting up Flash CS5 for Android Development

complex hoops to jump through. If you have installed one app,
then you know how to install AIR and enjoy all the Flash apps in
the Marketplace.

Building Your First Application for Android
Using Flash CS5

The goal for your first Android application is a simple one:
to get a basic Flash movie running successfully on your Android
phone. The following steps will take you through the whole pro-
cess, at the end of which you will have your first native Android
application created using Flash tools. The next section explains
how to install the Android Application onto your device.
	 1.	 Begin by opening Flash CS5. Select File → New to open the

new file window.
	 2.	 Select Template from the top button of the new file window

(Figure 1.9).Figure 1.9  Flash CS5 has
a template for Android
applications.

	 Setting up Flash CS5 for Android Development   19

	 3.	 Choose AIR for Android from the left category window. On
the right hand side you will see 480x800Android. Select OK
(Figure 1.10).

	 4.	 To keep things simple, we are going to create all we need for
a simple test. Save your file to your hard drive. Name the file
FirstApp.fla.

	 5.	 On the Stage use the text tool to draw a text region. Android
does not support the new TLF text. Change the text format to
Classic Text (Figure 1.11).

	 6.	 Set the font Family to _sans.
	 7.	 Change the font size to 20.
	 8.	 With the text field still selected, change the text type to

Dynamic Text.
	 9.	 Give the text field an ID of txt.
	10.	 Open the Actions window and add the following ActionScript.

The goal for this is to show you that the ActionScript you have
Figure 1.10  Currently there
is only the AIR for Android
template, but you can create
your own for tablet devices.

20   Setting up Flash CS5 for Android Development

been using all along will work. Enter the following ActionScript
(Figure 1.12):

	 	 txt.text = “hello, world”;
	11.	 At this point you can test your Flash movie by pressing

CTRL+ENTER. The movie should show you the text “hello,
world” on your screen.

	12.	 The next steps are to convert the Flash movie into an Android
application.

	13.	 Select the Stage and choose the Properties panel. In the Profile
section you will see AIR for Android Settings. Select the Edit…
button (Figure 1.13).

	14.	 The Application and Installer options window will open.
Across the top of the window you will see three buttons,
General, Deployment, and Icons, that toggle three different
settings windows (Figure 1.14).

Figure 1.11 U se text tools that
you are already familiar with in
Flash.

	 Setting up Flash CS5 for Android Development   21

	15.	 The General button shows you the following settings:
•	 Output file
•	 App name
•	 App ID
•	 Version
•	 Aspect ratio
•	 Full screen
•	 Auto orientation
•	 Included files

	16.	 The Output file is the location of the final file that will be
installed on your Android device. The file format for Android
apps is APK. For this example you can keep the default file-
name. It should be called FirstApp.apk, and will save to the
same folder as your Flash FLA file.

	17.	 The App name is the name of the app as it will appear on the
Android phone. The default is to use the name of the FLA file.
Change the name to My First App.

Figure 1.12  Add dynamic content
using ActionScript.

22   Setting up Flash CS5 for Android Development

	18.	 The App ID is used when you publish your app to the
Marketplace. For now you can keep the default, FirstApp.

	19.	 The version number allows you to add a version number to
your Android app. It is up to you how you want to number
your versions.

	20.	 The Aspect ratio forces the default presentation of your
Android app into either Landscape or Portrait. For now, keep
the Aspect ratio as Portrait. Later, when you develop your first
games, you will learn how to design for Landscape aspect
ratio.

	21.	 Select the checkbox for Full screen. The Full screen setting
forces the application to use up the whole screen and hide the
status bar on the Android phone.

	22.	 Do not select the Auto orientation checkbox. Auto orientation
will allow the app to rotate as you rotate your phone.

Figure 1.13 T he Android
application is created using
special publish settings.

	 Setting up Flash CS5 for Android Development   23

	23.	 The Included files section allows you to add additional files
into your final APK package. This can include files such as
video, audio, and other SWF movies. You do not need to worry
about that at this time.

	24.	 Now, select the Deployment button to go to Deployment
screen (Figure 1.15).

	� 	 Each AIR app you build for Android requires a certificate.
For development purposes you can use the same certificate
over and over. Let’s create a Developer certificate.

	25.	 Select the Create button. A new screen will open, asking you
for additional information for the certificate.

	26.	 For Publisher Name, Organization Unit, and Organization
Name, insert Self. This is not a magical term, you can really
enter anything you want.

	27.	 Select the country from the drop-down menu.

Figure 1.14  You need to modify
three screens to create your
Android apps.

24   Setting up Flash CS5 for Android Development

	28.	 Enter a password. Make sure you remember the password
because you will need to use it for future applications.

	29.	 You can use the default 1024-RSA certificate strength.
	30.	 The default validity period is 25 years (Figure 1.16). That

should be good enough for what we are doing.
	31.	 Select the folder where you would like to store the certificate.

The certificate will default to the file name mycert.p12.
	32.	 Select OK. A window will pop up stating that a “Self signed cer-

tificate has been generated.” Select OK.
	33.	 You will go back to the Deployment window. Enter your pass-

word. Choose the Remember password for this session check-
box. While you have this FLA file open, you will not need to
keep re-adding the password each time you compile the file.

	34.	 The Android deployment type option allows you to choose
Device debugging or Release. For now, select the Device
debugging option.

	35.	 Flash can install the final APK file directly onto your Android
device for you. This where you need to have the downloaded

Figure 1.15 T he Deployment
tab controls how you build your
application for Android.

	 Setting up Flash CS5 for Android Development   25

Android SDK. The After publish section will install the
Application on your device but you need to have the Android
SDK ADB tools. You can find the ADP tools within the Android
SDK’s Tools folder.

	36.	 Don’t worry about icons at this time.
	37.	 Select the Publish button.
	38.	 The app is small and should take only about 15 seconds to

publish. You have now created an APK file and, if you selected
the install options, you now have your first Android app run-
ning on your phone. How cool is that? Knuckle punch!

At this point you have your first application running on your
Android phone. The good news is, now that you have one appli-
cation running you do not need to go through the hard work of
installing JRE, Android SDK, AIR for Android, or a Developer’s
certificate again. You have done the hard work. Now you can
focus on creating great AIR solutions with Flash CS5 for the
Android platform.

Figure 1.16  A certificate is valid
for 25 years.

This page intentionally left blank

27
© 2011 Elsevier Inc. All rights reserved.

In the first section of the book we looked at setting up your
Flash environment to work with Android. You also looked at
design considerations you should bear in mind when developing
Android apps. The goal of this project is to bring these two things
together.

During this project you will apply the following:
•	 Set up a default AIR for Android file
•	 Develop background image details for the Android app
•	 Work with embedded text
•	 Create icons for your project
•	 Test your application on your Android device

The goal of this section is to validate how easily you can build
your Android applications. There should be no heartaches when
it comes to Android development and I think you are going to be
very pleased with how fast you pick it up.

Setting up Your Development Environment
Throughout this book you will go through the steps needed

to create a new Android application. Following this project, I
am going to make an assumption that you know enough about
the default setup, and will not need me to run through this pro-
cess each time. Phew, you won’t need to keep hearing me say,
“Download the Android SDK….” We can just focus on the fun
stuff.

For now, let’s step through the whole process.
Before you get started you will need a physical Android device

to test with. This is essential for your development in this book.
You can either buy an unlocked phone that is not connected to a
carrier or drop the pennies to buy your own Android phone from
any of the many mobile carriers. Remember, your phone must be

Project: Creating Your
First App Using Flash CS5

28   Project: Creating Your First App Using Flash CS5

Figure 1.1Proj A ndroid 2.2,
codename Froyo, is Flash
friendly.

running Android 2.2. There are a lot of cheap Android phones on
the market that are running Android 1.6. AIR and Flash are sup-
ported only on Android 2.2 and later (Figure 1.1Proj).

Your development environment also needs to be either
Windows or Macintosh OS X 10.5+.

	 Project: Creating Your First App Using Flash CS5   29

With your Android 2.2 device in hand, let’s set up your devel-
opment environment.
1.	 Start by going to the Android development site at http://devel-

oper.android.com/index.html, as shown in Figure 1.2Proj.
2.	 Select the SDK tab along the top of the page.

Figure 1.2Proj A ll the Android
code you need is at developer.
android.com.

30   Project: Creating Your First App Using Flash CS5

Figure 1.3Proj T he latest
Android SDKs can be
downloaded for Windows,
Mac, and Linux.

3.	 You will need to download either Windows or Mac OS X (Intel)
versions of the SDK. At this time, there is not a Linux ver-
sion of Flash that allows you to develop AIR for Android apps.
(Figure 1.3Proj).

4.	 The Android SDK will download in a ZIP file. Save this to your
computer.

	 Project: Creating Your First App Using Flash CS5   31

5.	 Create a new folder in the root of your main hard drive and
name the file Developer.

6.	 Open and extract the files in the Android SDK to the Developer
folder you just created (Figure 1.4Proj).
At this point you have all the files you need from Google.

Let’s direct our attention to Flash CS5. To get started with AIR for

Figure 1.4Proj E xtract the files
for the Android SDK to your
local hard drive.

32   Project: Creating Your First App Using Flash CS5

Figure 1.5Proj A dobe’s AIR
for Android files can be
downloaded from its labs site.

Android you will need the latest version of Flash CS5. When you
have Flash CS5 installed, jump over to http://labs.adobe.com/tech-
nologies/air2/android/ to download and install the Android MXI
extensions for Flash CS5 (Figure 1.5Proj).

	 Project: Creating Your First App Using Flash CS5   33

Close Flash CS5 before starting your first AIR for an Android
project. Follow these steps to get up and running:
1.	 Open Flash CS5.
2.	 From Create from Template, open the splash screen and select

AIR for Android (Figure 1.6Proj).
3.	 Choose the default AIR for Android template from the New

from Template window (Figure 1.7Proj).
4.	 Select the OK button. Your default, blank Android file is ready

for you. At this point you now work on the fun bit of creating
your Flash content (Figure 1.8Proj).

5.	 Save your file as AndroidWelcomeMessage.xfl.

Figure 1.6Proj T he AIR for
Android template has all the
settings you need for your
Android app.

34   Project: Creating Your First App Using Flash CS5

Figure 1.7Proj A ndroid templates you can choose from.

Figure 1.8Proj A ll you need to get started working with Android apps in Flash.

	 Project: Creating Your First App Using Flash CS5   35

Creating the Graphics
Let’s get started on the graphics you need for your Flash

movie. As mentioned in the previous chapter, the best format
for creating graphics in Android apps is the PNG bitmap format.
Luckily for you, one of the best PNG image editors is Adobe’s
Fireworks. Fireworks is packaged with the CS5 Web Suite of tools.
This means you already have all the tools you need installed on
your computer.

If you do not have Fireworks installed you can download
a 30-day evaluation copy from Adobe.com. The project you
are going to build is very simple: You will create an icon of the
Android logo that you can select.

Go to the accompanying website for this book, www.
visualizetheweb.com/flashmobile, to download the files used
in this book. Project 1 will have a graphics file labeled google_
android.png. You can open this image with Fireworks.

The image is fine as is (Figure 1.9Proj). You will, however, need
three icons for your final app. Let’s go ahead and create those now. Figure 1.9Proj A PNG graphic

of the Android logo in Adobe’s
Fireworks.

36   Project: Creating Your First App Using Flash CS5

1.	 The three icons you need to create are 72 × 72, 48 × 48, and
36 × 36 pixels.

2.	 Select the Android logo. Open the properties panel. Change the
X and Y properties to 0.

3.	 Change the size of the logo to width 52 and height 72 pixels.
4.	 Select Modify → Canvas Size. The Canvas Size screen opens.

Change the width and height to 72 × 72 pixels (Figure 1.10Proj).
5.	 Save your file as Android_logo_72.png.
6.	 Repeat this process for 48 × 48 and 36 × 36 pixel icons, and

name the files Android_logo_48.png and Android_logo_36.png,
respectively. There is no magic to how the files are numbered.
This is just an easier way to remember what each file does.
�At this point you have all of the graphics you need for your
first application.

Figure 1.10Proj U se Fireworks
to create the image icons for
the final application.

	 Project: Creating Your First App Using Flash CS5   37

Building an Application
Now, let’s get down to the fun part: building applications.

	 1.	 Open Flash CS5, if you do not still have it open, and open the
AndroidWelcomeMessage.xfl Flash movie.

	 2.	 Select File → Import → Important to Stage…
	 3.	 The Import window will open. Navigate to the folder con-

taining your images. Select google_android.png, as shown in
Figure 1.11Proj.

	 4.	 The Import Fireworks Document window opens. Select Import
as a single flattened bitmap. Choose OK (Figure 1.12Proj).

Figure 1.11Proj I mport the
PNG file you need for the
application.

38   Project: Creating Your First App Using Flash CS5

	 5.	 Select CTRL+K (Windows) or CMD+K (Mac) to open the Align
panel. Select Align to stage and center the imported image
(Figure 1.13Proj).

	 6.	 Change the pointer tool to the text tool.
	 7.	 On the Stage, below the Android image, draw a rectangular

text region. Open the properties panel and change the text
type to TLF, read only, set the color to black and the font size
to 40. Don’t forget to change the line setting to multiline.

	 8.	 Name the new text field myText (Figure 1.14Proj).

Figure 1.12Proj  Flatten the
imported Fireworks PNG image.

	 Project: Creating Your First App Using Flash CS5   39

Figure 1.13Proj  You can use all
the image manipulation tools
in Flash, such as Align, in your
Android apps.

	 9.	 Right-click the Android image on the Stage. Select Convert to
Symbol.

	10.	 Name the new symbol android_image as shown in Figure
1.15Proj.

	11.	 The image is now a movie clip. With the Android movie clip
still selected, open the Properties panel. Name the movie clip
android_Btn (Figure 1.16Proj).

	12.	 Open the Actions panel.

40   Project: Creating Your First App Using Flash CS5

Figure 1.14Proj  You can use the new TLF text on Android phones.

Figure 1.15Proj A s you might expect, you can use Flash symbols in your Android apps.

	 Project: Creating Your First App Using Flash CS5   41

Figure 1.16Proj A named
movie clip can be referenced
in ActionScript.

13.	 Select Frame one from the timeline. In the Actions panel add
the following ActionScript (Figure 1.17Proj):

var theDate:Date = new Date();
var day = theDate.toLocaleDateString();
android_Btn.addEventListener(MouseEvent.CLICK, onClick);
function onClick(event:MouseEvent):void
{
myText.text = “Welcome to Android App development using

Flash CS5. \n \nThe date of your first app is: ” + day;
}

14.	 The first line of this script defines a date object; the second
line captures the date as a string object.

15.	 Line three associates a mouse click event with the android_btn
object on the stage. A single tap is treated the same as a single
click on the mouse.

16.	 Line 6 generates a message that is posted to the text object
when you press the Android icon.

17.	 Press CTRL+ENTER (Windows) or CMD+ENTER (Mac) to test
the application. Click on the Android icon to reveal a message,
as shown in Figure 1.18Proj.

42   Project: Creating Your First App Using Flash CS5

Figure 1.18Proj T he Flash movie should work in Publish Preview mode.

Figure 1.17Proj  You will use a little ActionScript to test that AS3 will work on your Android phone.

	 Project: Creating Your First App Using Flash CS5   43

The Flash movie you have created is simple, but it con-
tains all the elements of any large and complex movie: you have
ActionScript and images, and you use the timeline. Now you need
to publish your app as an Android solution.

Running Your App on Your Android Phone
The final step is to publish your Flash movie as an Android

application.
1.	 Select the Stage and open the Properties panel.
2.	 In the Publish section, select AIR Android Settings (Figure

1.19Proj).
3.	 The Application & Installer Settings window opens. For

now, keep the default settings on the General tab (Figure
1.20Proj).

Figure 1.19Proj T he AIR Android
Settings control how you build
your Android app.

44   Project: Creating Your First App Using Flash CS5

4.	 Select the Deployment tab, as shown in Figure 1.21Proj. The
Certificate setting should be the same setting you created dur-
ing the first chapter of the book.

5.	 Enter your password and check the Remember password for
this session checkbox.

6.	 Connect your Android device to your computer. Select Install
application on the connected Android device.

7.	 Check Launch application on the connected Android device.

Figure 1.20Proj T he name
of your app and the filename
are two of the settings on the
General tab.

	 Project: Creating Your First App Using Flash CS5   45

8.	 Select the Icons tab. Select each icon in the list. Use the folder
button to find and connect each icon you created earlier (Figure
1.22Proj).

9.	 Select the Publish button. The publishing process will take a
couple of minutes depending on the speed of your computer.
The final results will be a running app on your Android phone.
Click the icon to bring up the message.

Figure 1.21Proj T he AIR
Android Settings control how
you build your Android app.

46   Project: Creating Your First App Using Flash CS5

Figure 1.22Proj  You can
associate three different
sized icons for your Android
applications.

You have created your first complete Android application
using Adobe’s Flash CS5. In this chapter you learned how to
install the Android SDK, update Flash CS5 with AIR for Android,
and you created your first application that is now running on
your Android phone. Well done!

In the next section you will expand on what can be accom-
plished in AIR for Android by leveraging animation, video, audio,
and components.

2
Section

This page intentionally left blank

49
© 2011 Elsevier Inc. All rights reserved.

Android apps place a focus on delivering specific content in
your hand. For instance, you want an app to play a card game,
another app to read news headlines, and more apps to show you
your horoscope, weather, and driving conditions. All specialized,
bite-sized apps.

The result is that you can develop Android apps faster. In this
section you will learn how to rapidly prototype and build Android
apps with little or no code.

Creating Content for Your Android Phone That
Does Not Require Programming

Flash CS5 allows you to build solutions that will run on the
Android OS that require no programming. In this chapter you
will learn how to build solutions without using ActionScript. Well,
maybe I throw in a little ActionScript, but not much (promise!).
You will see how rich animation and video can be used very easily
to create Android solutions.

The core to the success of Adobe’s Flash is its broad range of
sophisticated rich media. The goal of this chapter is to show how
to use the following rich media techniques in Flash CS5 effec-
tively for Android development:
•	 Creating animation
•	 Playing back sound
•	 Presenting video
•	 Working with 3D

Many of these rich media techniques will be familiar to you
if you have already worked in Flash CS3 or CS4. The Android
OS, however, gives you challenges that you would not expect to
encounter if you are developing Flash for websites running on
desktop computers. The Android OS is typically running on a
much slower CPU with limited graphical enhancements. With that
said, you are going to be very surprised at what Adobe has done to
make sure your Flash development experience is a good one.

Rapid Android Development
in Flash CS5

50   Rapid Android Development in Flash CS5

Animation Techniques You Should Use
on Mobile Devices

Flash provides you with a wealth of animation techniques
you can use. From simple frame-by-frame animations to Classic
Tween and Motion Tween techniques, you have lots of choices
when it comes to animation in Flash CS5. Throw in the many
third-party animation tools and there is very little you cannot
accomplish.

The goal of this section is to show you animation tech-
niques you can apply without having to add ActionScript. Each
technique will be assessed for its performance on Android
devices.

There are three basic animation techniques we are going to
look at:
•	 Frame-based animation
•	 Classic Tween
•	 Motion Tween

Each of these techniques can be tweaked to run on the
Android phone. The good news is that you do not need to do too
much tweaking.

Frame-by-Frame Animation
The first animation style you will likely ever use in Flash is

frame-based animation. This is an old technique from the classic
days of animation started in the late nineteenth century with the
infamous Zoetrope. The premise is this:
1.	 Create a drawing, such as a motorbike.
2.	 Copy the drawing, and modify the drawing very slightly (the

bike wheels might be turning).
3.	 Copy the second drawing and modify it slightly.
4.	 Rinse and repeat.
5.	 Add all the frames in sequence to film. Voila! You have your

frame-based animation.
The goal is to keep modifying the illustration frame by frame

to reflect changes to your overall animation. By the time you
reach your final frame and play back all the frames, you will have
your overall animation.

Frame-based animation is the oldest animation type sup-
ported in Flash. The history of the technique goes back to 1997
when Flash was called FutureSplash. To this end, there are a
number of great tools in Flash that allow you to easily create

Using Images in Your
Animation

Every animation
requires at least
an image. As

mentioned in the previous
section, you will want to
keep your animation
images in a bitmap format
such as PNG. Vector-
based drawings will chew
up the graphics processor
on your Android phone,
resulting in slow animation
and shorter battery life.
Not much fun there.

The Secret to Fast
Frame Rate for Your
Animations

The key to success
with consistent
high quality

animation on the Android
phone is simplicity. Keep
the number of animating
objects on the screen
down to less than 20.
More than 20 and you
will see frame rates
dropping as the GPU on
the phone struggles to
keep up.

	 Rapid Android Development in Flash CS5   51

frame-based animation movies. Let’s get started with adding
frame-based animation to Flash.
1.	 Start by opening Flash CS5 and selecting the AIR for Android

template. Choose the default template and save your file as
FrameAni.xfl, using the new uncompressed file format in Flash
CS5.

2.	 For this example, you will be using the Android.png file in
the support document. Select File → Import → Import to
Stage…

3.	 Select Android.png and import it onto your stage. You will have
two layers as shown in Figure 2.1. The top layer is the Android
logo and the second layer is text.

Figure 2.1 T he start of
the Android frame-based
animation.

52   Rapid Android Development in Flash CS5

Figure 2.2 S elect frame 2 and
press F6 to start the keyframe
process.

4.	 The goal of the animation is to rotate the Android logo. Start
by selecting frame 2 in the Image layer in the Timeline panel
(Figure 2.2).

5.	 Right-click on your mouse and select the Keyframe option.
A keyframe is a special frame that copies the content of the
previous frame and adds it to a new frame. When in the new
frame you can apply changes to the frame. In this instance, let’s
add a slight rotation to the drawing.

6.	 The Android logo should be selected on the Stage. Press Q to
change the cursor to the Free Transformation cursor. With the
freeform cursor active you can rotate the logo by selecting the
top right-hand corner of the image.

	 Rapid Android Development in Flash CS5   53

	 7.	 Select the icon and rotate it very slightly, as shown in Figure
2.3.

	 8.	 Select frame 3 in the Image timeline and choose the Insert
Keyframe command. The image will be copied from the previ-
ous frame. Select the image and rotate it some more.

	 9.	 Keep repeating this process until your Android icon completes
a full rotation. It should take about 32 frames.

10.	 Select CTRL+ENTER (PC) or CMD+ENTER (Mac) to test
the movie. You should see a spinning logo. You will also see
the Android name blinking on and off—this can be fixed
easily.

Figure 2.3 T he Free Transform
tool allows you to rotate and
resize an object.

54   Rapid Android Development in Flash CS5

11.	 Select the layer named text. Choose the final frame Image
layer and select F5 to quickly add a frame. The frame you add
is not a keyframe but a frame that will extend how long the text
is on the screen (Figure 2.4).

12.	 Test your movie again. You will see the animation and the
text on the screen. Go ahead and publish the movie to your
Android Phone to see how the animation performs.

Android OS likes frame-based animation when you are using
PNG images. The reason for this is that frame-based animation is
the most basic animation type in Flash. There are no calculations
that need to be created to define the animation.

As you have probably realized as you stepped through this
exercise, frame-based animation can be tedious and complex.
Any slight mistake can cause hours of rework. This is why, in
Flash, you can also leverage Tween animation.

Figure 2.4 A standard frame
is used to keep the text on the
screen.

Building Solutions
Using the XFL File
Format

The projects in this
book are now
using the new XFL

file format. You can still
use FLA to save your files.
The XFL format is an
uncompressed format that
allows you to view all the
files in your project easily.
It makes it easier to
manage very large and
complex solutions.

	 Rapid Android Development in Flash CS5   55

A Tween is technique where animation is added by Flash
between two points. Flash supports two different Tween tech-
niques: Classic and Motion.

Leveraging Classic Tween Techniques
As the name indicates, Classic Tween is a technique that has

been included with Flash since its first release, and is a “classic”
animation technique in Flash. A Classic Tween requires two key-
frames in a layer on the timeline. Let’s step through the process.
1.	 Start by creating a new AIR for an Android movie. Save the file

and name it classicTween.xfl.
2.	 Import the Android logo and text.
3.	 Name the layer the logo is in “logo.”
4.	 Select the Android logo. Right-click and choose, Convert to

Symbol. Name the new symbol “android.” The Classic Tween
requires that you use either a Graphic or Movie Clip symbol in
the animation sequence (Figure 2.5). Figure 2.5 A Classic Tween can

be accomplished only with a
Graphic or Movie Clip.

56   Rapid Android Development in Flash CS5

	 5.	 Select Frame 30 on the logo layer in the Timeline panel.
	 6.	 Right-click and select Insert Keyframe (Figure 2.6).
	 7.	 You have now defined two points in time: the first frame and

frame 30.
	 8.	 Let’s set up the animation sequence to fade out the logo. Select

frame 30 of the logo layer.
	 9.	 Open the Properties panel. In the Color Effect section, choose

Alpha from the Style drop-down menu (Figure 2.7).
10.	 Change the Alpha level to zero. This will make your animation

invisible.
11.	 At this time, if you play the animation all you will see is the

logo on the screen for most of the animation and then blink-
ing out at the end. This is not what we want. Let’s add a Classic
Tween to control the animation.

12.	 Select frame 1 of the logo layer in the timeline.

Figure 2.6  Classic Tween
requires two keyframes.

	 Rapid Android Development in Flash CS5   57

13.	 Right-click and select Create Classic Tween (Figure 2.8).
14.	 You will now see shading in frame 1 and 30 with an arrow in it.

Play back your animation. You will now see your Android logo
fading over the duration of the animation (Figure 2.9).

15.	 Select the layer named text. Choose the final frame Image
layer and select F5 to quickly add a frame. The frame you add
is not a keyframe but a frame that will extend how long the text
is on the screen.

As you can see, this is a basic animation Tween. What you
will find, as you work with the Classic Tween technique, is that
it becomes increasingly difficult to perform complex animation
sequences over time.

This is where the new Motion Tween comes to your rescue.

Figure 2.7  Changing the alpha
property.

58   Rapid Android Development in Flash CS5

Figure 2.8 I nsert a Classic Tween to the first frame of your animation.

Figure 2.9 P urple shading and an arrow indicate that this is a Classic Tween.

	 Rapid Android Development in Flash CS5   59

Using Motion Tween
The Motion Tween technique was added as part of Flash CS4.

It is very new and is the biggest leap for animators since the first
version of Flash. It is a whole new way of creating and managing
animation in Flash.

The new Motion Tween is also very easy to use. You can
recreate animation effects in fewer steps than the Classic Tween.
To demonstrate this, we will recreate the animation sequence
developed in the Classic Tween.
1.	 Start by creating a new AIR for Android template in Flash CS5

and save the template as motionTween.xfl.
2.	 Copy the Android logo into the new motionTween.xfl file.
3.	 Right-click on the Android logo. Remember, at this time, the

logo is still an illustration and has not been converted into a
Library symbol. Convert the Android logo into a symbol.

4.	 Right-click the Android logo symbol on the stage and select the
Create Motion Tween option (Figure 2.10).

Figure 2.10 T he Motion Tween
option can be applied to Library
symbols on the stage.

60   Rapid Android Development in Flash CS5

5.	 A 24-frame-long blue line appears in the same layer as the logo.
This is the time your animation will run. The 24 frames reflect
one second of animation (Figure 2.11).

6.	 Select the final frame in the blue line. Do not insert a keyframe.
With the final frame selected, open the Properties panel and
change the Alpha levels for the image to 0.

7.	 That’s it—test your new animation.
The Motion Tween animation technique now in Flash CS5

makes it much easier to create new and complex animation
sequences. Let’s go ahead and modify the new Motion Tween
on the logo so you can see how much more control you now
have.
1.	 Select frame 12 of the logo timeline. This should be the middle

of your Motion Tween. Drag the Android logo to the bottom left
corner.

Figure 2.11  By default, a
Motion Tween will run for one
second, or 24 frames.

	 Rapid Android Development in Flash CS5   61

2.	 As you drag the logo you will see a line appear on the screen
showing the animation path you are creating. This new path
is called the Animation Spline (Figure 2.12). It is a mathemati-
cal path that lets you see what is happening with animation.
In addition, you will see a small, black diamond appear on the
frame. This is a visual indicator that you have done something
on this frame.

3.	 Test your movie. The logo will now bounce up and down along
the Animation Spline. This is great, but what if you want to add
more animation? The old Classic Tween method requires add-
ing more key frames; the new Motion Tween does not.

4.	 Select frame 6. Drag the logo to the top left-hand corner of
the stage. Notice the Animation Spline is automatically
updating to reflect your new, modified animation path
(Figure 2.13).

Figure 2.12 T he purple line is
the Animation Spline.

62   Rapid Android Development in Flash CS5

5.	 Select frame 18. Drag the logo to the top right of the stage.
Again, the Animation Spline updates without you having to
add any additional keyframes (Figure 2.14).

6.	 Play your movie. Voila! Instant animation.
OK, so you have seen how you can add new points in the Motion

Tween timeline where something happens. In this case, the “some-
thing” is simply moving the logo around the screen. But the Motion
Tween does not stop there. What if you want to lengthen the time
of your animation sequence or change the placement of the
animation on the screen? You’ve now got the tools to do that.

Currently the animation on the screen lasts for one second.
This is defined by two values: the overall frame rate of a default
AIR for Android movie is 24 frames per second (fps), and the
Motion Tween in the timeline is exactly 24 frames long.
1.	 The length of time the animation is on the screen can be modi-

fied by selecting the far right frame of the Motion Tween in the
logo layer and dragging it out. Drag the last frame of the Motion
Tween to frame 96 (Figure 2.15).

Figure 2.13 T he Motion Tween
automatically updates the
Animation Spline without
requiring new keyframes.

	 Rapid Android Development in Flash CS5   63

Figure 2.14  Keep updating the Motion Tween by selecting frames and moving your objects on the
stage.

Figure 2.15 A Motion Tween animation can easily be increased by dragging the right-hand side of
the selected Motion Tween on the stage.

64   Rapid Android Development in Flash CS5

2.	 Next, let’s move the whole animation from the current position
on the screen to a different position. To do this, select the green
Animation Spline and drag it. You will see that the whole anima-
tion path moves as you move the Animation Spline (Figure 2.16).

3.	 Play back the animation.
The animation sequence now takes 4 seconds to play. You will

notice that the animation is smooth. All you have done is extend
the period of time for the animation. You have not reduced
the frame rate. In addition, while the logo is still following the
same animation path as you had originally set, the whole path
has been moved and the new animation point has also been
included.

These two simple steps (changing the overall time of the ani-
mation sequence and changing the position of the whole anima-
tion) could be done in the Classic Tween technique but would
have required many additional steps. You certainly could not
have accomplished these changes with three steps.

Figure 2.16 T he whole Motion
Tween animation sequence
can be moved by selecting the
Animation Spline.

	 Rapid Android Development in Flash CS5   65

The Subselection tool and Free Transform tool can also be
used to add more detail to your animation path.

The Subselection tool allows you to select vector points
in your animation. Each vector that can be modified is high-
lighted with a green dot in the Animation Spline. With a vector
point selected you can push out and modify the curve of the
animation.

The Free Transform tool allows you to select the whole
Animation Spline and stretch, skew, and rotate the Spline as if it
were a single object.

Move through these steps to use the Subselection tool and Free
Transform tool on your Motion Tween Animation Spline path.
	 1.	 Let’s use the animation created with the Motion Tween.

Right now, as you play the animation, the movement is very
angular.

	 2.	 From the Tools panel select the Subselection tool (press A for
the keyboard shortcut) (Figure 2.17).

	 3.	 With the Subselection tool active, select and hold a green dot
in the Animation Spline. Pull back slightly to show the subse-
lection handles.

	 4.	 Click, hold, and drag the subselection handles to modify the
shape of the curve. At this point you are modifying the arc of
the curve.

	 5.	 Select a second point on the Animation Spline and change the
arc of the animation.

	 6.	 Now select the Free Transform tool from the Tools panel
(or press the Q button for the keyboard shortcut) (Figure
2.18).

	 7.	 Select any point in the animation. The whole Animation Spline
will be highlighted with resize and rotate handles.

	 8.	 Move your cursor over the top right-hand corner until the
cursor changes to a rotate icon. Rotate the animation path.
Notice that the whole Animation Spline rotates, not just the
one frame you are working on (Figure 2.19).

	 9.	 With the Free Transform tool still selected, click and drag the
center top resize handle to increase the size of the object.

	10.	 Play back the animation. You will see that the whole anima-
tion sequence has been changed by the controls of the Free
Transform tool.

But there is more. The Motion Tween comes with its own edi-
tor that allows you to modify still further the animation sequence
you are creating.

Working with the Motion Editor
The Motion Editor is a tool that Adobe had designed to fine-

tune your Animation Spline. Figure 2.20 shows the Motion Editor.

Working with Frame
Rates

Not all Android
phones are created
equally. Some are

faster than others. Some are
slower. To compensate for
the difference you will want
to program your applications
for the lowest common
denominator. Frame rate is a
great way to control user
expectation from your
application. Complex first-
person shooter (FPS) games
require rapid frame rate
changes that exceed 60 fps.
But not all solutions are FPS
games. The human eye will
see fluid motion at speeds as
low as 21 fps. The default
24 fps in Flash should be
more than fast enough for
even complex animation
sequences. By keeping the
frame rate at 24 you are
reducing the frame rate
refresh speed on the phone’s
graphics chip. Slower frame
rates mean that slow
hardware will give the same
experience as fast hardware.

Forcing Horizontal or
Vertical Movement of
an Animated Object

Sometimes you just
want an object on
the stage to move

either vertically or horizontally.
It can be hard to control this
with the freeform movement of
the Selection tool. However,
you can fix the movement of
an object to either a vertical
or horizontal axis by holding
down the SHIFT key. With the
SHIFT key selected, you can
move a selected object only
left/right or up/down.

66   Rapid Android Development in Flash CS5

Figure 2.17 T he Subselection tool allows you to modify the Animation curve.

Figure 2.18 S elect the Animation Spline and then the Free Transform tool to modify the whole
animation path.

	 Rapid Android Development in Flash CS5   67

Figure 2.19 T he animation path has rotated but the images have not.

Figure 2.20 T he Motion Editor gives you additional pixel level control over your animation.

68   Rapid Android Development in Flash CS5

The Motion Editor has main sections:
•	 Modifying property values for a Tween (left-hand side)
•	 Adding and removing keyframes (center gutter)
•	 Playhead to preview your changes (right-hand side)

Select any point in the Motion Tween on the stage and the set-
tings will update in the Motion Editor.

The Motion tool is split into five main areas:
•	 Basic Motion controls X, Y, and Rotation Z-based animation.
•	 Transformation controls that skew and scale along the X and

Y axis.
•	 Color Effect allows you to add color transformations such as

Alpha.
•	 Filters allow you to apply any of the core six filter types (Drop

Shadow, Blur, Glow, Bevel, Gradient Glow, Gradient Bevel,
Adjust Color).

•	 Eases are the prebuilt and custom animation types.
As you can see from the list of controls, the Motion Tween

comes with a lot of controls you simply do not have when using
the Classic Tween.

Converting Motion Tween to ActionScript
The single difference between a Classic Tween and a Motion

Tween is how the animation is constructed. With a Classic Tween
the animation is dictated by the timeline. With a Motion Tween,
the animation is created mathematically. In many ways compar-
ing a Classic Tween to a Motion Tween is like comparing a bitmap
image to a vector image: one is built by frames and the other is
built by math.

Indeed, a Motion Tween is all controlled through the first
frame of the Motion Tween sequence. The number of frames con-
trols only how long the animation plays but does not necessarily
control the transformation in the animation.

To demonstrate this, Adobe has included a Copy Motion as
ActionScript 3.0 feature that allows you to copy out any Motion
Tween on the stage into ActionScript.

Having the Motion Tween in ActionScript allows you to extend
the functionality of the animation sequence beyond what is capa-
ble with the Timeline and Motion Editor tools. For instance, you
may want to trigger a sound clip to play when the animation has
completed.

Copying the ActionScript requires only that you have a Motion
Tween on the stage. In the following example there is a simple
shape that is moving from one location to another.

Right-click on the Animation Spline and you will see an
option called Copy Motion as ActionScript 3.0. Select this
option.

	 Rapid Android Development in Flash CS5   69

Open up a text editor and paste the ActionScript into it
(Figure 2.21). You should see something very similar to the
following:

import fl.motion.AnimatorFactory;
import fl.motion.MotionBase;
import fl.motion.Motion;
import flash.filters.*;
import flash.geom.Point;
var __motion_myMovie:MotionBase;
if(__motion_myMovie == null) {

__motion_myMovie = new Motion();
__motion_myMovie.duration = 24;
// Call overrideTargetTransform to prevent the

scale, skew,
// or rotation values from being made relative to

the target
// object's original transform.
// __motion_myMovie.overrideTargetTransform();

Figure 2.21 T he Motion Tween
is constructed of ActionScript.

70   Rapid Android Development in Flash CS5

// The following calls to addPropertyArray assign
data values

// for each tweened property. There is one value in
the Array

// for every frame in the tween, or fewer if the
last value

// remains the same for the rest of the frames.
__motion_myMovie.addPropertyArray(“x”, [0,13.0435,

26.087,39.1304,52.1739,65.2174,78.2609,91.3043,104.348,
117.391,130.435,143.478,156.522,169.565,182.609,195.652,
208.696,221.739,234.783,247.826,260.87,273.913,286.957,
300]);

__motion_myMovie.addPropertyArray(“y”, [0,2.73913,
5.47826,8.21739,10.9565,13.6957,16.4348,19.1739,21.913,
24.6522,27.3913,30.1304,32.8696,35.6087,38.3478,41.087,
43.8261,46.5652,49.3043,52.0435,54.7826,57.5217,60.2609,
63]);

__motion_myMovie.addPropertyArray(“scaleX”,
[1.000000]);

__motion_myMovie.addPropertyArray(“scaleY”,
[1.000000]);

__motion_myMovie.addPropertyArray(“skewX”, [0]);
__motion_myMovie.addPropertyArray(“skewY”, [0]);
__motion_myMovie.addPropertyArray(“rotationConcat”,

[0]);
__motion_myMovie.addPropertyArray(“blendMode”,

[“normal”]);
__motion_myMovie.addPropertyArray(“cacheAsBitmap”,

[false]);
// Create an AnimatorFactory instance, which will

manage
// targets for its corresponding Motion.
var __animFactory_myMovie:AnimatorFactory = new

AnimatorFactory(__motion_myMovie);
__animFactory_myMovie.transformationPoint = new

Point(0.499826, 0.500000);
// Call the addTarget function on the AnimatorFactory
// instance to target a DisplayObject with this

Motion.
// The second parameter is the number of times the

animation
// will play - the default value of 0 means it will

loop.
// __animFactory_myMovie.addTarget(<instance name

goes here>, 0);
}

If the animated object on the Stage does not have an ID, one
will be automatically generated for it. The ActionScript is con-
structed of three main sections:

	 Rapid Android Development in Flash CS5   71

•	 Lines 1–5 import additional animation classes that are devel-
oped by Adobe for animation. This reduces the amount of
work you need to do in your animation.

•	 The IF statement starting at line 7 describes the animation for
an object called myMovie on the stage.

•	 Following this is a description of the key movements of the
object. For this example the animation is very simple—only
the X and Y properties are being modified. A more complex
animation would see additional properties described.
Working with the Motion Tween, Motion Editor, and

ActionScript gives you exact control over your animation.
However, Motion Tween animation requires more graphics pro-
cessing by the Android phone. To manage the experience and
expectations of your client, keep fewer than 20 Motion Tween
animation sequences on the screen at the same time. With more
than 20 animation sequences running simultaneously you will
likely see a drop in the frame rate and the ability for the Android
phone to keep up with your creativity.

Controlling Sound
Sound is an area where the Android OS excels. There are three

good reasons why sound is so good:
•	 The Android OS has an MP3 player built in
•	 Every Android comes with speakers
•	 Audio out (headphones)

Android leverages a separate media class to handle audio.
This media class can be tapped by Flash to allow playback of
content.

There are no big surprises when it comes to audio files sup-
ported on the Android OS. Table 2.1 breaks down the different
file formats and codecs supported on your Android phone. If
you have been working with Flash for a while you will see famil-
iar file types such as MP3, WAV, and MP4 (and a mobile version
of MPEG4 called 3GP). Additionally, you will see the open source
Vorbis audio format. Vorbis is not supported in your Flash mov-
ies. Although Android OS does support the format, the AIR for
Android player does not.

Flash gives you several ways to connect to audio in your
movies:
•	 Directly importing audio into the library
•	 Controlling audio with media components
•	 Leveraging ActionScript to control audio

Through the use of these techniques you can employ exact
control over audio in Flash.

72   Rapid Android Development in Flash CS5

Adding Sound to Flash
Adding sound files to Flash has not changed too much over the

years. If you have added files to the Library then you have already
completed the steps needed to link to a sound clip.

You can import sound files into Flash by select File → Import
→ Import to Library… and selecting a sound file. The following
file formats are supported in Flash (Figure 2.22):
•	 ASND (Windows or Macintosh), the native sound format of

Adobe® Soundbooth™
•	 WAV (Windows only)
•	 AIFF (Macintosh only)
•	 mp3 (Windows or Macintosh)

If you have QuickTime® 4 or later installed on your system,
you can import these additional sound file formats:
•	 AIFF (Windows or Macintosh)
•	 Sound Designer® II (Macintosh only)
•	 Sound Only QuickTime Movies (Windows or Macintosh)
•	 Sun AU (Windows or Macintosh)

Table 2.1  Supported Formats and Codecs

Format

Encoder

Decoder

Details

File Type(s)
Supported

AAC LC/LTP X Mono/stereo content in any
combination of standard bit rates
up to 160 kbps and sampling rates
from 8 to 48 kHz

3GPP (.3gp) and
MPEG-4 (.mp4,
.m4a); no support
for raw AAC (.aac)

HE-AACv1 (AAC+) X
HE-AACv2
(enhanced AAC+)

X

AMR-NB X X 4.75 to 12.2 kbps
sampled @ 8 kHz

3GPP (.3gp)

AMR-WB X 9 rates from 6.6 kbps to
23.85 kbps sampled @ 16 kHz

3GPP (.3gp)

MP3 X Mono/stereo 8-320 kbps constant
(CBR) or variable bit-rate (VBR)

MP3 (.mp3)

MIDI X MIDI Type 0 and 1 DLS Version
1 and 2. XMF and Mobile XMF;
support for ringtone formats
RTTTL/RTX, OTA, and iMelody

Type 0 and 1 (.mid,
.xmf, .mxmf); also
RTTTL/RTX (.rtttl,
.rtx), OTA (.ota), and
iMelody (.imy)

Ogg Vorbis X Ogg (.ogg)
PCM/WAVE X 8- and 16-bit linear PCM (rates up

to limit of hardware)
WAVE (.wav)

	 Rapid Android Development in Flash CS5   73

•	 System 7 Sounds (Macintosh only)
•	 WAV (Windows or Macintosh)

When you select a sound in one of these audio formats you
will see it appear in your Library. A small speaker icon will be
associated with the file. You can select and play back the audio
clip directly in the Library (Figure 2.23).

By default, the name for the sound file in the Library will be
the same name as the file you imported. Double-clicking the
name in the Library will allow you to change the name to one that
is more meaningful.

Follow these steps to update the sound file you have imported:
1.	 In Flash, open the Library. Select the sound you want to modify.

Select the Play button in the preview window to test the sound clip.
2.	 Right-click on the sound clip. You have three options that are

of particular importance: Edit with…, Edit with Soundbooth,
Update… (Figure 2.24).

Figure 2.22  Flash support
for the most popular sound
formats.

74   Rapid Android Development in Flash CS5

3.	 If you have Adobe Soundbooth installed on your computer you
can select Edit with Soundbooth. This will open Soundbooth
on your computer with the sound file from your Flash Library.
You can now edit the file. Selecting the Save option saves the
updated file directly to Flash.

4.	 If you do not have Soundbooth installed then you can select any
other audio editing tool. Using the Edit with… option allows
you to use any third-party tool to update your sound clips. The
file will be saved directly back to Flash.

5.	 In addition, you can change the original file on your hard drive
and update your file in Flash. The imported audio file in the
Library does not lose its link with the original audio file on your
hard drive. This is very useful when you know there will be
changes to the original sound file but need a placeholder sound
until you have the final version. After you have made updates to
the original file, select Update… in Flash. The Update Library
Items window will open. Select OK.

Figure 2.23 S ound files in
the Library can be played by
selecting the speaker icon.

Sound Editors You
Can Use

There are a lot of
tools on the market
that you can use.

One of the most popular is
the Open Source solution
called Audacity (http://
audacity.sourceforge.net/;
Figures 2.25, 2.26).
Audacity will run on all the
popular operating systems
and the price is great. It is
free!

	 Rapid Android Development in Flash CS5   75

Figure 2.24  Right-click on the sound clip in the Library to edit the chip in sound editing software.

Figure 2.25 A udacity is a free piece of software you can use to edit your sound clips.

76   Rapid Android Development in Flash CS5

Now that you have a file in your library, you can start to use
it in your applications. The first place where you can see your
sound files working in Flash is in the timeline.
1.	 Open the Timeline panel.
2.	 Select frame 1 of the default timeline.
3.	 In the Properties panel, expand the Sound section. The first

option is a drop-down menu called Name. Select this drop-
down to see the different sound files in the library.

4.	 Choose a file.
5.	 To see the sound file in the timeline more easily, add additional

frames to the layer you are working in (press the F5 button for a
keyboard shortcut).

6.	 A visual copy of the sound file wave pattern is now inserted into
the timeline.

7.	 Test the movie and you will hear the sound clip.

Figure 2.26 H ere you can see
the sound clip being edited in
Audacity.

	 Rapid Android Development in Flash CS5   77

You may notice that the audio file does not sound the same as
the original file when you test the movie. This is due to the pub-
lish settings in Flash. Flash will convert the audio file into 16 kbps
MP3 format when it is published. You can change this.
1.	 Select File → Publish Settings…
2.	 The Publish Settings window opens.
3.	 Select the Flash tab.
4.	 In the Images and Sounds section of the Flash Publish Settings,

choose the Audio Stream and Audio Event Setting buttons
(Figure 2.27). This will open the Sound Settings window.

5.	 Change the bitrate to 128 kbps (Figure 2.28). This is the
equivalent of CD quality sound.

6.	 Select OK and publish your movie. You will hear that the audio
now sounds much better.
Play around with sound in your timeline. It is a great way to

get comfortable with the sound tools.

Figure 2.27 T he Publish
Settings control how audio is
played.

78   Rapid Android Development in Flash CS5

Working with ActionScript
As you might imagine, you can use ActionScript to control

audio files. We will not get too deep into this here since we will
be covering ActionScript in more detail later in the book. But, I
really like ActionScript and I want to show you something you
can do with ActionScript right now without having to do too
much work.

In this example you are going to use the Code Snippets panel
to do the heavy lifting for you. The Code Snippets panel is a place
where you can access commonly used codes in ActionScript.
The great news is that Adobe has prepopulated the Code Snippet
panel with a bunch of very useful scripts that make things easy
for you.

Figure 2.28  Both the Audio
Stream and Events playback
settings can be modified.

	 Rapid Android Development in Flash CS5   79

Let’s take a look at how you add MP3 playback using
ActionScript without having to write too much ActionScript.
1.	 Start by creating a new AIR for Android file.
2.	 On the stage, import the Android logo. Right-click the Android

logo and convert it into a Movie Clip symbol.
3.	 The code snippets require that a symbol has a name. Select the

logo symbol on the stage. Open the Properties panel and give
the symbol the name playSound.

4.	 With the playSound symbol selected, open the Code Snippets
panel (Figure 2.29).

5.	 Expand the Audio and Video collection.
6.	 Double-click Click to Play/Stop Sound.
7.	 Test your movie. You will see that when you click on the play-

Sound movie clip that a sound file starts to play. Press the movie
clip again and the sound stops playing.

Figure 2.29  Code snippets
provide a way to quickly add
complex interactivity into your
Flash movies.

80   Rapid Android Development in Flash CS5

You probably noticed that the Actions window opened when
you added the code snippet. The following ActionScript was added:

playSound.addEventListener(MouseEvent.CLICK,
fl_ClickToPlayStopSound);

var fl_SC:SoundChannel;
var fl_ToPlay:Boolean = true;
function fl_ClickToPlayStopSound(evt:MouseEvent):void
{

if(fl_ToPlay)
{
var s:Sound = new Sound(new URLRequest(“http://

www.helpexamples.com/flash/sound/song1.mp3”));
fl_SC = s.play();

}
else
{

fl_SC.stop();
}
fl_ToPlay = !fl_ToPlay;

}
At the top of the code snippet is a set of instructions explain-

ing how you can modify the code. For instance, you can change
the URLRequest to point to a different MP3 file.

We will get into what the ActionScript is doing later in the
book. I have added it here so you can see how easily you can con-
trol audio files in your Android apps without knowing how to
write ActionScript.

Controlling Video
Video is huge on the web. Just look at sites such as YouTube,

Hulu, and Vimeo. The sites broadcast billions of hours of video.
What is the technology driving these sites? Yeah, it’s Flash.
You will hear a lot of talk about HTML5 video standards; how-

ever the reality is that Flash has the following when it comes to
video:
•	 Consistent playback experience
•	 Broad support for media standards
•	 Sophisticated controls

For the most part, Flash is a tool you use to connect to video files
and play back through the Flash SWF player. Video on the web is
driven by CODEC licenses. CODEC (Compression/Decompression)
is the technology that is used to contain audio and video files. The
most popular audio CODEC you will know is MP3. Video comes in
dozens of different CODECs. Currently, the AIR for Android player
will allow you to play back the following video formats:
•	 Flash Video VP 6
•	 MPEG-4

Recording Sound on
Your Android Phone

All Android
phones ship with
another hardware

feature used for sound: a
microphone. You can use
the microphone to build
audio recording applications.
The audio recording features
can be incorporated into
AIR for Android apps but
we will not cover it here.
The technique to add
audio requires detailed
ActionScript. You will dig
deep into that later in the
book.

	 Rapid Android Development in Flash CS5   81

Flash VP6 is a legacy format released with Flash Player 8. The
format only plays in Flash.

The Motion Pictures Experts Group is the leader of stan-
dardized video CODECs. MPEG-4 is the current standard-
ized release of its video format. Companies such as Apple,
Microsoft, and Adobe support tools to edit and playback
MPEG-4 video.

There is also an additional format that is being experimented
with called WebM. The new WebM video format is an Open
Source CODEC released by Google following its acquisition of
On2. WebM is now a video standard being supported by Flash,
Google Chrome, and Mozilla FireFox 4.0+. Microsoft has stated
that if you have WebM installed then IE9 will also support the
standard.

OK, here is a very interesting piece of news. On2, the com-
pany that wrote the format for WebM, is the same company
that developed the video format for Flash Video VP6. In other
words, Adobe has a long history with On2, which is now part of
Google. Although WebM is not currently supported in AIR for
Android it is clear that is a case of “when” not “if” the support
will come.

AIR for Android does support both Flash Video VP6 and
MPEG-4 video. MPEG-4 video in AIR for Android benefits from
the video acceleration built into the core Android OS.

Adding Video to Your Flash Movie
There is a lot you can do with video in Flash. To this end, a

lot of what you can accomplish with video in Flash is through
ActionScript.

The ActionScript method gets complicated very fast.
Fortunately, Adobe has included a set of components that allow
you to quickly insert a video player into your Flash movie.

Flash components are tools you can use to add rich function-
ality quickly to your movie without having to create the tool from
scratch. An example is a drop-down menu control.

The components are located in the Component panel, as
shown in Figure 2.30. You will see in the Component panel that
there are three groups of components. The one you are interested
in right now is a group called Video.

Select the FLVPlayBack 2.5 component and drag it onto the
stage (Figure 2.31). You will see that the FLVPlayBack component
looks like a video playback control. It is important to remem-
ber that components are just Flash elements (Flash Movie Clips,
ActionScript Classes, etc.) that you can modify. This separates
Flash from other development environments that make it diffi-
cult to modify their core controls.

Creating Video for
Android Phones

There are dozens
of great tools you
can use to create

video: from simple solutions
such as Windows Movie
Maker all the way up to
professional solutions such
as Sony Vegas and Apple’s
Final Cut Pro. When you
export your videos from
these tools you will want to
ensure you select MPEG-4.
If you do not have MPEG-4
as an export feature then
you can use tools such as
PavTube to convert the
video files into MPEG-4.

Working with
Components

Custom controls,
such as
components, are

commonly found in most
development environments
such as Apple’s Xcode and
Microsoft’s Visual Studio.
There are functional tools
you can use to rapidly
enhance your applications.

Expanding the Video
components reveals a long
list of components. You are
interested in the FLVPlayBack
2.5 component.

82   Rapid Android Development in Flash CS5

Figure 2.31 T he Flash Video Player component on the stage.

Figure 2.30 T he Video Controls allow you to quickly add audio and video content to your Android
apps.

	 Rapid Android Development in Flash CS5   83

Select the FLVPlayBack on the stage and open the Properties
panel to access the component properties. The FLVPlayBack
video component comes with a large number of properties you
can modify. Common features you will use include:
•	 Autoplay
•	 Cue points
•	 Preview
•	 Scale mode
•	 Skin
•	 Source
•	 Volume

Autoplay is a feature that will start the video playing automati-
cally when the Flash movie loads.

Cue points are points in your video file that you can add with
a video editor or through ActionScript. You can use cue points to
trigger events to happen. For instance, a training video can be
tied to an interactive quiz, playing when the question is answered
correctly.

Scale mode allows you to have the video file you are play-
ing scale to the size of the FLVPlayBack component on the
stage.

The skin is a generic theme for the video player. There are
more than three dozen basic skin types. Each skin can then have
a custom color theme applied to it. This leads to the potential of
thousands of varieties.

The source property allows you to link directly to the video file
you want to load. This can be an FLV, 3GP, or a DRM free MP4
video file.

The final setting is Volume. Here you can define the default
volume setting for your video file.

Working in the Third Dimension
The Holy Grail for game development is rich, immersive 3D.

You can see this in any first-person shooter that has been devel-
oped since Castle Wolfenstein in the early 1990s.

You can create 3D in Flash several ways:
•	 Directly in Flash CS5
•	 Working with 3D third-party design tools
•	 Leveraging open source classes

With all of these great choices for using 3D, you might be
wondering why this section is being covered last. There is a good
reason: 3D can get programmatically complicated and will dra-
matically drop the performance of your Android solution.

3D is the Holy Grail for a reason—it is complicated and
difficult for computers to process. Unlike animation or video,
3D adds a whole new level of complexity with the Z axis for depth.

Adding Files to Your
Android App

The FLVPlayBack is
set to have you
link to an external

video file. When you
select this option you must
remember to include the
video file in your Android
Packaging process. If you
do not, then your video
files will not be included in
the final Android APK file
and you will not see the
video playback on your
Android device.

Working Full Screen
Mode

Flash supports the
feature of letting
your video use the

whole screen to play back
the video. This is true of
AIR for Android. The Flash
FLVPlayBack component
supports a default full
screen button. There is no
need for additional
ActionScript.

84   Rapid Android Development in Flash CS5

3D models are constructed in triangular polygons. The more poly-
gons you have the more realistic the image you are creating in 3D.

The Android phone can handle 3D models, but millions of
polygons will bring your 3D animation to a crashing stop. To keep
an optimal performance for 3D on higher end Android phones
you will want to keep your 3D models simple.

Leveraging Flash Tools for 3D
Two simple tools you can use for creating 3D in Flash are the

3D Rotation and Translation tools added in Flash CS4. These two
tools are very basic 3D tools that allow you to add a simple 3D
effect to a 2D object. For instance, a video player can spin in 3D
across the screen.

Let’s step through the process of adding the 3D rotation to an
object on the stage.
1.	 Start by creating a new AIR for Android Flash file. Name the file

Flash3D.xfl.
2.	 On the stage add the Android logo. Convert the logo into a

Movie Clip symbol.
3.	 Select frame 1 in the timeline containing the Android logo.

Right-click and insert a Motion Tween.
4.	 Select the final frame of the Motion Tween.
5.	 Select the 3D Transform tool in the Tools panel (Figure 2.32).
6.	 Click the Android logo. You will see a target-shaped icon with a

cross hair appear on the logo.
7.	 Select the top vertical cross hair. Click and drag your mouse

down. You will see that the logo changes perspective over a ver-
tical 3D space.

8.	 Select the left side horizontal cross hair. Click and drag your
mouse across the screen. You will see that the logo changes
perspective over a horizontal 3D space.

9.	 The changes you have made are on the final frame of the Motion
Tween. Test the movie. You will see the Android logo spin in 3D
space.
This is the most basic type of 3D you can apply to objects in

Flash.

“Real” 3D in Flash on Mobile Devices
There are two ways you can add complete 3D models to your

Flash movies. This is important for times when you need a little
3D to lift up your presentation.

A tool you can use to create 3D models is Electric Rain’s Swift
3D. The tool has been around for years and has gained a very
loyal following for a simple reason: it is arguably the easiest 3D
modeling tool you will ever use.

	 Rapid Android Development in Flash CS5   85

The power of Swift 3D comes in the many ways you can export
your 3D models. There are many times when you only need a
3D object to enhance a point in your Flash project. To this end,
Swift 3D allows you to export your 3D design as a 2D Flash movie.
The movie is constructed of many frames of 2D images. When
you play it back, it will look like a 3D model. This is a fake 3D
approach, but it is one that will work for a lot of scenarios.

If you need a fully interactive 3D model, Swift 3D is there to
help you, too. Currently, Adobe’s Flash does not natively sup-
port real 3D. However, the power of ActionScript allows 3D to
be added through an open source project called PaperVision3D.
PaperVision3D is a framework of classes you can add to your
Flash movies. The set of classes enables you to load 3D models in
the popular Collada file format (DAE file types). Swift 3D exports
Collada files for PaperVision3D.

Using PaperVision3D you can bring Collada 3D models into
Flash and have them behave in real 3D space. But, this comes at

Figure 2.32 T he 3D Transform
tool allows you to control your
2D objects in 3D space.

86   Rapid Android Development in Flash CS5

a cost. Currently, Flash is not enhanced to support real 3D mod-
els. The PaperVision3D framework achieves its goals because
Flash can be extended using ActionScript. Using Collada models
in your Android apps will generate jerky frame rate refresh.

The bottom line is: Don’t use Collada until the core AIR frame-
work is GPU accelerated to support 3D.

What You Have Learned
There are high expectations for Flash when it comes to anima-

tion, audio, and video. You might expect that the AIR for Android
solution eliminates options for the sake of performance. The real-
ity is that AIR for Android gives you access to the same visual eye
candy as the desktop version.

Flash CS5 comes with support for three distinct animation
tools: frame-based, Classic Tween, and Motion Tween.

Frame-based animation gives you the control to build, frame
by frame, a sequence of images that, when played together, form
an animation. The technique is very similar to the flip card tech-
nique used in classic cell animation or the Zoetrope of the late
1800s.

Classis Tween is a technique where Flash creates the anima-
tion sequence for you between two special frames called key-
frames. The technique is an older format that goes back to the
first release of Macromedia Flash.

The third and most flexible animation technique is the new
Motion Tween technique. Unlike the Classic Tween technique
you do not need to have keyframes to control your animation. A
Motion Tween gives you the ability to apply much greater con-
trol over the animation sequence, including adding movement,
changing elapsed time of the animation, and more. A new panel,
the Motion Editor, enables you to apply exact control over your
animation.

As you would expect, AIR for Android fully supports sound.
This is particularly effective with phone-based applications
where the user expects to have an audio response to any type of
interactivity.

The web is dominated with video. As you would expect, Flash
makes it very easy to add video to your Flash solutions using
the video components. The AIR for Android player takes advan-
tages of video accelerators in Flash. The end result is that you can
broadcast video that scales from sub-DVD quality all the way up
to HD. Also, with a click of the button, you can force your video
to go full screen. This may not seem like a big deal for handheld
phones, but full-screen video looks awesome on Android tablets
and large form factor phones such as the Droid X and Evo.

	 Rapid Android Development in Flash CS5   87

The final motion technique you can leverage in Flash is 3D.
The release of Flash Player 10 introduced simple 3D transfor-
mation. The transformation is applied to a 2D object, such as a
graphic or movie, and allows the object to be skewed and pivoted
in 3D space. For full 3D you need to leverage third-party frame-
works such as PaperVision 3D.

The broad support for rich media is both a good and bad thing
simultaneously. The good news is that you can duplicate the
same animation completed for desktop computers. The bad news
is that an Android simply does not have the same horsepower as
a desktop system. So, test your Flash solutions on real hardware
to ensure that you are getting the results you expect.

In this chapter you saw how you can add animation, audio,
and video to your Flash AIR for Android projects without using
code. In the next chapter you are going to be introduced to
Flash components, tools that allow you add rich form-based
functionality. By the end of the chapter we will introduce a little
ActionScript to demonstrate how powerful the scripting engine
in Flash really is.

This page intentionally left blank

89
© 2011 Elsevier Inc. All rights reserved.

The last couple of chapters have covered a whole batch of
technologies, from animation, to sound, to video, and ending
up with components. What you were learning is ways to add rich
functionality to Flash with little or no ActionScript. Let’s build out
a solution that pulls all this together.

In this project you will learn how to:
•	 Structure images in Fireworks for use in Flash
•	 Import and convert art in Flash
•	 Mix Bitmap and Vector art to optimize animation on the screen
•	 Use Motion Tween to control the animation of objects on the stage
•	 Create, import, and apply sound files
•	 Create optimized video files for playback
•	 Use the Flash Video component

The goal of this project is to build a rich media solution in
Flash that will run on your Android phone with a minimal amount
of code. In fact, you are going to write just one line of code.

Your Building Blocks
Often you will find that the most complex part of your Flash

projects is not the work you do in Flash, but the work you need to
do to the files you import to Flash. The first stage of this project is
to create all the files you need.

The first steps you need to complete are the following:
•	 Create the graphics
•	 Edit the audio
•	 Edit the video

You will not be using Flash CS5 to edit any of this work—we’ll

get to that soon enough.

Project: Optimizing
Animation, Audio, Video,
and Component Use in Your
AIR for Android Apps

You can download
	 all the files for this
	 project at
www.visualizetheweb.
com/flashmobile.

90   Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps

Figure 2.1Proj  Adobe’s
Fireworks CS5 is a great
tool you can use to edit your
images.

Editing Your Graphics
The three editing tools you will use are:

•	 Fireworks
•	 Audacity
•	 iMovie (Mac) or Movie Maker (PC)

The first step is to create the graphic files you will be using in
the project. The theme of the project is a baseball game. You are
going to create four graphics:
•	 Baseball hat
•	 Baseball ball
•	 Baseball bat
•	 Stadium

You will find all the files in the project file. Open the graphic
files in Adobe’s Fireworks; you will see that all the files are Vector
art (Figure 2.1Proj). Earlier I mentioned that you do not want to

	 Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps   91

use Vector art too much in Flash; later you will see why we have
Vector art here.

Collecting Your Audio
The next piece of preproduction you need to complete is cap-

turing sound clips. It is getting easier to do Foley work. It used
to be that you had to go out with a backpack of gear and try and
get the right sound at the right time. The problem with sound is
that it does not know it is being recorded. At any time there can
be a great sound happening and you need a convenient tool to
capture it. To this end, my new trusty tool is an iPhone. The
microphone is actually a very good recorder. At a recent baseball
tournament I captured the following sounds:
•	 Kids cheering
•	 Baseball hitting the bat
•	 Baseball being thrown

If you are like me, then you record more than you need. You
can use the audio editing tool Audacity to edit down the three
audio files. At the end, I exported the following WAV files:
•	 Pitch.wav
•	 Hit.wav
•	 kidsCheer.wav

These are the only audio files you will for this production.

Creating Your Video
The final step is to create a video. For this you can use any

video editor that will export to MPEG-4 video. For this example
I used Apple’s iMovie (Figure 2.2Proj). The final export video that
you will be using is called LiamBaseball.m4v.

Importing Files into Flash
Let’s step through the process of getting your files set up in

Flash.
	 1.	 Create a new AIR for Android application. Name the applica-

tion baseball.xfl.
	 2.	 Select File → Import → Import to Library….
	 3.	 The Import window opens. Select Baseball hat, bat, and ball

images (Figure 2.3Proj). Do not select the stadium image.
	 4.	 Select OK.

92   Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps

Figure 2.2Proj E diting video in Apple’s iMovie.

Figure 2.3Proj I mport the hat, bat, and ball images.

	 Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps   93

	 5.	 The Import Fireworks Document window will have an option
labeled Import as a single flattened bitmap. Select the check-
box and then select OK. All three images will be imported as
flattened images (Figure 2.4Proj).

	 6.	 Open the Library. You will see the three new bitmap images.
Select each image. The bitmap images are now in your
Library as flattened, bitmap images. They are no longer Vector
images.

	 7.	 Select File → Import → Import to Library….
	 8.	 Choose the Stadium.png image. Uncheck the Import as a sin-

gle flattened bitmap in the Import Fireworks Document win-
dow. You want to keep the Stadium as a Vector image.

	 9.	 Select File → Import → Import to Library….
	10.	 Choose the three audio clips.
	11.	 Save your Flash project.

You now have all the files you need for this project. Let’s get
cracking with the animation.

Figure 2.4Proj S electing the
Import as a single flattened
bitmap option converts the
Vector art into bitmap.

94   Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps

Adding Animation
For this project you are only going to use the Motion Tween

method for animation. It is by far the easiest way to animate
objects in Flash.
	 1.	 Select frame 1 of layer 1. Rename the layer “hat.”
	 2.	 Open the library and drag the baseball hat image. Right-click

and convert the image into a symbol. Name the Symbol “hat.”
	 3.	 Place the hat in the lower left hand corner at –685 on the X axis

and 761 on the Y axis.
	 4.	 Right-click on the timeline and select Motion Tween. A full

second of animation will appear with a light blue background
in the layer.

	 5.	 Select the final frame. Move the hat object to –586 X.
	 6.	 Play back the animation. You will see the baseball hat slide on.

  The previous animation is not too complicated. The anima-
tion is going to use the 3D transformation tools. 3D manip-
ulation can be taxing on bitmap images. The bitmap object
will often pixilate in unexpected ways. For this reason, we are
going to use a Vector image: the stadium.

	 7.	 Above the “hat” layer on the timeline add a new layer and
name it “stadium.” Select the lock icon for the “hat” layer to
prevent you from accidentally selecting the wrong item.

	 8.	 On frame 1 of the “stadium” layer drag an instance of the
Stadium Vector art from the library onto the stage.

	 9.	 Right-click the Stadium art and convert it into Symbol. Name
the new Movie Clip “Stadium.”

	10.	 Right-click on the stadium symbol on the stage and select
Motion Tween.

	11.	 Select the Free Transform tool (press V for the keyboard
shortcut).

	12.	 Select Stadium and, holding the SHIFT key, shrink up the sta-
dium symbol. Holding the SHIFT key forces the width and
height of the symbol to change uniformly.

	13.	 Select frame 24. Resize the stadium symbol to the original size.
You will see a diamond on the frame indicating that you have
changed the size.

	14.	 Test the movie. You will see the stadium symbol zoom in.
	15.	 Press F5 to add a new frame after frame 24. You will notice that

a new frame appears after frame 24 without a diamond. Keep
adding frames until you reach frame 40.

	16.	 Select frame 40.
	17.	 Select the 3D Rotation tool (keyboard shortcut is W).
	18.	 Select the Stadium on frame 40. You will see the cross hair

Rotation Pitch and Skew tool appear. Push out the shape to
bring the end of the home base close to the hat.

	19.	 Test your movie. You will see the shape pivot. Using the Vector
allows the animation to remain smooth.

	 Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps   95

	20.	 Create a new layer and name it “ball.”
	21.	 On Frame 40 of the new ball layer add a keyframe. From the

library, drag an instance of the baseball onto the center of the
stage. Convert the image into a symbol.

	22.	 The effect you want to create is the ball flying in. Select the
Free Transform tool (press the Q button) and hold down the
SHIFT key while you shrink ball down.

	23.	 Right-click the keyframe on frame 40 and select Motion Tween.
	24.	 Select frame 64. Resize the baseball back to full size and move

the ball down to over home plate.
	25.	 A baseball often curves as it is thrown. You can use the spline

animation line to help with this effect.
	26.	 Select a third of the way through the baseball animation and

move the ball slightly to the left. Increase the curve even more
at the two-thirds point. Motion Tween will fill in the gaps of
the animation.

	27.	 Play your animation. You will see the ball come curving in, fin-
ishing rapidly over the home plate.

	28.	 You will also notice the other two animations on the screen
vanishing. To bring them back, select the final frame for each
animation. Press F5 to add new frames until all animation
sequences are in sync.

	29.	 The final step is to add a baseball bat hitting the ball out of the
park. To do this, create a new layer and name it “bat.”

	30.	 Select frame 50 and add a new keyframe. You want your bat
swinging at the ball just before it hits the ball.

	31.	 From the library drag onto the stage a copy of the baseball bat.
Convert the bat into a Movie Clip symbol.

	32.	 All you need the bat to do is rotate on its central axis. Using the
Free Transform tool, move the cursor over the top left-hand
corner of the bat image and rotate the image until the bat does
not show on the screen.

	33.	 Move to frame 64. This is the same frame the ball stops over
home plate.

	34.	 Rotate the bat on frame 64 so that the bat is touching the ball.
	35.	 Select frame 74, the final frame of the bat animation, and

change the image property of the bat to a zero alpha level.
	36.	 If you play the animation you will see the bat swing and the

ball suddenly vanish. Add 10 frames to the end of the ball layer
in the timeline.

	37.	 On frame 74 of the ball layer, move the baseball to the top
right-hand side of the screen and change the alpha level of the
ball to zero.

	38.	 Sync all the animation so the images stay in the screen and
test.

	39.	 To stop the animation from always repeating itself, you can
add the ActionScript command “stop();” to frame 70. This is
one piece of ActionScript.

96   Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps

What you now have is a sequence that uses the Motion Tween
technique to quickly allow you to add complex animation with
just a few keystrokes.

Adding Audio
The next step is to add some audio to give the presentation

depth.
1.	 Create three new layers and call them pitch, hit, and crowd.
2.	 Select frame 40 of the pitch layer and create a new keyframe.
3.	 Now you can add a sound clip to the timeline. Add the pitch.

wav sound clip in the Properties panel. The sound is in sync
with the ball being thrown.

4.	 Select frame 58 of the “hit” layer and add a keyframe. Add the
sound clip for hitting the ball. You add the ball hitting sound clip
two frames before the ball hits the bat as an audio illusion.

5.	 Finally, add a keyframe to frame 62 of the crowd layer. Add the
crowd cheering. You now have your crowd cheering.
Save and play back your movie. You should now see and hear

your animation.

Adding Video
The final step in your app is to add video. In many ways, this is

the easiest part of the whole application.
1.	 In the timeline add a new layer.
2.	 Name the layer “Components.”
3.	 Open the Component panel and drag an instance of the

FLVPlayBack 2.5 Component onto the center of the stage.
4.	 Select the FLVPlayBack Component and open the Properties

panel. Select the property called “source” and locate the video
file called LiamsBaseball.m4v, an MPEG-4 video.

5.	 Change the “skin” property to “SkinUnderPlay.”
Test your movie. When you get to the final frame the video will

open and begin playing the video (Figure 2.5Proj).

Testing on Your Android Phone
If you install this application as it is on your phone you will

notice a couple of things not working, such as the video at the

	 Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps   97

end. The reason for this is because the app needs to include addi-
tional files in the APK files.
1.	 Go to the Publish settings and select the AIR for Android

settings.
2.	 On the General tab you will want to select the + symbol and add

two additional files:
•	 The linked video file
•	 The SWF file called SkinUnderPlay.swf, which forms the

skin to the video player
3.	 The rest of the settings should be OK for testing.

Figure 2.5Proj T he final project
includes 2D and 3D animation,
sound, and video.

98   Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps

4.	 Connect your Android phone to the computer and press the
Publish button.

5.	 The app should appear and work on your phone.
This project illustrates that you can add complex rich media,

such as animation, video, and sound, with controls such as the
FLVPlayBack video component. You do not necessarily need to
know how to program Flash with ActionScript to have it do what
you need it to do.

Section

3

This page intentionally left blank

101© 2011 Elsevier Inc. All rights reserved.

Do you like Flash games and cool features on YouTube, like
jumping from standard view to HD? There are two faces to
Flash: the one you see and the complex scripting engine, called
ActionScript, that you don’t. Without ActionScript, Flash would
not be interactive. ActionScript is the scripting language built
within Flash that allows you to build interactive solutions. Any
Flash movie where you need to click, drag, or pause requires
ActionScript to instruct Flash what to do (Figure 3.1).

Flash CS5 allows you to build applications using two different
versions of ActionScript. The older versions are ActionScript 1.0 and
2.0, or AS1 and AS2. AS2 is backward-compatible with AS1 applica-
tions. The release of Flash CS3 introduced ActionScript 3.0 (AS3),
which was a significant overhaul of the scripting language. AS3 has
adopted a true object-oriented approach to development, a tech-
nique that allows Flash applications to compete with solutions

Developing Mobile
Apps using ActionScript

Figure 3.1  Here ActionScript
is used to create a random
animation effect.

102   Developing Mobile Apps using ActionScript

developed with Microsoft’s .NET or Oracle’s Java. Complex solu-
tions often require a lot of code, and older versions of ActionScript
ran slowly with large and complex scripts. AS3 changed this. AS3 is
as much as 10 times faster than AS2, and brings much more func-
tionality to the party. In short, AS3 brings it on.

ActionScript 3.0 is the only way you can create solutions for
the iPhone and Android OS. You will not be able to use AS1 or AS2
for this application.

In this chapter you will learn why you’ll want to start using
AS3, what has changed from and what is the same as earlier ver-
sions of ActionScript, and how you can make your applications
rock by using AS3.

Enabling Flash to Execute Solutions
Faster with AVM 2.0

The Flash Player, the plug-in you install in your web browser
to playback Flash SWF files, is the key to success in building fast
applications. To compile and then run any ActionScript in your
Flash movies, the Flash Player uses a tool called the ActionScript
Virtual Machine (AVM). For AS1 and AS2 the Flash Player uses
AVM 1.0. The Flash Player 9 introduced a brand new AVM, called
AVM 2.0, that is dedicated to running just AS3 application files. To
put it simply, AVM 2.0 rocks: It makes your code zip along.

Developing AS3 solutions that are targeted at the AVM 2.0
rendering engine will ensure your have highly optimized Flash
solutions.

What You Can Expect When You Use AS3
ActionScript 3.0 is a rewrite of ActionScript that brings it com-

pletely up to date with current development best practices. There
are number of big changes that will take a while to get used to.
The main changes are:
•	 ActionScript is located in Class files or in the Timeline.
•	 Code design is truly object-oriented.
•	 You cannot add ActionScript directly to movie clips or buttons

instances.
•	 Triggering events has changed.
•	 Loading data has changed.
•	 XML is managed differently.

There are a score of smaller changes. As you dive directly into
AS3 you will find a learning curve as you move from AS2. Is it all
worthwhile to go through the pain? Absolutely. AS3 is simply so
much faster and more powerful that it is worth the undertaking.

Using ActionScript 3.0

ActionScript has
undergone
significant

changes. If you have
worked with Flash AS1 or
AS2 before, you won’t be
completely lost, but you
will need to learn new
ways to use your code.

	 Developing Mobile Apps using ActionScript   103

It is also the only way you can get your mobile apps to run on
Android and iOS devices.

The Main Features of AS3
ActionScript is object-oriented in design concept. But what

the heck does that mean? If you have developed for other pro-
gramming languages, such as Java, C++, or C#, then you have
heard of this term. Object-oriented essentially means that you
break code into objects that can be easily reused. The idea is
this: It is easier to manage an application that has a collection of
smaller files than one large file.

There are two ways in which you can manage your
ActionScript. The first, more traditional method is to add your
ActionScript to the timeline (Figure 3.2). This will be familiar to
earlier Flash developers. A good practice to establish is to have
a layer in your timeline that is dedicated to working just with
ActionScript. Adobe recommends that you label the ActionScript
label “Actions.” Locking the Actions layer will prevent you from
accidentally adding movie clips into it.

The second method of inserting ActionScript into your Flash
files is to use a Class file. Class files have a long history in the
development world. With the Class file you can now specify both
public and private classes. Using the Private keyword restricts the
use of the attribute you defined to just that class and it will not be
shared with other classes. This is useful as you develop instruc-
tion that needs to be executed privately in a closed environment.

Figure 3.2  ActionScript running
in the timeline.

104   Developing Mobile Apps using ActionScript

Other major changes include:
•	 Developing solutions built with the DOM3 event model
•	 Using namespaces in your projects
•	 Controlling data
•	 Controlling text
•	 Drawing with the Shape Class
•	 The ability to easily work with external ActionScript libraries

All in all, these new changes to ActionScript ensure that you
can develop even better solutions, ones that AS2 simply could not
enable you to accomplish.

What Is the Same between AS2 and AS3?
With all the changes between AS3 and AS2 it important to

remember that there is a lot of functionality that is the same
between them. This will help as you transition from traditional
AS1/2 Flash development to mobile app development using AS3.

For instance you still use the following in the same way:
•	 Variables
•	 Math objects
•	 If/Else statements
•	 Switch statements
•	 String
•	 Date to control the use of date and time
•	 Array to build a structured collection of data
•	 Boolean to specify a true or false

The following works in AS2 and AS3:

var str:String = new String(“Hello, ”);
var str2:String = new String(“World”);
trace (str + str2);

You can see that the overall syntax structure is the same
between both versions of ActionScript. You still end your code
with curly brackets, your variable names are still case sensitive,
your variable names cannot start with a number, and you still use
number class objects the same way.

Using Code Snippets to Get You Started
Transitioning to AS3 after your entire career has been spent

working with AS2 does come with a learning curve. To help you
through the transition, Adobe has included a great new tool in
Flash CS5, the Code Snippets panel, which you can use to quickly
add popular scripts to your movies. Here’s what you do:
1.	 Create a new AS3 file.
2.	 Select Windows → Code Snippets. This will open the Code

Snippets window (Figure 3.3).

	 Developing Mobile Apps using ActionScript   105

3.	 Code Snippets are organized in groups (Actions, Timeline
Navigation, Animation, Load and Unload, Audio and Video,
and Event Handlers).

4.	 Expand the Actions group and double-click Generate a Random
Number.
Two things happen: a new layer, labeled Actions, is added to

your timeline, and the new Actions layer has ActionScript added
to it. The new script is automatically generated by Flash CS5.

The new ActionScript is true AS3. Check out the script by
opening the Actions panel. Adobe has added some great inline
comments to explain how you can use this script. Figure 3.4 con-
tains a sample of the code that will be generated.

You will see that the code is split into two sections. The first
section is a comment that explains how to modify and use the
code that is generated. The second is the code itself. Test the
movie and you will see a random number appear in the Output
panel.

The Code Snippets panel really shows its power for allowing
you to learn ActionScript quickly when you add code to movie
clips on the stage. Let’s go ahead and create a movie clip and then
add a sound event.
1.	 Select the rectangle tool and draw a rectangle shape on the

stage. Select the new shape and convert it to a movie clip.
2.	 Select the new movie on the stage and expand the Audio and

Video submenu on the Code Snippets panel and double-click
the Click to Play/Stop Sound Snippet (Figure 3.5).

Figure 3.3 T he Code Snippets
window.

106   Developing Mobile Apps using ActionScript

3.	 You will see a warning appear if you have not given your movie
clip a name. Flash can do this automatically; select OK to auto-
matically add the Code Snippet.

4.	 Open the Actions panel and you will see that the ActionScript
to trigger the event has been added (Figure 3.6).

Figure 3.5  Many common
actions are included in the
Snippets panel, such as this
Sound Snippet.

Figure 3.4 T he AS3 code to
generate a random number,
which is created in the
timeline.

	 Developing Mobile Apps using ActionScript   107

/* Click to Play/Stop Sound
Clicking on the symbol instance plays the specified sound.
Clicking on the symbol instance a second time stops the

sound.
Instructions:
1. Replace “http://www.helpexamples.com/flash/sound/

song1.mp3” below with the desired URL address of your
sound file. Keep the quotation marks (“”).

*/
movieClip_1.addEventListener(MouseEvent.CLICK,

fl_ClickToPlayStopSound);
var fl_SC:SoundChannel;
//This variable keeps track of whether you want to play

or stop the sound
var fl_ToPlay:Boolean = true;
function fl_ClickToPlayStopSound(evt:MouseEvent):void
{

if(fl_ToPlay)
{

var s:Sound = new Sound(new
URLRequest(“http://www.helpexamples.com/flash/sound/
song1.mp3”));

fl_SC = s.play();
}
else
{

fl_SC.stop();
}
fl_ToPlay = !fl_ToPlay;

}

Figure 3.6 T he Sound Snippet
adds ActionScript directly into
the timeline.

108   Developing Mobile Apps using ActionScript

5.	 Test your movie. Select your movie clip on the stage and the
MP3 track will start to play.

You will see that the code is formatted to take advantage of
the AS3 event model. For instance, the code is not added to the
movie clip itself. The event is created as two parts: a function
that explains what is going to happen, and a listener event that
triggers the function. Without knowing it, you are using AS3.
What you will find very helpful is that you can now go into your
ActionScript code and modify it easily. For instance, you can
change the path of the MP3 file to one on your own servers,
or to point to a live, streamed MP3 file. For instance, you can
change the URLRequest to point to http://mp3-vr-128.as34763.
net:80/, a great radio station broadcasting out of London, U.K.

Developing Solutions Built with the DOM3
Event Model

ActionScript 3.0 now supports the ECMAScript, DOM3, event
model syntax. In layman’s terms, this means that you now use
the Listener object to detect when you interact with your Flash
movie using either a keyboard, mouse, or the new gesture inter-
faces used when touching the screen directly.

This is a big move from AS2. As an example, the following
script is an AS2 instruction that instructs a movie clip to jump to
frame 25 of a movie:

on (release) {
this.gotoAndStop(“25”);

}

ActionScript 3.0 uses Listeners to trigger when an event
occurs. Listeners are more complex to work with, but in the
end, give you more flexibility. There are essentially two parts to
a Listener: The first is a function that describes what is going to
happen when you trigger an event, and the second is the Listener
that waits for a specified event to happen, such as mouse clicking
on a button.

The following steps will add an AS3 event that mimics the
same event as the AS2 example earlier.
1.	 Create a new AS3 file. On the stage create a new movie clip.
2.	 Label the movie clip “myMovie.”
3.	 Create a new layer in the timeline and name it Actions. Select

the new layer.
4.	 Open the Actions panel. The first step is to create the function.

function gotoFunction(event:MouseEvent):void
{

gotoAndStop(25);
}

Are Code Snippets
and Behaviors the
Same?

Hang on—these
new Code
Snippets look very

similar to Behaviors. What
is the difference? Behaviors
were introduced with Flash
MX 2004 as a way to
easily allow designers to
add ActionScript to their
Flash. Behaviors are still
there, but they work only for
AS2. The Behaviors of the
panel have not been
updated for Flash CS5. You
will find that the Code
Snippets panel is much
more versatile than the
Behaviors panel.

	 Developing Mobile Apps using ActionScript   109

5.	 The function is called “gotoFunction”; the parentheses dictate
that it is looking for a mouse-driven event. There is only one
instruction in the function, the gotoAndStop function that will
move the Timeline to frame 25.

6.	 Add the listener that will look to trigger the function.

myMovie.addEventListener(MouseEvent.MOUSE_UP,
gotoFunction);

7.	 The first change is directly related to all AS3 needed placement
in the timeline or in a Class file: On the stage is a movie clip
labeled “myMovie.” Use ActionScript to control the “myMovie”
clip.

8.	 The second part of the Listener, addEventListener, instructs
Flash that you are using the Listener object.

9.	 In parentheses are two parts, which explain that the event is a
mouse event and to use the function gotoFunction.
At first blush, the new AS3 event model appears to be too

complex. After all, AS2 is easier to use. The difference between
the two is that the AS3 event model gives you flexibility to write
more complex scripts and to extend the functionality of the event
model beyond traditional mouse and keyboard interfaces. To do
this you use the core object class controlling events on the screen,
called the EventsDispatcher class. Through this you can not only
leverage standard events such as mouse clicks and the keyboard,
but you can extend the class with your event types.

Working with Classes
A common design pattern in object-oriented programs sepa-

rates design, programming, and data elements. Flash CS5 adds
this functionality with the inclusion of classes. A class is a pack-
aged document that you can use to explain how UI components,
business logic, and data elements will interact.

A class is a separate ActionScript file that is associated with
the main Flash file and movie clips. You can use Flash CS5 as
the class file editor or your favorite text editor such as Eclipse,
Notepad, or TextEdit. A Class file is only a text file. It is very easy
to create entire Flash movies using just Class files and not even
add any content into a traditional timeline.

These steps will show you how to create a simple Class file for
your Flash movies:
1.	 Create a new AS3 file. Save the file and name it “helloWorld.fla”.
2.	 In the new, blank helloWorld.fla file open the Properties panel.
3.	 Expand the Publish setting. You will see a Class field. To the

right-hand side of the Class field is a small pencil icon. Select
the icon. A new window will open asking you if you want to cre-
ate a new class. Create a new class and call it helloClass.

110   Developing Mobile Apps using ActionScript

4.	 A new ActionScript file will open. Notice that the file is now
labeled helloClass. The class is a default, blank class with the
ActionScript shown in Figure 3.7.

package {
import flash.display.MovieClip;
public class helloClass extends MovieClip {

public function helloClass() {
//constructor code

}
}

}

5.	 Remove the line that says //constructor code and replace it
with: trace (“Hello, World”);

6.	 Save your Class file.
7.	 Return to the helloWorld.fla file and test the movie. The result

should be the words “Hello, World” posted to the Output
panel.
Classes provide you a way in which you can create public and

private class elements. The difference between the two is related
to how you use the data. For instance, a public property can be
shared throughout your whole Flash movie. A private property
can only be used within the class in which it is defined.

Using Namespaces in Your Projects
Namespaces are ways in which you can define the visibility of

properties you are creating. This is commonly used in XML when
you are importing documents using a URI indicator.

Figure 3.7 C lass files can
be edited directly in Flash
Professional.

Adding Class
References to
Movie Clips

Separate class
references can be
added directly to

movie clips in your library.
Open the Library panel
and right-click on a movie
clip and select the
Properties option. The
Symbol Properties window
will open. In the Linkage
group select the Export for
ActionScript option. A
class is automatically
created for the symbol
using the name of the
movie clip. You can now
modify the Class file for
the movie clip in your
favorite text editor.

	 Developing Mobile Apps using ActionScript   111

The following example is built using a class called
NamespaceExample. The role of this class is to pull in an XML
document and step through the formatting of the code. Using
namespaces you can instruct Flash where to find a definition of
the document type you are using, in this case an RSS formatted
document type.
1.	 Create a new ActionScript 3.0 movie. Create the class

NamespaceExample.
2.	 Create a simple RSS formatted XML document. You can use the

following formatted RSS document:

<rdf:RDF
xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=“http://purl.org/rss/1.0/”
xmlns:dc=“http://purl.org/dc/elements/1.1/”>
<channel rdf:about=“http://www.xml.com/cs/xml/

query/q/19”>
<title>This is an RSS feed</title>
<link>http://www.bbc.co.uk/</link>
<description>This is a test RSS document.

</description>
<language>en-us</language>
<items>
<rdf:Seq>

<rdf:li rdf:resource=“http://www.bbc.co.uk/”/>
</rdf:Seq>

</items>
</channel>
<item rdf:about=“http://news.bbc.co.uk/”>
<title>BBC News Center</title>
<link>http://news.bbc.co.uk</link>
<description>Welcome to the BBC News Center</description>
<dc:creator>BBC</dc:creator>
<dc:date>2010-02-12</dc:date>

</item>
<item rdf:about=“http://www.bbc.co.uk/radio”>
<title>BBC Radio Center</title>
<link>http://www.bbc.co.uk/radio</link>
<description>Welcome to the BBC Radio Center

</description>
<dc:creator>BBC</dc:creator>
<dc:date>2010-02-12</dc:date>

</item> </rdf:RDF>

3.	 Open the NamespaceExample class. Start by defining the pack-
age with a public class called NamespaceExample that will
extend the functionality of the Sprite object:

package
{

import flash.display.Sprite;
public class NamespaceExample extends Sprite

112   Developing Mobile Apps using ActionScript

4.	 Insert the namespace reference that describes how to use RSS
XML:

{
private var rss:Namespace = new Namespace(“http://purl.

org/rss/1.0/”);
private var rdf:Namespace = new Namespace(“http://www.

w3.org/1999/02/22-rdf-syntax-ns#”);
private var dc:Namespace = new Namespace(“http://purl.

org/dc/elements/1.1/”);
public function NamespaceExample()

5.	 RSS has several standard XML types. You are going to extract
the following: title, creator, date, link, and description. Each of
these items will be formatted in accordance to the namespace
called RSS. You will see in the third line of the ActionScript that
you reference the RSS namespace.

private function parseRSS(rssXML:XML):Array
{

default xml namespace = rss;
var items:XMLList = rssXML.item;
var arr:Array = new Array();
var len:uint = items.length();
for (var i:uint; i < len; i++)
{

arr.push({title:items[i].title,
creator:items[i].dc::creator, date:items[i].dc::date,
link:items[i].link, description:items[i].description});

}
return arr;

}

6.	 The final step is to add a Public function that will use the RSS
namespace and send the content to the Output panel:

public function NamespaceExample()
{

var myXML:XML = getRSS();
var rssItems:Array = parseRSS(myXML);
var len:uint = rssItems.length;
for (var i:uint; i < len; i++)
{

trace(rssItems[i].title);
trace(rssItems[i].creator);
trace(rssItems[i].date);
trace(rssItems[i].link);
trace(rssItems[i].description);

}
}

Run your Flash movie to see the RSS feed results sent to your
Output panel.

	 Developing Mobile Apps using ActionScript   113

Namespaces are an effective way to manage your control over XML
data. As with all core classes in Flash, you can extend the namespace
to use it in conjunction with other objects and data types.

Controlling Data
There are several key ways to control data in AS3. They include

arrays, shared objects, and XML. An array is the first method you
are likely to use in your ActionScript code. The role of an array is
to create a list of data types in your code. For example, you may
want to list the colors red, green, blue, and orange, as shown in
Figure 3.8. To do this you need to define a new variable with the
data type of Array:

var colorArray:Array = new Array(“red”, “green”,
“blue”, “orange”);

You can see in this script that a set of four items have been
inserted into the array. You can access the data in the array with
the following trace statement:

trace (colorArray);

The “push” property will allow you to add a new item into your
array:

colorArray.push(“purple”);

To remove the last item of an array you can use the Pop property.

colorArray.pop();

Figure 3.8  An array is a tool
you can use to store data. Here
you can see the data stored in
an array posted to the Output
panel.

114   Developing Mobile Apps using ActionScript

What you will find is that arrays are great for managing simple
lists. Additional properties allow you to remove specific values,
to count the number of values you have, and to sort your lists.
For more complex data you will want to leverage the Local Data
Storage or XML.

Using Flash Cookies
The Flash Player can store data locally in very much the same way

that a cookie can be stored in a web browser. Flash does not call them
cookies, but Shared Objects. An example of a Shared Object in AS3 is:

var mySO:SharedObject = SharedObject.
getLocal(“myFlashCookie”);

mySO.data.now = new Date().time;
trace(mySO.data.now);

The Shared Object is declared and given a name where it will
be stored on the local computer. You can now effectively target
data to this space that can be accessed if this computer comes
back to this page at a later date.

Manipulating XML with E4X
Flash has supported XML in one fashion or another since

Flash 5. Have you worked with XML in AS2? It’s not pretty. To our
relief, AS3 now supports the ECMA XML standard called E4X. You
can now more easily step through your XML documents. The fol-
lowing will demonstrate how you can import an XML document
into your Flash movie as a data type.
1.	 Before you can import an XML document, you need to have

one you can use. You can copy the following code and save it as
an XML document labeled “colors.xml”:

<?xml version=“1.0” encoding=“UTF-8”?>
<pallette>
<color>Orange</color>
<color>Red</color>
<color>Yellow</color>
</pallette>

2.	 Create a new Flash AS3 movie and save it to the same folder as
the XML document.

3.	 Create a new object to manage the XML:

var myXml:XML;

4.	 Now create a new URLLoader file that will load the XML file:

var xmlLoader = new URLLoader();
xmlLoader.addEventListener(Event.COMPLETE,onXMLLoaded);
xmlLoader.load(new URLRequest(“colors.xml”));

Counting in Arrays

When you are
counting the
number of values

in an array you have to
remember that arrays
always start with 0. For
instance, if you have five
items in an array and tell
the array to pull item 1, it
will pull the second item.
This is because the first
item has the registered
value of 0.

	 Developing Mobile Apps using ActionScript   115

5.	 At this point you have loaded the XML successfully into
Flash. You can test this by adding the following function to
trace the contents of the XML document into your Output
window.

function onXMLLoaded(e:Event):void{
myXml = new XML(e.target.data);
trace(myXml);

}

6.	 The result should look just like your XML document.
7.	 You can now easily pull out a specific value. For instance, add

the following to the onXMLLoaded function to extract the third
value in the XML file:

trace(myXml..color[2]);

The double dots after the variable myXML allow you to step
to the second value of your XML document. All of this is so much
easier to accomplish with E4X than with the AS2 version.

Using Regular Expressions
Patterns are everywhere as you develop your code. This

is clearly seen with the use of Regular Expressions, a method
for describing the pattern of data you are looking to use. Using
Regular Expressions you can now easily format form fields to cor-
rectly capture date, ZIP, or credit card numbers.

You can use a simple pattern with a string variable to validate
the data:

var myColor = “Orange”;

Now create a new Regular Expression that is looking for a sim-
ple pattern. In this instance, the pattern is that the myColor string
value must start with an O.

var colorRegExp:RegExp = /O/;

You can write a trace script to test your movie:

trace(colorRegExp.test(myColor));

The value in the Output panel is True.
Let’s extend what you can do with Regular Expressions by add-

ing a pattern that looks for an e-mail address. Start by adding a
new e-mail string with a valid e-mail address:

var email:String = “mdavid@matthewdavid.ws”;

Next, create a new Regular Expression that is looking for a pat-
tern structure in your e-mail:

var emailRegExp:RegExp = /^([a-zA-Z0-9_-]+)@
([a-zA-Z0-9.-]+)\.([a-zA-Z]{2,4})$/i;

Advanced Control
of XML Data

A great feature in
E4X is the ability
to change the

value of items into an XML
document. What this
means is that you can load
an XML document and
then modify the content.
For instance, you can
change Yellow to Blue.

116   Developing Mobile Apps using ActionScript

The pattern is looking for a combination of alpha-numeric-
special character formats separated by an @ sign and suffix “.”.
Add the following trace statement to see whether or not the pat-
tern works:

trace(“Is this email valid? ” + emailRegExp.test
(email))

Test the movie and you will get the following response in the
Output panel:

Is this email valid? True

Change the e-mail address to just “Matthew David,” a pat-
tern that does not match the Regular Expression. When you test
the movie you will see that the Regular Expression returns a false
response.

Controlling Text
In many ways you do not need to work on the stage at all

when using AS3. All visual objects can be programmatically cre-
ated. The easiest way to see this is in using the Text object to cre-
ate dynamic text fields on the stage.
1.	 To create a dynamic text field, create a new AS3 file with an

associated class called text.
2.	 The Actions panel will open showing you the text Class file. Add

the libraries to be imported into your file:

import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;

3.	 Now you need to insert a private variable that will be used to
define the dynamic text:

private var myTextField:TextField;

4.	 The following creates a basic string you can insert into your
text field:

private var someText:String = “Hello world.”;

5.	 A private function is used to define the physical position of the
text field on the screen. You first need to declare the text field as
a new object; then you can use the X and Y properties to place
the text on the screen:

private function configuretext():void
{

myTextField = new TextField();
myTextField.y = 200;
myTextField.x = 100;

Where to Get More
Information on
Regular Expressions

You can get great
information on how
to structure Regular

Expressions at www.
regular-expressions.info.

	 Developing Mobile Apps using ActionScript   117

6.	 A TextFormat object is used to format the visual properties of
the text. For instance, the following TextFormat object sets the
font to “_sans”, the color black, and font size 15:

var format:TextFormat = new TextFormat();
format.font = “_sans”;
format.color = 0x000000;
format.size = 15;
myTextField.defaultTextFormat = format;
addChild(myTextField);

7.	 The final two public functions tie the text string to the new for-
matted text field:

public function text()
{

configuretext();
setValueOfTextField(someText);}

public function setValueOfTextField(str:String):void
{

myTextField.text = str;
}

8.	 Test your movie and you will see that you have a text string
added to your screen.
So why would you go through the hard work of adding a

scripted text field to the screen when you can do the same thing
with the Flash text object with no scripting? The reason is that
there may be times when you want to dynamically create text
fields and the TextField object gives you this option.

Drawing with the Shape Class
As with the text object, you can create images dynamically in

AS3. There are several different types of image you can create,
including traditional movie clips and graphics. You can now also
create a new type of image called a Sprite. Essentially, a Sprite is
the same as a movie clip with the exception that it does not con-
tain timeline functionality.

Sprites can be created by invoking the new Sprite Object Class
and then adding properties to the object. The following steps will
add a new square-shaped Sprite to the stage:
1.	 Add the following ActionScript to create a new Sprite labeled

“myFirstSprite.”

var myFirstSprite:Sprite = new Sprite();
addChild(myFirstSprite);

118   Developing Mobile Apps using ActionScript

2.	 Format the size, fill/outline color, and position of the Sprite:

myFirstSprite.graphics.lineStyle(3,0xFF6600);
myFirstSprite.graphics.beginFill(0xFF0000);
myFirstSprite.graphics.drawRect(0,0,100,100);
myFirstSprite.graphics.endFill();

3.	 Now you can test the movie and see your rectangle on the
screen.

4.	 Of course, this being ActionScript you can now add interactiv-
ity to your new Sprite. The following ActionScript will apply a
fade-in transition effect to your new Sprite.

myFirstSprite.addEventListener(Event.ENTER_FRAME,
fadeInSprite);

myFirstSprite.alpha = 0;
function fadeInSprite(event:Event)
{

myFirstSprite.alpha += 0.01;
if(myFirstSprite.alpha >= 1)
{

myFirstSprite.removeEventListener(Event.
ENTER_FRAME, fadeInSprite);

}
}

You can do a lot with ActionScript constructed images.
Working with all the different objects available to you in AS3, you
have almost no limits to what you can create using Flash.

Using ActionScript to Control Animation,
Audio, and Video in Your Android Apps

It can be argued that Adobe’s Flash calling card is the easy
implementation of rich animation, audio, and video. In many
ways, it is these three technologies that are at the center of the
argument between Apple and Adobe. The argument goes some-
thing like this: Animation and video can be played back through
a web page using standards, so why use Flash?

Can you use alternative technologies to create animation in the
Android/iPhone without using Flash? Of course, but the real power
Adobe brings to the table is the ability to have exacting control
over Animation Splines both visually and programmatically. Add to
this mix, the world’s leading video player to control your video and
audio, then you see why Apple is so scared of Adobe’s Flash.

The following sections are going to dig into the following rich
media:
•	 Time management with ActionScript
•	 Animation control with ActionScript
•	 Audio and video control with ActionScript

	 Developing Mobile Apps using ActionScript   119

You might be asking yourself, “I get it that you can control
media with ActionScript, but Adobe has these great visual tools,
so why do I need to learn code?” Good question, glad you asked.
The designer tools Adobe provides are, indeed, very good. The
challenge with the visual tools is that they are not very good when
it comes to controlling dynamic data.

By dynamic data, I mean content that may come from a data-
base, XML file, or array. For instance, you may want to create an MP3
player that loads content from an XML file. You have no way of know-
ing what the content is going to be before the XML file is loaded. For
this reason, ActionScript gives you publicly accessible objects that
allow you to make updates through ActionScript to dynamically
loaded content—for instance, you can add a play button, mute, and
volume control without ever having to use a visual editor.

Controlling Time with ActionScript
Time is important, especially when you need to sequence

events in a game or an app on your phone. To support the control
of time, Adobe includes a new class called Timer.

Essentially, a Timer is a custom listener that will trigger an
event in time. The following is an example of a timer that waits
for 2 seconds before displaying a message in the Output panel.

var aTimer:Timer = new Timer(2000,1);
aTimer.addEventListener(TimerEvent.TIMER,

timerListener);
function timerListener(e:TimerEvent):void
{

trace(“Hello, world”);
}
aTimer.start();

The first line in this code block declares a new variable called
“aTimer” to be a new Timer object. The values in the parenthe-
sis dictates the thousandths of a second the timer needs to read
before playing, with the second number specifying the number of
times the event will repeat itself. In this case, the time elapsed is
2000 thousandths of a second (more commonly known as 2 sec-
onds) and the repeat sequence is just 1 time.

The second line declares the listener for the aTimer vari-
able. You will see in the parenthesis that the Listener is tied to a
new function called timerListener. The function timerListener
declares what will happen when the timer reaches 2 seconds. In
this instance, a message is thrown to the Output panel.

The final line dictates when the timer will start. For this example,
the timer starts when the app is loaded but there is no reason why
you could not have a timer triggered with ActionScript when another
event occurs on the screen such as when two objects collide.

120   Developing Mobile Apps using ActionScript

Animating Your Content with ActionScript
Earlier you saw how you can use the Motion Editor to add exact

control over your animation sequences. Let’s go back to the Motion
Editor and create a simple animation of 20 frames in a single diag-
onal. The timeline for the animation sequence is now shaded blue.

Here’s a secret: The whole animation is being constructed
in ActionScript using the AnimatorFactory object class. Don’t
believe me, check this out. Right-click on the blue shaded
timeline and select Copy Motion as ActionScript 3.0. Open your
favorite text editor and paste in the results. You will get something
similar to the following code block:

import fl.motion.AnimatorFactory;
import fl.motion.MotionBase;
import fl.motion.Motion;
import flash.filters.*;
import flash.geom.Point;
var __motion_aniObject:MotionBase;
if(__motion_aniObject == null) {

__motion_aniObject = new Motion();
__motion_aniObject.duration = 24;
// Call overrideTargetTransform to prevent the

scale, skew,
// or rotation values from being made relative to

the target
// object's original transform.
// __motion_aniObject.overrideTargetTransform();
// The following calls to addPropertyArray assign

data values
// for each tweened property. There is one value in

the Array
// for every frame in the tween, or fewer if the

last value
// remains the same for the rest of the frames.
__motion_aniObject.addPropertyArray(“x”, [0,12.5652,

25.1304,37.6957,50.2609,62.8261,75.3913,87.9565,100.522,
113.087,125.652,138.217,150.783,163.348,175.913,188.478,201
.043,213.609,226.174,238.739,251.304,263.87,276.435,289]);

__motion_aniObject.addPropertyArray(“y”, [0,10.1717,2
0.3435,30.5152,40.687,50.8587,61.0304,71.2022,81.3739,
91.5457,101.717,111.889,122.061,132.233,142.404,152.576,162.7
48,172.92,183.091,193.263,203.435,213.607,223.778,233.95]);

__motion_aniObject.addPropertyArray(“scaleX”,
[1.000000]);

__motion_aniObject.addPropertyArray(“scaleY”,
[1.000000]);

__motion_aniObject.addPropertyArray(“skewX”, [0]);
__motion_aniObject.addPropertyArray(“skewY”, [0]);
__motion_aniObject.addPropertyArray(“rotationConcat”,

[0]);

	 Developing Mobile Apps using ActionScript   121

__motion_aniObject.addPropertyArray(“blendMode”,
[“normal”]);

__motion_aniObject.addPropertyArray(“cacheAsBitmap”,
[false]);

// Create an AnimatorFactory instance, which will
manage

// targets for its corresponding Motion.
var __animFactory_aniObject:AnimatorFactory = new

AnimatorFactory(__motion_aniObject);
__animFactory_aniObject.transformationPoint = new

Point(0.500000, 0.500000);
// Call the addTarget function on the

AnimatorFactory
// instance to target a DisplayObject with this

Motion.
// The second parameter is the number of times the

animation
// will play - the default value of 0 means it will

loop.
// __animFactory_aniObject.addTarget(<instance name

goes here>, 0);
}

Adobe adds plenty of notes in this created animation
ActionScript. Yes, this is a valid ActionScript. The object aff
ected by this script is called aniObject. You can see it refer-
enced throughout the script. With the animation sequence now
exposed as ActionScript, you can now programmatically inter-
act with the code. For instance, you may want to change the
skew value.

Let’s step through the code so you can see what is happening.
The first five lines point to additional frameworks that are

supported in the animation sequence. The five frameworks are:
•	 motion.AnimatorFactory;
•	 motion.MotionBase;
•	 motion.Motion;
•	 flash.filters.*
•	 geom.Point;

These frameworks do much of the heavy lifting, allowing you
to focus on the code.

The next major action you need to take on line 6 is declaring
a new MotionBase object. Notice that the object is named var __
motion_aniObject. The object’s name is pulled from the name
of the object on the stage. In this instance, the object is called
aniObject.

Line 7 is the start of an IF statement that details the animation
movement and transformation of the aniObject.

Line 9 details the length of time of the animation. In this
instance, the animation lasts for 24 frames.

122   Developing Mobile Apps using ActionScript

The AnimatorFactory gives you access to interfacing
ActionScript with your visual objects, but there are other ways
for you to more easily control animation on the screen. Yes, we
are going to go back to GreenSock’s tools, which make controlling
animation both fun and easy.

Lines 18 and 19 detail the vector points the animation moves
to along the X and Y axes. The numbers are very precise, down to
0.001 of a pixel.

Line 20 adds information that explains if the object is scaled
along the X axis, and line 21 adds information that explains if the
object is scaled along the Y axis. Both have a value of 1.000000,
indicating that there is no scaling.

Lines 22, 23, 24, 25, and 26 are additional parameters you can
apply to the animated object to control skew along the X and Y
axes, rotation, blend mode, and cacheAsBitmap.

Line 29 collects all the data you have supplied and creates an
AnimatorFactory function. This will execute your command.

Again, all of this ActionScript can be automatically created
for you in Flash. The following is a modified version of the earlier
code, demonstrating how you can add skew, rotation, and other
effects easily in ActionScript.

import fl.motion.AnimatorFactory;
import fl.motion.MotionBase;
import fl.motion.Motion;
import flash.filters.*;
import flash.geom.Point;
var __motion_mySquare:MotionBase;
if(__motion_mySquare == null) {

__motion_mySquare = new Motion();
__motion_mySquare.duration = 50;
__motion_mySquare.addPropertyArray(“x”, [0,32.5051,

65.0102,97.5152,130.02,162.525,195.03,227.536,260.041,
292.546,272.297,252.048,231.799,211.55,191.301,171.052,
150.803,130.555,110.306,90.0568,69.8079,49.559,29.3101,
9.06122,23.7127,38.3642,53.0157,67.6672,82.3187,96.9702,
111.607,126.273,140.91,155.576,170.228,184.879,199.531,
214.167,228.819,243.485,258.137,272.773,287.425,302.091,
316.743,331.394,346.046,360.697,375.334,390]);

__motion_mySquare.addPropertyArray(“y”, [0,
-2.51996,-5.03993,-7.55989,-10.0799,-12.5998,-15.1198,
-17.6398,-20.1597,-22.6797,-

2.93893,16.8018,36.5426,56.2833,76.0241,95.7648,
115.506,135.246,154.987,174.728,194.469,214.209,233.95,
253.691,253.085,252.48,251.875,251.269,250.664,250.058,
249.454,248.847,248.243,247.637,247.031,246.426,245.82,
245.216,244.61,244.004,243.399,242.794,242.189,241.582,
240.977,240.372,239.766,239.161,238.556,237.95]);

__motion_mySquare.addPropertyArray(“scaleX”,
[1.000000,0.958421,0.916843,0.875264,0.833686,0.792107,

	 Developing Mobile Apps using ActionScript   123

0.750529,0.708950,0.667372,0.625793,0.631185,0.636577,0.641
969,0.647361,0.652753,0.658145,0.663537,0.668929,0.674321,
0.679713,0.685106,0.690498,0.695890,0.701282,0.706674,0.71
2066,0.717458,0.722850,0.728242,0.733634,0.739026,0.744418,
0.749810,0.755202,0.760594,0.765986,0.771378,0.760106,0.74
8834,0.737563,0.726291,0.715020,0.703748,0.692477,0.681205,
0.669934,0.658662,0.647391,0.636119,0.624847]);

__motion_mySquare.addPropertyArray(“scaleY”,
[1.000000,0.958421,0.916843,0.875264,0.833686,0.792107,
0.750529,0.708950,0.667372,0.625793]);

__motion_mySquare.addPropertyArray(“skewX”, [0,
4.87434e-005, 9.74867e-005, 0.00014623, 0.000194973,
0.000243717, 0.00029246,0.000341203, 0.000389947,
0.00043869, 0.000487434, 0.000536177,0.00058492,
0.000633664, 0.000682407, 0.00073115,
0.000779894,0.000828637, 0.00087738, 0.000926124,
0.000974867, 0.00102361, 0.00107235, 0.0011211,
0.00116984, 0.00121858, 0.00126733, 0.00131607,
0.00136481, 0.00141356, 0.0014623, 0.00151104, 0.00155979,
0.00160853, 0.00165727, 0.00170602, 0.00175476,
0.00182166, 0.00188857, 0.00195547, 0.00202238,
0.00208928, 0.00215618, 0.00222309, 0.00228999, 0.0023569,
0.0024238, 0.0024907, 0.00255761, 0.00262451]);

__motion_mySquare.addPropertyArray(“skewY”,
[0,0.993964,1.98793,2.98189,3.97586,4.96982,5.96378,6.95775,
7.95171,8.94567,9.93964,10.9336,11.9276,12.9215,13.9155,14
.9095,15.9034,16.8974,17.8913,18.8853,19.8793,20.8732,21.86
72,22.8612,23.8551,24.8491,25.8431,26.837,27.831,28.825,
29.8189,30.8129,31.8068,32.8008,33.7948,34.7887,35.7827,
33.1802,30.5778,27.9753,25.3728,22.7704,20.1679,17.5654,14
.963,12.3605,9.75801,7.15554,4.55308,1.95061]);

__motion_mySquare.addPropertyArray(“rotationConcat”,
[0,3.33325,6.66649,9.99974,13.333,16.6662,19.9995,23.3327,
26.666,29.9992,28.8829,27.7666,26.6502,25.5339,24.4176,23.3013,
22.1849,21.0686,19.9523,18.8359, 17.7196, 16.6033, 15.487,
14.3706, 13.2543, 12.138, 11.0216, 9.90532, 8.78899,
7.67266, 6.55634, 5.44001, 4.32368, 3.20735, 2.09102,
0.974696, -0.141632]);

__motion_mySquare.addPropertyArray(“blendMode”,
[“normal”]);

__motion_mySquare.addPropertyArray(“cacheAsBitmap”,
[false]);

var __animFactory_mySquare:AnimatorFactory = new
AnimatorFactory(__motion_mySquare);

__animFactory_mySquare.transformationPoint = new
Point(0.499648, 0.500000);

// __animFactory_mySquare.addTarget(<instance name
goes here>, 0);

}

As you can see, adding complex animation using ActionScript
can get, well, complex. Adding skews, different points of animation,

124   Developing Mobile Apps using ActionScript

and rotation to a single object can quickly add to the amount of
ActionScript you need to write to add animation programmatically.

Ah, if only there was an easier way to animate objects across the
state… Hang on, there is! GreenSock is a company that provides
free animation frameworks you can use to reduce the amount of
code you write. There are three different versions you can use:
•	 TweenNano
•	 TweenLite
•	 TweenMax

So, how do you apply these frameworks? Well, first you need to
go to GreenSock.com and download the AS3 version of the library
you will want to use. Be careful, GreenSock provides backward
support for AS2, but you do not want that version as it will not
work on the Android phone.

The good news is that the code is free. You can access special
plug-ins that extend the code by becoming a GreenSock member
(costing $25–$99). You can even get free membership if you offer
to write an article for GreenSock—how cool is that?

Once you have the code downloaded, you will want to open the
ZIP file and extract the folders and files within. You will see that there
is a folder called COM. This is important. Copy the COM folder, and
the files in it, to the directory where you have your Flash files.

Open your Flash Android movie. On the stage, create a rect-
angle with the drawing tools and convert it into a symbol. Name
the symbol on the State myAnimation instance.

Open the Actions panel. First you need to call the frameworks
that will do the heavy lifting for you. This is similar to the auto-
matic ActionScript code created earlier by Adobe.

import com.greensock.*;

You can add a lot of properties to the animation path you want
to create. But, for now, let’s keep it simple. The first animation
path you created earlier using Adobe’s own ActionScript was a
single path where the object moved from one position to another
along a straight line. That created a lot of ActionScript. Here is the
same animation created in one line:

TweenMax.to(myAnimation, 1.5, {x:82, y:107});

The first reference in this line is to the TweenMax library; the
second reference is to the animated object on the stage (in this
case, the object that you name myAnimation); the third property is
the amount of time the animation will take to move from one loca-
tion to another; and the final two X and Y coordinates dictate the
final position of the object on the stage. Just one line! As you can see
from this one, GreenSock provides a much leaner animation toolkit.

You can get even more complex by adding rotation, alpha
blends, and different types of easing.

	 Developing Mobile Apps using ActionScript   125

Each of the three different GreenSock Tween libraries inherits
the features, methods, and properties of the previous library. The
smallest library is TweenNano. TweenNano is a super lightweight
library (only 1.6 Kb!). The functionality is very minimal but you
get a lot for just 1.6Kb. TweenLite is a 4.7 Kb library, but gives you
a much bigger selection of tools. The heavyweight is TweenMax
(17.7 Kb). Both TweenLite and TweenMax can be extended with
third-party plug-ins. Plug-ins are additional effects developed
outside of the core framework. You can even mix different frame-
works together.

The bottom line is that you need to have the ability to use
ActionScript to programmatically add animation. This becomes
even more important when it comes time to create games for
your Android phone using ActionScript.

Extending Flash with Open Source Libraries
The core to AS3 is that it can be easily extended. To this end,

you can use dozens of great open source libraries that can be
used to extend the functionality of Flash. Great examples are:
•	 Box2D Physics Engine (http://box2dflash.sourceforge.net/)
•	 CoreLib (http://code.google.com/p/as3corelib/), a collection of

basic utilities such as MD5 hashing, JSON serialization, and
advanced data parsing

•	 Syndication Library (http://code.google.com/p/as3syndication-
lib/), a library that allows you to parse all ATOM and RSS feeds
easily

•	 AlivePDF (www.fpdf.org/), a library that allows you to convert
your Flash screen content to PDF
These are some of the best libraries you can use. Each comes

with its own level of documentation.

Summary
ActionScript is the core to all interactivity and logic built into

Flash. AS3 is essential to our mobile app development. You will
need to use it. Is there a learning curve to understanding AS3? You
betcha! Is it worth it? Definitely.

Take advantage of self-help tools such as the Code Snippets.
Check out YouTube for videos explaining how to add customized
Code Snippets to meet your development needs. In addition, lever-
age the many open source ActionScript libraries that come popu-
lated with quick ways to add complex interaction to your apps easily.

At the end of the day, to be successful as a mobile app devel-
oper you will need to get comfortable with AS3. Might as well
start now.

This page intentionally left blank

127© 2011 Elsevier Inc. All rights reserved.

In this section you have been introduced to ActionScript. You
can do a lot with ActionScript, and the goal of this project is to
illustrate how you can use ActionScript and Flash Professional
to build a simple child’s game called Sprite’s 123. The game is an
early learning game that teaches the numbers from 1 to 30, and is
currently published in the iTunes App Store. Without getting into
the specifics of using new gestures and mobile specific controls,
you will see how I built the game using standard ActionScript 3.0
(AS3) techniques.

The code included in this game, as shown in Figure 3.1Proj, is
available on the website for this book.

Project: Building
Sprite’s 123

Figure 3.1Proj  Classic Tween
requires two keyframes.

128   Project: Building Sprite’s 123

Setting Up the Project to Run on an iPhone
The hardest part, for me, in building Sprite’s 123 was not the

code—it was the images and audio. There are a lot of images and
audio cues used in the application; for this reason, it was impor-
tant to set up my project correctly so I could easily access the files
I needed, when I needed them.
1.	 Begin by creating a new iPhone Flash XFL project and name the

solution sprites123. The code you are developing in this project
will work on both the Android and iOS platform.

2.	 Open the Properties panel and select the Edit Application
Settings icon for iPhone OS Player.

3.	 In the General Tap, you will see that the name of the output file
IPA is sprites123.ipa. This file will be used as your final iOS app
(Figure 3.2Proj).

4.	 Give your app a name; in this case we are using Sprite’s 123.
5.	 Add a version number. It is important that the version number

you write and the one you use in the final submit process are
identical.

6.	 Select the app to be a full-screen solution.
7.	 Choose GPU for the rendering.
8.	 Choose the iPhone for the device.
9.	 In the Included files, you will need to select Default.png from

the downloaded files (Figure 3.3Proj). The Default.png file is
the document that loads immediately in iOS to inform the user
that his or her app is loading in the background.

Figure 3.2Proj  The Sprite’s app
will be converted into an iOS
app.

	 Project: Building Sprite’s 123   129

	10.	 You will need to add a developer certificate in the Deployment
tab.

	11.	 Select the Icons tab. In the downloaded folder you will find three
icons: 29.png, 57.png, and 512.png. Choose these as the default
icons for the project.

	12.	 Save your project.
At this point you have applied the default settings for your

application. The next step is to load the files you need to run the
project.

Adding Files into the Library
To add the image and audio files to the library:

1.	 Select File → Import → Import to Library… and select all the
images with the exception of the icon images.

2.	 All the images will populate the library. Create two folders in the
library and name them numberImage and additionalImages.
Move all the number images into the numberImages folder.
Place the remaining images into the additionalImages folder.

3.	 Select File → Import → Import to Library and choose all the
WAV audio files.

4.	 Create a new folder in the library and name it Sounds (Figure
3.4Proj). Move all the imported WAV files into the Sounds folder.

5.	 You will be referencing the sounds from within your
ActionScript. A method for doing this is to give your sound file
a class name (Figure 3.5Proj). The class name can be referenced
from ActionScript.

Figure 3.3Proj U se the
Included files section to add a
Default.png file to load when
your application is launched on
an iOS device.

130   Project: Building Sprite’s 123

6.	 Right-click on the corkPop sound file and choose Properties. The
Sound Properties window will open. Select the ActionsScript
tab. Select the checkboxes alongside Export for ActionScript and
Export in frame 1. Finally, enter corkPop into the Class ID field.

7.	 Repeat this for all the WAV files. Use the name of the file as the ID.
8.	 Save your file. At this time you are ready to start working in the

timeline.

Figure 3.4Proj  The Sounds
folder will hold all your
WAV files.

Figure 3.5Proj  Adding a class
name to your WAV file will
allow you to reference the file
from your ActionScript.

	 Project: Building Sprite’s 123   131

Setting Up the Timeline
You can use the traditional development process used in Flash

applications to build your iPhone or Android app. To demon-
strate this, we will use the timeline to manage your ActionScript
and not Class files. This approach is how many Flash Professional
designers have built solutions since ActionScript 1.0.
1.	 Go to the timeline and add a new layer named Actions (Figure

3.6Proj). You will add all of your ActionScript into this layer.
Insert 33 keyframes into the Actions layer.

2.	 Add a new layer and call it Background. Drag the red border
background image into this layer. Lock the layer so it is not
moved accidentally.

3.	 Add three more layers and name them aboutUs, Instructions,
and mainTitle. Add a single keyframe to frame 1 of these new
layers.

4.	 Select the mainTitle layer. Find the 123Btn and drag it onto
the stage. Convert the image into a movie clip (right-click and
select Convert to symbol…). Open the Properties panel and
insert the name btn123.

5.	 Open the Actions panel and insert the following ActionScript:

stop();

6.	 This script will stop the movie from playing the remaining
frames. The next script will add a listener that will go to the
frame that starts the learning tool on frame 4.

Figure 3.6Proj  You are
going to use the timeline to
control where you place your
ActionScript and graphics.

Tracking User Activity
with Google Analytics

You can use the
Google Analytics
Flash Component

to track how people use
your application. Go to
http://code.google.com/
apis/analytics/docs/
tracking/flashTrackingIntro.
html to get the latest
version of the components
and instructions on how to
add it to your Flash
projects.

132   Project: Building Sprite’s 123

btn123.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToAndStopAtFrame_4);

function fl_ClickToGoToAndStopAtFrame_4
(event:MouseEvent):void

{
gotoAndStop(4);

}

7.	 Go ahead and repeat these steps to add the Instructions but-
ton and aboutUs button. Do not forget to label the buttons
correctly. When you have done that, you can add the following
ActionScript onto frame 1 of the Actions layer.

instructionsBtn.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToAndStopAtFrame_2);

function fl_ClickToGoToAndStopAtFrame_2
(event:MouseEvent):void

{
gotoAndStop(2);

}

The ActionScript above triggers an event that moves the movie
from the current frame to frame two, as shown in Figure 3.7Proj.

aboutUsBtn.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToAndStopAtFrame_3);

function fl_ClickToGoToAndStopAtFrame_3
(event:MouseEvent):void

{
gotoAndStop(3);

}

Figure 3.7Proj  You can use
the Code Snippets to quickly
generate the code used in
these steps.

	 Project: Building Sprite’s 123   133

This ActionScript is very similar to the previous example in that
it moves the user to a new frame; in this instance it is frame 3.

Frame 2 is a screen that contains the instructions for how to
play Sprite’s 123. For this screen, create a new layer and label it
backArrow. From the library drag an instance of the backArrow
image onto the stage into the top left-hand corner. Convert the
image into a movie clip. Name the clip backArrowBtn. You now
want to add a function that will send the user back to the home
screen when the arrow is selected.

The following ActionScript will do this for you:

backArrow.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToAndStopAtFrame);

function fl_ClickToGoToAndStopAtFrame
(event:MouseEvent):void

{
gotoAndStop(1);

}

Save your work and then test the movie. You should be able
to jump back and forth between frame 1 and the instructions
frame using the buttons on the screen.

The next screen to work on is the About screen. Like the
Instructions page, the About screen has a button in the top left-
hand corner that sends the user back to the first screen in the
app. In addition, however, you also have two buttons that link
you to a website and to an e-mail address.

To add the web and e-mail links you will use the same navi-
gateToURL property in a Click event listener. The following will
open a web page and take you to a website (Figure 3.8Proj):

webSiteBtn.addEventListener(MouseEvent.CLICK,
ClickToGoToWebPage);

function ClickToGoToWebPage(event:MouseEvent):void
{

navigateToURL(new URLRequest(“http://www.
madlearning.net”), “_blank”);

}

The following ActionScript uses the navigateToURL to open
a blank e-mail. The trick is to use the mailto command in the
URLRequest.

emailBtn.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToWebPage);

function fl_ClickToGoToWebPage(event:MouseEvent):void
{

navigateToURL(new URLRequest(“mailto:info@
madlearning.net”), “_blank”);

}

Save your work and test the links to make sure they work.

134   Project: Building Sprite’s 123

Adding Interaction to Your Number Screens
The screens that the numbers are on get complicated very

quickly. You have a lot going on, so we will step through one
screen in detail so you can see what is happening.

Here is what you can expect:
•	 Forward and backward buttons
•	 Random screen button
•	 Animation
•	 Audio

Let’s break down the ActionScript so you can see what is hap-
pening on the first number screen. The first screen has a for-
ward button, but no backward button. The button that takes you
to the next screen has the label nextArrowBtn1. The following
ActionScript will take you to next screen (frame 5):

nextArrowBtn1.addEventListener(MouseEvent.CLICK,
next_ClickToGoToAndStopAtFrame_1);

function next_ClickToGoToAndStopAtFrame_1
(event:MouseEvent):void

{
gotoAndStop(5);

}

In the bottom center of the screen is a button that, when you
select it, will send you to a random page. You are able to accom-
plish the random number by creating a random number function.

Let’s create the function first and add the listener second.
Here is the ActionScript:

Figure 3.8Proj  The URLRequest
property is used to create
e-mail and to send the
customer to a web address.

	 Project: Building Sprite’s 123   135

function fl_GenerateRandomNumber(limit:Number):Number
{

var randomNumber:Number = Math.floor
(Math.random()*(limit+1)+4);

return randomNumber;
}

The first line in the function declares the new function as a
number. The third line uses the Math.random property to gener-
ate a random number. By default, the random property will use a
value of 0. The +1 prevents the final value from coming out as 0;
otherwise you run into the problem of navigating a user to frame 0,
which does not exist. The final +4 forces the final random num-
ber to add an additional 4. The numbers game starts on frame 4.
Next add the listener that will use this function to generate a ran-
dom number:

randomBtn.addEventListener(MouseEvent.CLICK,
fl_ClickToGoToAndStopAtFrame_27);

function fl_ClickToGoToAndStopAtFrame_27
(event:MouseEvent):void

{
gotoAndStop(fl_GenerateRandomNumber(20));

}

Now, when you select the random button, you will be ran-
domly linked from frame 4 to 27.

A visual cue that you have landed on a screen is a spinning,
animated Sprite. In reality, the Sprite is a single image using the
Flash transition class to animate on the screen.

The animation will be controlled using the Transition class. To
activate this into the project, add the following imports into your
ActionScript:

import fl.transitions.*;
import fl.transitions.easing.*;

The next step is to drag a spriteBlue75 from the library and
drop it onto the stage where you want the animation to take
place. Convert spriteBlue75 to a movie clip and name the clip
sprite1.

By default, you want sprite1 to be invisible when the screen
loads. This will add to the animation effect. To do this, add the
following ActionScript into the Actions panel for frame 4.

sprite1.visible = false;

You will also want to play a “cork pop” sound when the
Sprite animates onto the screen. You will need a new function
associated with the SoundChannel class. The following will do
that:

var fl_SC:SoundChannel;

136   Project: Building Sprite’s 123

The next step is to add a second variable that triggers
the animation to load 200 milliseconds after the screen loads.
The delay allows a user to see a brief blank screen, the number on
the screen, and then the animation (one animated object for the
number 1, two animated objects for the number 2, etc.). You will
control the time using a Timer.

var myTimerNumberOne1:Timer = new Timer(200,1);// 1 second

The following listener will now run when you load the frame:

myTimerNumberOne1.addEventListener(TimerEvent.TIMER,
firstAnimationNumberOne);

myTimerNumberOne1.start();
function firstAnimationNumberOne(event:TimerEvent):void
{
sprite1.visible = true;
TransitionManager.start(sprite1, {type:Zoom,

direction:Transition.IN, duration:3, easing:Elastic.
easeOut});

TransitionManager.start(sprite1, {type:Rotate,
direction:Transition.IN, duration:1, easing:None.easeIn});

var s:Sound = new corkPop();
fl_SC = s.play();
}

The first line is a listener event. The Timer labeled myTim-
erNumberOne1 is used to control when the listener should start.

The third line starts the function that is run when the listener
is active. The first action in the function is to make sprite1 visible.
The two lines starting with TransitionManager trigger two differ-
ent animation sequences (zoom and rotate).

A new Sound variable is declared with s:Sound. In this
instance, the variable is pointing to corkPop, a class name given
to the corkPop sound in the library.

The final command is to use the Sound Channel to play the
sound variable.

You can also shake things up by allowing the user to press the
screen to hear the number read out to them. To do this you will
need to create a second CLICK event listener, as shown:

numberOne.addEventListener(MouseEvent.CLICK,
numberOneAni);

function numberOneAni(event:MouseEvent):void
{
TransitionManager.start(sprite1, {type:Rotate,

direction:Transition.IN, duration:2, easing:Elastic.
easeOut});

var s:Sound = new snd1();
fl_SC = s.play();
}

	 Project: Building Sprite’s 123   137

The function in this event triggers a rotation animation and
plays the WAV file in the library called snd1.

Save your work and preview the application.

Completing the Application
You will want to step through the rest of the code for Sprite’s

123. You will see that the code pattern for the rest of the applica-
tion is very similar to frame 4. The main difference is the num-
ber of sounds, animations, and events happening on the screen.
It can get complicated because, well, there’s a lot happening.

The end result, however, is that you can test and run this appli-
cation as is on your iPhone or Android device using ActionScript
skills you already have. The only difference is that you are running
the app on a phone instead of a desktop. Nothing else changed.
How cool is that?

This page intentionally left blank

Section

4

This page intentionally left blank

141© 2011 Elsevier Inc. All rights reserved.

The Android Phone gives you a lot of additional controls such
as Multitouch, gestures, Accelerometer, and Geolocation. In this
section you will learn how you can tap into the Android specific
extensions with ActionScript to add a rich level of control to
your apps. Most of the content in this chapter will also work on
iOS devices, with a few exceptions: WebView, microphone, and
camera. At the time of writing this book, these additional features
had not been added to the iOS apps. Check out the website www
.visualizetheweb.com/flashmobile for updated information on this.
The mobile world is changing fast.

Specifically, we are going to review the following:
•	 Gestures
•	 Orientation
•	 Geolocation
•	 Loading data into Flash
•	 Loading web pages into the WebView
•	 Microphone
•	 Camera/video

The Adobe Integrated Runtime (AIR) platform is maturing
at a rapid clip. Newer features, such as Vibration, will likely be
included in the final release of AIR 2.5 for Android, but are cur-
rently not available for the version I am using for this book. Crazy,
isn’t?

With that said, the mobile features covered in this chapter will
get you up and running very quickly.

The first set of changes you will make will allow you to load
data from remote sites onto your Android device. Following this,
you will start to interact directly with the hardware on the phone
itself.

Leveraging Custom iPhone
and android Interface
Calls with ActionScript

142   Leveraging Custom iPhone and android Interface Calls with ActionScript

Using Gestures in Your Apps
Adobe includes many programmable interfaces you can use

through ActionScript. Multitouch is a feature you may use in
many of your applications. This section explains how Multitouch
is programmed into your apps.
•	 Using your finger instead of a mouse to interact with

applications
•	 Using two or more fingers in your app

In many ways, it is the use of your fingers that makes touch
so compelling on iOS and Android devices. But there are some
caveats you need to keep in mind as your little digits tap on your
OLED screen.
•	 Not all touch screens are the same. The king of sensitivity is

the iPhone 4; no matter where you touch the screen, you will
get the desired response. In contrast, the original Motorola
Droid was a big disappointment for sensitivity. You often find
yourself repeatedly tapping the same area before you get the
desired responses. (Note: The new Droid Incredible is much
better.)

•	 Your fingers are not as delicate as a mouse. The reality is that a
mouse or stylus is a much more accurate pointing device than
your fingers. Keep this in mind as you design you apps.

•	 Fingers tend to be big. Apple states in its human design
guidelines that you should allow for 44 × 44 px (height and
width) to accommodate the average finger.

•	 Simultaneous tap. You can have up to 11 fingers tapping the
screen simultaneously. Not sure why it is 11 and not 12 or just
10, but I did not develop the code.
Keep these four rules in mind as you use control content on

the screen.

Using a Single Finger to Interact with Content
There is a lot of hoopla about gestures and multitouch

development. But we have been getting away with just a sin-
gle tap of the mouse button for many years. You will also find
that most of the time a single tap from one finger is really all
you need. The great thing with using a single tap is that the
event is exactly the same as a single mouse click. You use the
MouseEvent.CLICK to trigger a single tap interaction. Let’s see
this in action.
1.	 Open a new Flash Android or iPhone application.
2.	 On the stage draw a rectangle. Press the F8 button to convert

the drawing into an object.
3.	 Name the instance of the rectangle on the “myObject”.
4.	 Select frame 1 on the timeline.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   143

5.	 Open the Actions panel. Paste the following ActionScript into
the screen:

myObject.addEventListener(MouseEvent.CLICK,
fl_MouseClickHandler);

function fl_MouseClickHandler(event:MouseEvent):void
{

myObject.alpha *= 0.5;
}

This code is essentially a simple listener that is looking for
a mouse click. The good news is that a single click is the same
action your finger is applying to the screen. Test your movie in
either your Android or iOS device. You will see that as you tap
on the screen the Alpha level of the rectangle of the screen will
change.

Using the MouseClick event is a great trick when you want to
quickly migrate code from a standard desktop app to a web app.
There is, however, a better way to do this using the TouchEvent
listener.

Flash 10 introduced a slew of Multitouch events you can
use, the simplest of which is a single tap. The following code will
duplicate the exact same action as seen using the MouseClick but
using the TouchEvent class:

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
myObject.addEventListener(TouchEvent.TOUCH_TAP,

fl_TapHandler_2);
function fl_TapHandler_2(event:TouchEvent):void
{

myObject.alpha *= 0.5;
}

The main difference you’ll see is that the TouchEvent is spe-
cifically looking for a single tap on the screen (the TOUCH_TAP
event).

Dragging Objects across the Stage
A common practice when you are building interactive appli-

cations is to drag objects across the stage. This has been success-
fully done with the mouse for more than a decade in Flash. So,
can you do the same with your finger?

The action you are looking to create is called a gesture. You
tap, hold, and drag an object across the stage. That’s it. The
Multitouch class used in the previous TouchEvent is once again
leveraged to add this gesture.

A drag event is defined by two events: the place you start to
drag your object and the place where you finish dragging the
object. You do this in Flash by using two event listeners (one for

144   Leveraging Custom iPhone and android Interface Calls with ActionScript

the Begin Event and the second for the End Event) that trigger
two separate functions.

For instance, you can use the same instance created earlier
and add the following code:

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
myObject.addEventListener(TouchEvent.TOUCH_BEGIN,

fl_TouchBeginHandler);
myObject.addEventListener(TouchEvent.TOUCH_END,

fl_TouchEndHandler);
var fl_DragBounds:Rectangle = new Rectangle(0, 0,

stage.stageWidth, stage.stageHeight);
function fl_TouchBeginHandler(event:TouchEvent):void
{

event.target.startTouchDrag(event.touchPointID,
false, fl_DragBounds);

}
function fl_TouchEndHandler(event:TouchEvent):void
{

event.target.stopTouchDrag(event.touchPointID);
}

The first line declares that you are using a new Multitouch
event. In this case, the event is called TOUCH_POINT. By declar-
ing TOUCH_POINT you can now allow the object on the stage to
be dragged around.

The second line is the first event listener. In this case,
the first event listener controls the start of the drag. You will
see that the TOUCH_BEGIN event is paired with the func-
tion fl_TouchBeginHandler. The fl_TouchBeginHandler func-
tion is triggered on the fifth line. You will want to define where
you can drag your movie clip in the TOUCH_BEGIN event. The
fl_TouchBeginHandler function calls a variable on line 5 that
controls the area where you can move your object to an invisible
rectangle the size of the screen.

The final line on the screen is the TOUCH_END event, or what
happens when you have dragged your object around the screen and
now are letting go. As with the first listener, the TOUCH_END listener
is linked to a function. Here the function is stopping the drag action.

You can test this code in your movies to drag labeled objects
around the stage.

Adding a Long Press Event to Your Code
What if you want to add a function such as holding a button

down? There are many apps that are designed to measure how
long you can hold a button on the screen. Fortunately, this is
very easy to duplicate in Flash by mixing up your knowledge of
ActionScript: using Multitouch and Timers.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   145

A Timer, as covered earlier, is an event that is controlled by
time. In the following example you will add the code needed to
increase the size of the main object on the stage after one second
of the object being tapped.
1.	 Let’s just use the movie setup earlier. You should have a shape

on the screen with the ID of myObject.
2.	 Open the Actions panel. Begin by adding the ActionScript that

will trigger a function when the movie clip is selected:

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
myObject.addEventListener(TouchEvent.TOUCH_BEGIN,

fl_PressBeginHandler);

3.	 The following is the function being called by the TOUCH_
BEGIN event:

function fl_PressBeginHandler(event:TouchEvent):void
{

fl_PressTimer.start();
}

4.	 The function is calling a variable called fl_PressTimer. This vari-
able is associated to a Timer listener. The following Timer lis-
tener is set to a delay of 1000 milliseconds. You will see that the
listener calls a function named fl_PressTimerHandler, which
changes the size of the movie clip.

var fl_PressTimer:Timer = new Timer(1000);
fl_PressTimer.addEventListener(TimerEvent.TIMER,

fl_PressTimerHandler);
function fl_PressTimerHandler(event:TimerEvent):void
{

myObject.scaleX = 2;
myObject.scaleY = 2;

}

5.	 The final step in your code is to add a second touch event that
listens for when you lift your finger off the screen. The following
does exactly that, and runs a function that returns your movie
clip to its original size.

myObject.addEventListener(TouchEvent.TOUCH_END,
fl_PressEndHandler);

function fl_PressEndHandler(event:TouchEvent):void
{

fl_PressTimer.stop();
myObject.scaleX = 1;
myObject.scaleY = 1;

}

6.	 At this point, save your file and publish to either your iPhone or
Android device.

146   Leveraging Custom iPhone and android Interface Calls with ActionScript

As you can see, Adobe gives you many different ways to con-
trol a single finger’s interaction on the screen.

Working with Gestures
The iPhone brought a new way of controlling your screen:

gestures. A gesture is a term where you use two or more fingers
simultaneously on the screen. Common gestures include:
•	 Two-finger tap
•	 Pinch and zoom
•	 Rotate
•	 Swipe

Each of these actions can be duplicated in Flash for use on
your Android or iOS device.

Adding Two-Finger Tap Control
The two-finger tap is very similar to a single-finger tap. Of

course, the main difference is that you use two fingers. I know,
give me a prize for pointing out the obvious. Let’s jump into the
code.

As you expect by now, the Multitouch class controls the event.
The first line of code declares a new GESTURE event:

Multitouch.inputMode = MultitouchInputMode.GESTURE;

The second line of code states where the gesture is to be
applied and what type of gesture it will be. In this case, the
whole stage is listening for the GESTURE_TWO_FINGER_TAP
event.

stage.addEventListener(GestureEvent.GESTURE_TWO_FINGER_
TAP, fl_TwoFingerTapHandler);

An event is triggered when two fingers tap the screen:

function fl_TwoFingerTapHandler(event:GestureEvent):void
{

myObject.scaleX *= 2;
myObject.scaleY *= 2;

}

You can swap out your code in the function for your own
action.

That’s it. As you can see, Flash has made it very easy for you to
add a two-finger gesture.

Adding Pinch and Zoom
Apple’s inclusion of pinch and zoom has become almost a

must-have for any photo album. Good thing you can do this in
Flash.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   147

As you would expect, you use a gesture to zoom an object
on the stage. Two fingers are required to pincer in and out.
ActionScript refers to this as a TransformGestureEvent. The actual
event is called GESTURE_ZOOM. You will see from the following
example that the code is very similar to a single-tap Multitouch
event with the exception of the event type in line two:

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener(TransformGestureEvent.

GESTURE_ZOOM, fl_ZoomHandler);
function fl_ZoomHandler(event:TransformGestureEvent):

void
{

myObject.scaleX *= event.scaleX;
myObject.scaleY *= event.scaleY;

}

You can test this on an object on the stage. Just change the
function to call the object you are manipulating.

Rotating a Movie Clip on the Stage
This will come as no shock, but a rotate gesture is almost iden-

tical to a zoom gesture. As with the zoom gesture, you are using
two fingers. The difference is that your two fingers are anchor
points around which you can rotate an object.

In the following code, the event you are looking for is
TransformGestureEvent.GESTURE_ROTATE. That’s it. The func-
tion uses the rotation property in ActionScript to rotate the
selected object.

Multitouch.inputMode = MultitouchInputMode.GESTURE;
myObject.addEventListener(TransformGestureEvent.

GESTURE_ROTATE, fl_RotateHandler);
function fl_RotateHandler(event:TransformGestureEvent):

void
{

event.target.rotation += event.rotation;
}

It is certainly a lot easier to add rotation in Flash than in Java
for Android or Objective-C for iOS.

Swiping Objects on the Screen
In many ways, the most complex gesture you will accomplish on

a mobile device involves swiping objects on the screen. The swipe
gesture has the basic rule of dragging your finger across the screen.
This is a common activity in data driven applications on the iPhone.

What is really happening with a swipe event? When you swipe
your finger on the screen, what you are sending to the device is
an instruction to move select content on the screen either to the

148   Leveraging Custom iPhone and android Interface Calls with ActionScript

left or right a specific number of pixels. In the following example
you are going to move a movie clip to the left or right (depending
how you swipe) by 40 pixels. You will also be able to swipe up and
down moving the object 40 pixels.

The difficulty using the swipe gesture comes in controlling
whether you swipe horizontally or vertically. You will define this
in the gesture’s event function, where you will look for either an
X (horizontal) or Y (vertical) interaction.
1.	 The first line of code you need to add triggers the gesture.

Multitouch.inputMode = MultitouchInputMode.GESTURE;

2.	 The second line triggers the TransformGestureEvent for a
GESTURE_SWIPE. The GESTURE_SWIPE is the event defined
for a swipe. At this point, the ActionScript does not know the
direction of the swipe.

stage.addEventListener (TransformGestureEvent.
GESTURE_SWIPE, fl_SwipeHandler);

3.	 The gesture’s function is broken into two Switch statements.
The first statement examines if the swipe action is left or right
and then moves the object on the stage accordingly.

function fl_SwipeHandler(event:TransformGestureEvent):
void

{
switch(event.offsetX)
{

case 1:
{

myObject.x += 40;
break;

}
case -1:
{

myObject.x -= 40;
break;

}
}
switch(event.offsetY)
{

case 1:
{

myObject.y += 40;
break;

}
case -1:
{

myObject.y -= 40;
break;

}
}

}

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   149

4.	 The second Switch statement examines if the swipe is up or
down.

5.	 Save your file and test.
As you can see, swiping does require additional code. With

that said, it is not too complex.

Adding Two or More Gestures Together
Are you restricted to adding just one gesture to an object? No,

you are not. The following script demonstrates how you can add
a left/right swipe, rotate, and pinch/zoom gesture to the same
object on the stage:

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener (TransformGestureEvent.

GESTURE_SWIPE, fl_SwipeHandler);
function fl_SwipeHandler(event:TransformGestureEvent):

void
{

switch(event.offsetX)
{

case 1:
{

myObject.x += 40;
break;

}
case -1:
{

myObject.x -= 40;
break;

}
}

}
myObject.addEventListener(TransformGestureEvent.

GESTURE_ROTATE, fl_RotateHandler);
function fl_RotateHandler(event:TransformGestureEvent):

void
{

event.target.rotation += event.rotation;
}
stage.addEventListener(TransformGestureEvent.

GESTURE_ZOOM, fl_ZoomHandler);
function fl_ZoomHandler(event:TransformGestureEvent):

void
{

myObject.scaleX *= event.scaleX;
myObject.scaleY *= event.scaleY;

}

Test this code to see it run on your device.
Gestures are huge part of your interactive development whether

on the iPhone, Android, or BlackBerry.

150   Leveraging Custom iPhone and android Interface Calls with ActionScript

Which Way Is Up? Controlling Orientation
with the Android Accelerometer

The Android Accelerometer controls the orientation of the
device. The same is true for iOS. In this section you will learn how
you can interpret orientation through ActionScript to change the
display for the correct screen position.

There are two ways in which you can control orientation in
your Android apps:
•	 Publish settings
•	 ActionScript

The easiest way to detect orientation is through the AIR
Android publish settings. Select the Properties panel and choose
AIR Android Settings. The Application & Installer Settings window
will open. On the General tab, select the check mark for Auto ori-
entation (Figure 4.1). Now, when you rotate the Android device,
you will see your AIR app also rotate.

This is the easiest orientation tool, but it does not give you a
lot of control. For this, you need to use ActionScript.

Adding the Accelerometer to Your Apps
with ActionScript

With the release of the Flash Player 10.1 and AIR 2.5, the
Flash team added several new core features. Access to the

Figure 4.1 S elect Auto
orientation to have your app
rotate as you rotate your
device.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   151

Accelerometer is one of those. The role of the Accelerometer is
to detect when you move your phone. The Accelerometer is a
listener that is triggered when it is used. The following example
adds an Accelerometer listener to your iPhone app.
1.	 Start by creating a new iPhone app and adding the necessary

development properties in the iPhone settings.
2.	 Add a dynamic text field to the stage. Name the new text field

“myTextField” in the properties panel.
3.	 Create a new layer on the timeline and name it “Actions”.

Select the “Actions” layer and open the Actions panel. You
need to import the libraries for the Accelerometer to work
correctly:

import flash.events.AccelerometerEvent
import flash.sensors.Accelerometer;

4.	 Now you need to create a new Accelerometer object:

var acc1:Accelerometer = new Accelerometer();

5.	 A new Boolean object will be used to test whether the
Accelerometer works or not:

var isSupported:Boolean = Accelerometer.isSupported;
checksupport();

6.	 The following function contains the event listener that waits
for the Accelerometer to be triggered:

function checksupport():void {
if (isSupported) {

myTextField.text = “Accelerometer feature
supported”;

acc1.addEventListener(AccelerometerEvent.
UPDATE, updateHandler);

} else {
myTextField.text = “howdy ”; }

}

7.	 The final function posts a message to the text field to tell what
direction the device has moved to:

function updateHandler(evt:AccelerometerEvent):void {
myTextField.text = String(“at: ” + evt.timestamp

+ “\n” + “acceleration X: ” + evt.accelerationX + “\n”
+ “acceleration Y: ” + evt.accelerationY + “\n” +
“acceleration Z: ” + evt.accelerationZ);

}

8.	 The final step is to package your code into an Android app and
test it on your phone.
The Accelerometer gives you new ways for your customers to

interface with your applications.

Using Accelerometer
in Flash Player Apps

The Accelerometer
works great on
Android devices

but the same code can be
used for Adobe AIR apps
running Palm’s WebOS
and RIM’s BlackBerry
phones. Yes, that’s right.
Develop one app and
have it deployed to
multiple mobile devices.
How cool is that?

152   Leveraging Custom iPhone and android Interface Calls with ActionScript

Knowing Where You Are, Using Geolocation
Location awareness is key to mobile devices. In this chap-

ter you will use ActionScript to communicate with the Android’s
Geolocation services to determine where you are located.

Geolocation works by using Satellite GPS coordinates to pin-
point your location within 4 feet of your current position. This
can be useful for solutions where you need to know where you
are in relation to other coordinates.

Adobe’s AIR 2.5 gives you access to GPS data through the
Geolocation class. Common properties you can read include:
•	 Latitude
•	 Longitude
•	 Altitude
•	 HorizontalAccuracy

In addition to these commonly accessed properties you can
also test the speed at which the phone is moving by measuring
distance moved over a specific period of time.

The following example will simply post your location to your
phone. What you can do with this, however, is take the data and
apply it to location data. For instance, you might be writing
an app where you want to see how far you are from the nearest
campground.
	 1.	 Create a new Flash movie and name it Geo.fla.
	 2.	 In the Properties panel choose the AIR Android Settings button.

Select the Permissions tab.
	 3.	 From the Permissions screen choose the hardware permis-

sion ACCESS_FINE_LOCATION to access the phone’s GPS
hardware.

	 4.	 On the stage create a new text field and label it “myTxt”.
	 5.	 Select frame 1 on the timeline and open the Actions panel.
	 6.	 The first step in your code is to import the frameworks you need

for this example to work. In this case, the two frameworks are
Geolocation and GeolocationEvent.

import flash.events.GeolocationEvent;
import flash.sensors.Geolocation;

	 7.	 Declare a new Geolocation variable. In this instance, you are
going to name the new variable “myGeo”.

var myGeo:Geolocation;

	 8.	 The following IF/ELSE statement is looking to see if Geolocation
is supported. If Geolocation is supported then Flash triggers the
myGeolocationUpdateHandler to access GPS information on
your current location.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   153

if (Geolocation.isSupported)
{

myGeo = new Geolocation();
myGeo.setRequestedUpdateInterval(100);
myGeo.addEventListener(GeolocationEvent.UPDATE,

myGeolocationUpdateHandler);
}
else
{

myTxt.text = “No geolocation support.”;
}

	 9.	 The following function extracts data from the GPS hardware
and posts the results to the text field on the stage.

function myGeolocationUpdateHandler
(event:GeolocationEvent):void

{
myTxt.text = “Geolocation is supported!” + “\n”;
myTxt.appendText(“latitude:” + event.latitude.

toString() + “°\n”);
myTxt.appendText(“longitude:” + event.longitude.

toString() + “°\n”);
myTxt.appendText(“Altitude:” + event.altitude.

toString() + “ m\n”);
myTxt.appendText(“horizontal accuracy:” + event.

horizontalAccuracy.toString() + “ m”);
}

	10.	 Save your file and then publish to your Android phone. You will
notice a slight pause after your app loads as it collects the GPS
coordinates.

As you can see, this is a very simple example of using GPS. You
can now build solutions from these basics.

Loading RSS Data into Flash
The challenge with connecting to RSS readers is the number of

different RSS technologies you have out in the wild (ATOM, RSS 1,
and RSS2). This is where your knowledge of Flash can really come
into play.

ActionScript 3.0 (AS3) is not a new technology. It has been around
for many years. To this end, you have a large collection of open
source libraries you can use to make it much easier to create your
ActionScript. We are going to do just this for the following RSS reader.

The open source code is called as3syndicationlib and is
hosted at Google’s Code Repository (http://code.google.com/p/
as3syndicationlib/). This may sound alarming, but the latest update

154   Leveraging Custom iPhone and android Interface Calls with ActionScript

was in 2006. Yes, that seems like eons ago, but AS3 is at a point
where it is mature. All you have to do is look in the right places.

Go to the Downloads page and download the code, and place
the code in the folder where you will be creating the RSS feed. Now,
open Flash CS5 and create a new AIR for Android application.
	 1.	 Save your new file. Open the AIR Android Settings and select

the Permissions tab. Select the INTERNET permission. This will
allow the app to load the external RSS feed.

	 2.	 On the stage draw a text field and add the ID “rssContent.”
	 3.	 Draw a new image on the stage. Convert the image to a symbol.

Give the new symbol the ID “rssButton.”
	 4.	 Open the Actions panel. The first step is to identify which frame-

works you are going to need in this project:

import com.adobe.utils.XMLUtil;
import com.adobe.xml.syndication.rss.Item20;
import com.adobe.xml.syndication.rss.RSS20;
import flash.events.Event;
import flash.events.IOErrorEvent;
import flash.events.SecurityErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.net.URLRequestMethod;

	 5.	 The first ActionScript function will define the RSS feed you want
to load.

var loader:URLLoader;
static const RSS_URL:String = “ http://i3dot0.blogspot.

com/feeds/posts/default”;
function onLoadPress():void
{

rssLoader = new URLLoader();
var rssRequest:URLRequest = new URLRequest

(RSS_URL);
rssRequest.method = URLRequestMethod.GET;
rssLoader.addEventListener(Event.COMPLETE,

onDataLoad);
rssLoader.addEventListener(IOErrorEvent.

IO_ERROR, onIOError);
rssLoader.addEventListener(SecurityErrorEvent.

SECURITY_ERROR, onSecurityError);
rssLoader.load(request);

}

	 6.	 The following action is called when the RSS data is fully loaded:

function onDataLoad(e:Event):void
{

var rawRSS:String = URLLoader(e.target).data;
parseRSS(rawRSS);

}

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   155

	 7.	 Now you can parse out data from the loaded RSS feed. The fol-
lowing will post the title from the RSS feeds into the text field.

function parseRSS(data:String):void
{

if(!XMLUtil.isValidXML(data))
{

writeOutput(“Feed does not contain valid
XML.”);

return;
}
var rss:RSS20 = new RSS20();

rss.parse(data);
var items:Array = rss.items;
for each(var item:Item20 in items)
{

writeOutput(item.title);
}

}

	 8.	 The following function will post the data to the text field on the
stage.

function writeOutput(data:String):void
{

rssContent.text += data + “\n”;
}

	 9.	 The following functions will output any errors you receive to
the text field:

function onIOError(e:IOErrorEvent):void
{

writeOutput(“IOError : ” + e.text);
}
function onSecurityError(e:SecurityErrorEvent):void
{

writeOutput(“SecurityError : ” + e.text);
}

	10.	 The final step is to add a listener that will trigger the RSS feed to
load.

rssButton.addEventListener(MouseEvent.CLICK,
buttonClick);

function buttonClick (e:MouseEvent):void{
onLoadPress();
}

	11.	 Save your file and test on your Android device.
You can now load external data, in the form of RSS, from a

different website. This is a really big deal for your development
as it demonstrates that you can integrate data from different
sources.

156   Leveraging Custom iPhone and android Interface Calls with ActionScript

Adding Permissions to Your Apps
Developing iOS and Android apps can be slightly differ-

ent. The main difference is that you can currently do more with
Android apps hardware than with iOS. Will this change over time?
I am certain it will, but this is where we are for now.

Many of the Android-specific features listed in the follow-
ing examples require you activate specific permissions in your
code. Fortunately, this is easy to do (Figure 4.2). Select AIR
ANDROID settings on the Properties panel. The Application &
Installer window opens. Choose the fourth tab along the top
labeled Permissions. You will see a whole list of permissions
you must select if you are going to use the hardware on the
device.

The following is a list of permissions you can select:
•	 INTERNET
•	 WRITE_EXTERNAL_STORAGE
•	 READ_PHONE_STATE
•	 ACCESS_FINE_LOCATION
•	 ACCESS COARSE LOCATION
•	 CAMERA
•	 RECORD_AUDIO
•	 DISABLE_KEYBOARD
•	 WAKE_LOCK
•	 ACCESS_NETWORK_STATE
•	 ACCESS_WIFI_STATE

Figure 4.2 A dding permissions
for Android apps.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   157

Each of these hardware-specific permissions control differ-
ent elements of your Android phone. Some are obvious, such
as RECORD_AUDIO to control the microphone. Some are less
obvious, such as ACCESS_FINE_LOCATION to activate the GPS
settings.

You can select which permission you need for your applica-
tion. You do, however, have another way to modify which per-
missions you can use.

Each application you develop will create an XML configura-
tion file. The role of the file is to define launch settings, code loca-
tion, and other features. One element is called the MANIFEST.
The Android manifest lists in XML the hardware permissions you
can use. The following demonstrates adding permission to use
the CAMERA:

<android>
<manifestAdditions>
<manifest>
<data><![CDATA[<uses-permission

android:name=“android.permission.CAMERA”/>]]></data>
</manifest>

</manifestAdditions>
</android>

It is certainly easier to use the UI in Flash to state which
permissions you want to use, but knowing that you can man-
ually access and modify the permissions with your favor-
ite notepad does have its benefits. For instance, you can add
reference to a new hardware permission that may not have
made its way to Flash CS5 UI. An example of this is support
for VIBRATE.

Loading Web Pages into the StageWebView
It is important to remember that AIR for Android is not just a

crippled version of the Adobe Integrated Runtime, but almost the
complete version of AIR 2.5. A key part of AIR on the desktop is
the ability to launch web ports and pull complete web pages into
your Flash world. Well, AIR on Android will do the same, and it is
crazy-easy to implement.

There are two key elements you need to keep in mind when
using StageWebView:
•	 Ensure you have set your app permissions correctly
•	 Use the StageWebView object

The first step is to create a new AIR for Android application
and open the AIR for Android settings in the Properties panel.

158   Leveraging Custom iPhone and android Interface Calls with ActionScript

Choose the fourth tab, labeled Permissions. The WebView
object will load an external web page. For this to occur you must
select the INTERNET permission option on the Permissions
tab. If you do not do this then you will not be able to load a web
page.

Alternatively, you can manually update the XML manifest
document. The following will allow the INTERNET permission to
work:

<android>
<manifestAdditions>
<manifest>
<data><![CDATA[<uses-permission

android:name=“android.permission.INTERNET”/>]]></data>
</manifest>

</manifestAdditions>
</android>

The next step is to add the ActionScript that will load a
StageWebView. Let’s do that right now.
1.	 Select frame 1 in the timeline. Open the Actions panel.
2.	 Create a new StageWebView object and name it “webView”.

var webView:StageWebView = new StageWebView();

3.	 The following code states that the new StageWebView object
will reside on the current stage:

webView.stage = this.stage;

4.	 You can define the position and size of the WebView you load.
This is called the viewport. The following ActionScript creates
a new rectangular viewport and places it in the top left-hand
corner with a width of 470 px and height of 300 px.

webView.viewPort = new Rectangle(0,0,470,300);

5.	 Finally, you need to state the web page you want to load using
the loadURL property.

webView.loadURL(“http://www.google.com”);

6.	 Save your file and then load it onto your Android phone. You
will see that the AIR app opens and reveals Google’s home
page.
There are some caveats when working with StageWebView.

The first is that you cannot communicate between Flash and
the web page. Second, the web browser used to load the page
is not the default Android browser but a branched version of
WebKit. This means you do not have the JavaScript acceleration
the V8-powered Android browser has. Finally, the StageWebView
does take over the area of the stage it is loaded onto. This
means you lose space you could otherwise use for application
development.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   159

There are, however, lots of benefits to running StageWebView. It is,
after all, an easy way to integrate Flash and HTML together. In addi-
tion, you can load two or more viewports to a screen. For instance,
you can add the following code to include a second viewport:

var webViewTwo:StageWebView = new StageWebView();
webViewTwo.stage = this.stage;
webViewTwo.viewPort = new Rectangle(0,305,470,300);
webViewTwo.loadURL(“http://www.focalpress.com”);

You are also not restricted to loading web pages on external
sites. You can load pages local to the application. For this, how-
ever, you must remember to include the local HTML as part of
your application when you build the app. This is done through
the AIR Android settings tab. Choose the folder with the included
HTML you want to include in the final package.

Controlling the Use of the Microphone
The microphone is arguably the most used part of a phone.

You need it for every call you make. You can also use it to record
audio. The following section demonstrates how you can leverage
the microphone in your solutions.
	 1.	 Start by creating a new Flash AIR for Android solution.
	 2.	 Open the AIR Android settings and select Permissions. Check

the AUDIO permission.
	 3.	 On the stage, select frame 1 from the timeline and open the

Actions panel. Add the following to create a 4-second delay in
your project:

const DELAY_LENGTH:int = 4000;

	 4.	 The next step is to create the new microphone object. Here you
will see that it has been abbreviated to mic.

var mic:Microphone = Microphone.getMicrophone();

	 5.	 Two properties for the microphone include gain (loudness) and
rate (sound quality). The following sets the gain and rate for the
new mic object.

mic.gain = 100;
mic.rate = 44;

	 6.	 The following sets the microphone to stop working (silence
level of 0) after the DELAY_LENGTH period has passed. In this
instance, DELAY_LENGTH is 4000 milliseconds, or 4 seconds.

mic.setSilenceLevel(0, DELAY_LENGTH);

	 7.	 The following line triggers the microphone object listener.

mic.addEventListener(SampleDataEvent.SAMPLE_DATA,
micSampleDataHandler);

160   Leveraging Custom iPhone and android Interface Calls with ActionScript

	 8.	 The following timer object uses the same time-based technol-
ogy in ActionScript covered in the previous section, demon-
strating that you do not need to relearn Flash to build Android
apps.

var timer:Timer = new Timer(DELAY_LENGTH);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.start();
var soundBytes:ByteArray = new ByteArray();

	 9.	 The following function captures the sound to the phone’s
memory.

function micSampleDataHandler(event:SampleDataEvent):
void

{
while (event.data.bytesAvailable)
{

var sample:Number = event.data.readFloat();
soundBytes.writeFloat(sample);

}
}

	10.	 The following uses the mic object to record a new sound file.

function timerHandler(event:TimerEvent):void
{

mic.removeEventListener(SampleDataEvent.
SAMPLE_DATA, micSampleDataHandler);

timer.stop();
soundBytes.position = 0;
var sound:Sound = new Sound();
sound.addEventListener(SampleDataEvent.

SAMPLE_DATA, playbackSampleHandler);
sound.play();

}

	11.	 The following function will play back the 4 seconds of record
audio.

function playbackSampleHandler(event:SampleDataEvent):void
{

for (var i:int = 0; i < 8192 && soundBytes.
bytesAvailable > 0; i++)

{
var sample:Number = soundBytes.readFloat();
event.data.writeFloat(sample);
event.data.writeFloat(sample);

}
}

	12.	 Save your work. Compile and load the APK file onto your
Android phone. Select the app and talk into your microphone.
After 4 seconds, the audio will stop and will play back to you.

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   161

You can easily extend this example. For instance, you can add
a button that allows you to click and record the audio; audio files
can be saved to the physical hard drive on the Android phone. You
can even use the many ActionScript libraries that modify sound
files to create a sound modulator. In other words, you can do a lot.

Controlling the Camera
For me, one of the coolest features you can access on your

phone is the camera. The goal of this section is to demonstrate
how you can access the camera on your Android phone. As
with the microphone example earlier, you can add additional
ActionScript that will allow you to save your video for playback
later or even add color correction controls.

But enough of that; let’s jump right into the project.
	 1.	 The first thing is to create a new Android Flash project and then

associate the correct hardware permissions. You should be
comfortable doing this by now. The hardware that needs per-
mission is the CAMERA.

	 2.	 Instead of adding the code into the Timeline, let’s go ahead and
create a simple class for the AIR solution. Name a new class in
the Properties panel takeVideoTest and select Flash as the code
environment.

	 3.	 After the opening package add the following references to dif-
ferent frameworks.

package
{

import flash.display.Sprite;
import flash.media.Camera;
import flash.media.Video;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;
import flash.utils.Timer;
import flash.events.TimerEvent;
import flash.events.StatusEvent;
import flash.events.MouseEvent;
import flash.system.SecurityPanel;
import flash.system.Security;

	 4.	 Next, let’s declare the variables you will be using:

public class takeVideoTest extends Sprite
{

private var myTxt:TextField;
private var headerTxt:TextField;
private var cam:Camera;
private var t:Timer = new Timer(1000);
public function takeVideoTest()

162   Leveraging Custom iPhone and android Interface Calls with ActionScript

	 5.	 The variables just listed will control two different text fields, the
camera and a timer control.

	 6.	 The next block defines the size, position, and other properties
of the myTxt field.

{
myTxt = new TextField();
myTxt.x = 10;
myTxt.y = 10;
myTxt.background = true;
myTxt.selectable = false;
myTxt.autoSize = TextFieldAutoSize.LEFT;

	 7.	 The following ActionScript defines the properties of the head-
erTxt field.

headerTxt = new TextField();
headerTxt.x = 120;
headerTxt.y = 220;
headerTxt.autoSize = TextFieldAutoSize.LEFT;

	 8.	 The following is a style document that formats the visual pre-
sentation of the text fields:

var format:TextFormat = new TextFormat();
format.font = “_Sans”;
format.color = 0xFF0000;
format.size = 24;
format.bold = true;
headerTxt.defaultTextFormat = format;
addChild(headerTxt);

	 9.	 The following IF/ELSE statement is looking to see if the cam-
era is installed. Remember, although it is common for Android
phones to have a camera, it is not mandatory. The first part
of the IF statement will throw a message if there is no camera
installed.

cam = Camera.getCamera();
if (! cam)
{
myTxt.text = “No camera is installed.”;
}

	10.	 If the camera is installed and is working, the following mes-
sage will be sent to the myTxt field informing the user that the
camera is connecting.

else
{
myTxt.text = “Connecting”;
connectCamera();
}
addChild(myTxt);

	 Leveraging Custom iPhone and android Interface Calls with ActionScript   163

t.addEventListener(TimerEvent.TIMER, timerHandler);
}
private function clickHandler(e:MouseEvent):void
private function statusHandler(event:StatusEvent):void
{
if (event.code == “Camera.Unmuted”)
{
connectCamera();
cam.removeEventListener(StatusEvent.STATUS,

statusHandler);
}
}

	11.	 The following function controls the size and position of the
video playback.

private function connectCamera():void
{
var vid:Video = new Video(cam.width,cam.height);
vid.x = 10;
vid.y = 10;
vid.width = 120;
vid.height = 120;
vid.attachCamera(cam);
addChild(vid);
t.start();
}

	12.	 Finally, the following function will send data about the video
camera’s performance to the myTxt screen. Video frames per
second playback will vary depending on your hardware.

private function timerHandler(event:TimerEvent):void
{
myTxt.y = cam.height + 20;
myTxt.text = “”;
myTxt.appendText(“bandwidth: ” + cam.bandwidth + “\n”);
myTxt.appendText(“currentFPS: ” + Math.round(cam.

currentFPS) + “\n”);
myTxt.appendText(“fps: ” + cam.fps + “\n”);
myTxt.appendText(“keyFrameInterval: ” + cam.

keyFrameInterval + “\n”);
headerTxt.text = “Video Camera Test”;

}
}

}

13.	 The final step is to save your work and then test it on your
Android phone.

Video support in AIR is going to be a big deal. Through access
to the camera you can add augmented reality to your AIR apps,
video editing, and video conference similar to Apple’s FaceTime.

164   Leveraging Custom iPhone and android Interface Calls with ActionScript

Additional Features on AIR 2.5 for Android
There are additional software features that are specific to

Android. The following allow you cache images so they play back
more efficiently on the screen and demonstrate how you can load
external data directly into your AIR project.

Working with cacheAsBitmapMatrix
Another optimization trick you can do is to restrict your use

of vector-based images inside of Flash. Where possible use PNG
formatted images. The good news is that that Android has great
support for PNG files, allowing you to include transparency.

If you do need to use vector images you can fool the
iPhone into thinking that the image is a bitmap by using the
cacheAsBitmapMatrix.
1.	 The first step is to create a new image. You will need to import

the Flash Geom Matrix:

import flash.geom.Matrix;

2.	 Create a new shape:

var my_shape :MyShape = new MyShape();
addChild(my_shape);

3.	 Now use the cacheAsBitmap property to ensure that all objects
that are created are cached:

my_shape.cacheAsBitmap = true;
my_shape.cacheAsBitmapMatrix = new Matrix();

4.	 You can now create images on the screen that the iPhone thinks
are bitmaps.
Audio files can have a short delay between an event happen-

ing and the sound playing. This is because the audio file is not in
the iPhone’s cache for playback. You can avoid this by exporting
your audio file to be triggered in the first frame of your movie.

Summary
A mobile platform gives you many different ways you can

interact with your applications: you have fingers pointing, ges-
tures, and hardware interactivity. Throwing these all together
provides you with new opportunities to interact with your app.
Pulling together your knowledge of ActionScript, you now have
the foundation knowledge you need to build applications for iOS
and Android devices.

165© 2011 Elsevier Inc. All rights reserved.

The focus of this chapter is to get you comfortable working
with gestures on your Android and iPhone device. By the time
you are done with the chapter you will have created a slide show
application that includes on-screen tap, swipe, drag and drop,
and Geolocation.

Getting Started
You will need to download the files for the project at www

.visualizetheweb.com/flashmobile (click the Book tab). It is impor-
tant to download the files for this project; I will be jumping over
some of the basic setup features (such as importing images
into the library) so we can focus on the interactive elements in
ActionScript. Make sense? Great.

Let’s begin by looking into the basic construction of the
project.

Begin by opening Project.fla (Figure 4.1Proj). You will see that
the project is a short presentation discussing the beauty of hiking.
There are two parts that make up the app: the first screen and the
movie clip labeled slides_mc, which is a four-frame movie. Each
frame will be a different section of the presentation.

The main timeline has two other main features: navigation
buttons (forward and backward) and a text box to let you know
which frame you are on. The forward and backward buttons are
labeled prev_btn and next_btn, with the text field named slide-
Number_txt (Figure 4.2Proj).

The goals of this next section are to:
•	 Allow a user to tap on the buttons to go forward and backward
•	 Dynamically change the page transition from one screen to

the next
•	 Post back to the text field which screen you are on

Later in the chapter you will add more complex interaction.

Project: Building a
Gesture-Driven Application

166   Project: Building a Gesture-Driven Application

Figure 4.1Proj T he hiking
project you will create.

Figure 4.2Proj L abel the
forward, backward, and text
fields.

	 Project: Building a gesture-driven application   167

Navigating Using the Tap Gesture
You will need the Actions panel open for most of this, and

you will be adding the ActionScript to frame 1 of the main
timeline.
1.	 Create a new frame and name it Actions.
2.	 Add the first Action to the Actions panel: Stop();
3.	 Instruct Flash that you will be using gestures with the following

code:
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

4.	 Add an event listener for the next button. Notice that listener is
calling nextSlideButton as the function that will activate when
the event is triggered by a single tap on the screen.

next_btn.addEventListener(TouchEvent.TOUCH_TAP,
fl_nextSlideButton);

5.	 The fl_nextSlideButton function in turns calls a second func-
tion that is used to determine where in the movie clip you are
currently located (Figure 4.3Proj).

function fl_nextSlideButton(evt:TouchEvent):void
{

fl_nextSlide();
}

Figure 4.3Proj A dd a nextSlide
action.

168   Project: Building a Gesture-Driven Application

The following function, fl_nextSlide, examines where you are
in the slides_mc movie clip.

function fl_nextSlide():void
{

if(slides_mc.currentFrame < slides_mc.totalFrames)
{

slides_mc.gotoAndStop(slides_mc.currentFrame+1);
if(transitionOn == true)
{

fl_doTransition();
}
if(pageNumberOn == false)
{

slideNumber_txt.text = "";
} else {

slideNumber_txt.text = String(slides_
mc.currentFrame + "/" + slides_mc.totalFrames);

}
}

}

The whole function is an IF statement. Line 3 of the function
examines if you are on the final frame of the slides_mc, as shown in
Figure 4.4Proj. If you are, then nothing will happen. If you are not,
three things will be triggered:
•	 You will move to the next slide.
•	 A transition from screen to screen will happen if the setting is

set to True.
•	 Text informing the presenter which screen you are on will be

updated.

Figure 4.4Proj T he ActionScript
will update the text along the
bottom of the screen.

	 Project: Building a gesture-driven application   169

Moving from one screen to the next is controlled through the
first line:

slides_mc.gotoAndStop(slides_mc.currentFrame+1);

Here you are looking at the current frame you are on and sim-
ply adding 1 to that number to move you forward. We’ll come
back to the transition code in a moment.

The third IF statement in the block of code is looking to see if
you want to add text. You will notice that the block of code is looking
for a True/False value. You can control whether you want this state-
ment turned on or off by setting a True/False variable, as shown:

var pageNumberOn:Boolean = true; // true, false

Transitions are a little more complicated, simply because you
can change the different transitions you want in the presentation
(Figure 4.5Proj).

Start by adding an import action to include the transition
functions onto the screen:

import fl.transitions.*;

You can choose to include or exclude transitions by adding the
following ActionScript:

var transitionOn:Boolean = true; // true, false

Let’s assume you want to add transitions (keeping your value
at True); you can also choose a specific type of transition:

var transitionType:String = "Fade"; // Blinds, Fade,
Fly, Iris, Photo, PixelDissolve, Rotate, Squeeze, Wipe,
Zoom, Random

As you can see, there are 10 transitions and each has to have its
own definition, depending on which you choose (Figure 4.6Proj).

Figure 4.5Proj  You can set
default scripts to turn on and
off different features in the
presentation.

170   Project: Building a Gesture-Driven Application

This is handled through a fl_doTransition function. The following
is an IF statement:

function fl_doTransition():void
{

if(transitionType == "Blinds")
{

TransitionManager.start(slides_mc, {type:Blinds,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Fade")
{

TransitionManager.start(slides_mc, {type:Fade,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Fly")
{

TransitionManager.start(slides_mc, {type:Fly,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Iris")
{

TransitionManager.start(slides_mc, {type:Iris,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Photo")
{

TransitionManager.start(slides_mc, {type:Photo,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "PixelDissolve")
{

TransitionManager.start(slides_mc,
{type:PixelDissolve, direction:Transition.IN,
duration:0.25});

Figure 4.6Proj T here are
10 different transitions you
can add to the presentation.

	 Project: Building a gesture-driven application   171

} else if (transitionType == "Rotate")
{

TransitionManager.start(slides_mc, {type:Rotate,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Squeeze")
{

TransitionManager.start(slides_mc,
{type:Squeeze, direction:Transition.IN, duration:0.25});

} else if (transitionType == "Wipe")
{

TransitionManager.start(slides_mc, {type:Wipe,
direction:Transition.IN, duration:0.25});

} else if (transitionType == "Zoom")

A final option you have with your transitions is to add a ran-
dom feature to change the transitions for each screen. This
is handled by adding a little random math magic to a switch
statement:

{
TransitionManager.start(slides_mc, {type:Zoom,

direction:Transition.IN, duration:0.25});
} else if (transitionType == "Random")
{

var randomNumber:Number = Math.round(Math.
random()*9) + 1;

switch (randomNumber) {
case 1:

TransitionManager.start(slides_mc,
{type:Blinds, direction:Transition.IN, duration:0.25});

break;
case 2:

TransitionManager.start(slides_mc,
{type:Fade, direction:Transition.IN, duration:0.25});

break;
case 3:

TransitionManager.start(slides_mc,
{type:Fly, direction:Transition.IN, duration:0.25});

break;
case 4:

TransitionManager.start(slides_mc,
{type:Iris, direction:Transition.IN, duration:0.25});

break;
case 5:

TransitionManager.start(slides_mc,
{type:Photo, direction:Transition.IN, duration:0.25});

break;
case 6:

TransitionManager.start(slides_
mc, {type:PixelDissolve, direction:Transition.IN,
duration:0.25});

break;

172   Project: Building a Gesture-Driven Application

case 7:
TransitionManager.start(slides_mc,

{type:Rotate, direction:Transition.IN, duration:0.25});
break;

case 8:
TransitionManager.start(slides_mc,

{type:Squeeze, direction:Transition.IN, duration:0.25});
break;

case 9:
TransitionManager.start(slides_mc,

{type:Wipe, direction:Transition.IN, duration:0.25});
break;

case 10:
TransitionManager.start(slides_mc,

{type:Zoom, direction:Transition.IN, duration:0.25});
break;

}
}

At this point you can test your movie. You will be able to click
forward on each screen, but will not be able to move backward.
Following is the code that will allow you to go back to the previ-
ous screen:

function fl_prevSlide():void
{

if(slides_mc.currentFrame > 1)
{

slides_mc.gotoAndStop(slides_mc.currentFrame-1);
if(transitionOn == true)
{

fl_doTransition();
}
if(pageNumberOn == false)
{

slideNumber_txt.text = "";
} else {

slideNumber_txt.text = String(slides_
mc.currentFrame + "/" + slides_mc.totalFrames);

}
}

}

At this point you will want to test your movie. Using the tap
gesture on the buttons, you can now move from one screen to the
next in your movie clip.

Adding a Swipe Gesture to Move from One
Screen to the Next

The next gesture to add to the app is a swipe gesture to move
from one screen to the next. You can add this to the home page,

	 Project: Building a gesture-driven application   173

but let’s take a deeper look at the swipe gesture and add it to each
frame of the Slides movie clip.

Go to frame 1 of the Slides movie clip. The following
ActionScript sets the gesture mode:

Multitouch.inputMode = MultitouchInputMode.GESTURE;

Following this you need to declare the type of gesture you
want to use in the event listener. You will see in the following
that you are using a GESTURE_SWIPE, or swipe gesture, that
references the whole stage. When the swipe gesture is done, the
fl_SwipeToGoToNextPreviousFrame_2 function is called:

stage.addEventListener (TransformGestureEvent.GESTURE_
SWIPE, fl_SwipeToGoToNextPreviousFrame_2);

The following function looks to see if you are swiping to the
left (offsetX value is set to –1). If the event is true, then you will go
to frame 2 (Figure 4.7Proj).

function fl_SwipeToGoToNextPreviousFrame_2
(event:TransformGestureEvent):void

{
if(event.offsetX == -1)

{
gotoAndStop(2);

}
}

The swipe gesture for frame 2 is very similar. The exception,
as you will see next, is that you can swipe left (offsetX value is

Figure 4.7Proj T he ActionScript
shows you a swipe gesture that
will take you to the next screen.

174   Project: Building a Gesture-Driven Application

set to –1) or right (offsetX value is set to 1), sending you forward
or backward one frame.

stage.addEventListener (TransformGestureEvent.GESTURE_
SWIPE, fl_SwipeToGoToNextPreviousFrame);

function fl_SwipeToGoToNextPreviousFrame
(event:TransformGestureEvent):void

{
if(event.offsetX == 1)
{

gotoAndStop(1);
}
else if(event.offsetX == -1)
{

gotoAndStop(3);
}

}

Frame 3 is very similar. Frame 4 will only allow you to swipe
from the left:

stage.addEventListener (TransformGestureEvent.GESTURE_
SWIPE, fl_SwipeToGoToNextPreviousFrame_4);

function fl_SwipeToGoToNextPreviousFrame_4
(event:TransformGestureEvent):void

{
   if(event.offsetX == 1)
   {
    gotoAndStop(3);
   }
}

Save your files and test the movie. You can now swipe from
one frame to the next.

Adding Drag and Drop Gestures
The drag and drop gesture is very similar to the tap gesture.

You will use drag and drop on the third frame of the presentation
to move the different photos around (Figure 4.8Proj).

Frame 3 has three photos. Each photo is a movie clip, with the
names pictureOne, pictureTwo, and pictureThree.

The drag and drop event is created by a starting and ending
event (called TOUCH_BEGIN and TOUCH_END). The following
declares the input type of TOUCH_POINT.

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

A TOUCH_BEGIN listener is created to declare the starting
point of the touch event:

pictureOne.addEventListener(TouchEvent.TOUCH_BEGIN,
fl_TouchBeginHandler_5);

	 Project: Building a gesture-driven application   175

As you might expect, a function in the listener is called to
determine what will happen if you use this listener. In this
instance you want to be able to move the photo around the
screen. To do this you first need to define the area of the screen
and then call that area in your new function. The following vari-
able will hold the values of the screen size:

var fl_DragBounds_5:Rectangle = new Rectangle(0, 0,
stage.stageWidth, stage.stageHeight);

Now that you know the screen size you can now use it in your
function:

function fl_TouchBeginHandler_5(event:TouchEvent):void
{

event.target.startTouchDrag(event.touchPointID,
false, fl_DragBounds_5);

}

The following listener and function will control what hap-
pens when you stop moving the photo around the screen. In this
instance, the stopTouchDrag property is triggered.

pictureOne.addEventListener(TouchEvent.TOUCH_END,
fl_TouchEndHandler_5);

function fl_TouchEndHandler_5(event:TouchEvent):void
{

event.target.stopTouchDrag(event.touchPointID);
}

Figure 4.8Proj T he drag and
drop gesture allows you to
move objects, such as this
picture, around the screen.

176   Project: Building a Gesture-Driven Application

The pictureTwo movie clip has similar events:

pictureTwo.addEventListener(TouchEvent.TOUCH_BEGIN,
fl_TouchBeginHandler_7);

pictureTwo.addEventListener(TouchEvent.TOUCH_END,
fl_TouchEndHandler_7);

var fl_DragBounds_7:Rectangle = new Rectangle(0, 0,
stage.stageWidth, stage.stageHeight);

function fl_TouchBeginHandler_7(event:TouchEvent):void
{

event.target.startTouchDrag(event.touchPointID,
false, fl_DragBounds_7);

}
function fl_TouchEndHandler_7(event:TouchEvent):void
{

event.target.stopTouchDrag(event.touchPointID);
}

The differences in the code are the names of the functions and
the movie clip that is being referenced.

Finally, here is the code for pictureThree:

pictureThree.addEventListener(TouchEvent.TOUCH_BEGIN,
fl_TouchBeginHandler_6);

pictureThree.addEventListener(TouchEvent.TOUCH_END,
fl_TouchEndHandler_6);

var fl_DragBounds_6:Rectangle = new Rectangle(0, 0,
stage.stageWidth, stage.stageHeight);

function fl_TouchBeginHandler_6(event:TouchEvent):
void

{
event.target.startTouchDrag(event.touchPointID,

false, fl_DragBounds_6);
}
function fl_TouchEndHandler_6(event:TouchEvent):void
{

event.target.stopTouchDrag(event.touchPointID);
}

Save your project. Publish your files to your Android or iPhone
device. Swipe until you get to the third screen of the presentation.
You can now drag the pictures around the screen.

Using Geolocation to Find Where You Are
The final frame of the movie used the Geolocation hard-

ware on your phone to determine where you are. When using
Geolocation, first you need to change your Android publishing
permissions to allow for Fine and Coarse location detection. If
you do not set these, then you cannot use the GPS or WiFi loca-
tion tools on your phone.

	 Project: Building a gesture-driven application   177

Go to frame 4 of the presentation. On the screen is a text field
with the name of myTxt. The Geolocation information will be
posted to this screen.

In the Actions panel import the namespaces you need to lever-
age the Geolocation tools:

import flash.events.GeolocationEvent;
import flash.sensors.Geolocation;
Next, add the following variable and declare the object

to be a Geolocation object.
var myGeo:Geolocation;

You can now use this variable in the following if/else state-
ment. In the following statement, you are looking to see if
Geolocation is supported. If Geolocation is not supported then a
message is sent to the myTxt field on the screen.

If Geolocation is supported then you will update the screen 10
times a second. Remember that the GPS tool will drain a battery
quickly.

if (Geolocation.isSupported)
{

myGeo = new Geolocation();
myGeo.setRequestedUpdateInterval(100);
myGeo.addEventListener(GeolocationEvent.UPDATE,

myGeolocationUpdateHandler);
}
else
{

myTxt.text = "No geolocation support.";
}

The following function is called if Geolocation is supported to print
information to the screen, letting you know what the latitude, longi-
tude, altitude, and horizontal accuracy are, as shown in Figure 4.9Proj.

function myGeolocationUpdateHandler
(event:GeolocationEvent):void

{
myTxt.text = ("latitude: " + event.latitude.

toString() + "°\n");
myTxt.appendText("longitude: " + event.

longitude.toString() + " m\n");
myTxt.appendText("Altitude: " + event.altitude.

toString() + " m\n");
myTxt.appendText("horizontal accuracy:

" + event.horizontalAccuracy.toString() + " m");
}

At this point you can save and test your movie in your iPhone
or Android device.

178   Project: Building a Gesture-Driven Application

Summary
In this project you have seen how you can use your phone’s

hardware to manage touch-screen gestures and GPS coordinates.
This just scratches the surface of what you can do. But it is fun to
have a fully functioning app running on your phone, isn’t it?

Figure 4.9Proj G eolocation
uses both GPS and WiFi to
determine where you are
located on the planet.

Section

5

This page intentionally left blank

181

© 2011 Elsevier Inc. All rights reserved.

Almost a third of all apps developed for the Android and iOS are
games. In this section we introduce you to game development
on the Android and iOS.

Getting Started with Game Development
There are more than 50,000 games in the iTunes App Store

and 20,000 in the Android Market Place (Figure 5.1). They range
from simple word puzzles to complex 3D strategy games. In this
section you will learn the basics needed for game development:

Building Games with Flash
for the Mobile Market

Figure 5.1  A small selection
of the thousands of games
available for iOS.

182   Building Games with Flash for the Mobile Market

•	 Understanding what you want your game to be
•	 Planning, planning, planning
•	 Using Flash to do the heavy work
•	 Developing your game to work on all devices

Often the biggest decision you need to make when developing
a game is, what do I want the game to do? Think about this long
and hard. The reality is that no game is created quickly; you will
spend a lot of time on your game and you want to ensure that the
game is worth your time.

In many ways, Flash is maturing into an ideal platform for
game development. Advances in the Flash Player and the work
the Flash Team at Adobe have put into AIR allow you to perform
almost limitless tasks in Flash. For instance, you can create sim-
ple card games, logic games, or even complex multiplayer games.
In fact, the most popular game on the planet, FarmVille, is written
in Flash. Want to take it up a notch with 3D, no problem. Flash
will handle your 3D worlds just fine.

When you have decided what type of game you want to
develop, the next stage is planning. OK, I know this may not be the
most thrilling part of game design, but it is in many ways the most
important. You simply don’t want to just jump in and begin cod-
ing. With the OOP program structure in AS3, you do need to think
ahead.

With that said, you can break down the structure of your game
into the following sections:
•	 For whom is the game intended?
•	 What type of game is it?
•	 What will the screens of the game look like?
•	 What sounds and visuals do you need for the game?
•	 What is the target device for your game?

Understanding your audience is a big part of game design.
Are you building a game that is for anyone, such as your mother
or aunt, or are you targeting a specific group, such as teen boys
(yeah, we want lots of blood and violence!). Get it down on
paper, in an e-mail, or a tweet, just so you know who you want
buying your game. This will keep your focus through the game
development life cycle. The following screen shot shows a selec-
tion of games available on Apple’s iTunes App Store.

When you know your intended audience, you next need to know
what type of game you want to develop. There are simply loads of
game options for Flash, as mentioned earlier. Some common types
include parlor games (games that can be played and learned in 30
seconds or less); role-playing games, such as FarmVille, where you
can play the game for the rest of your life; and even complex physics
games where you are colliding with objects all over the place.

The reason why you have so many choices when it comes to
game development is simple: ActionScript 3.0 (AS3). The AS3

	 Building Games with Flash for the Mobile Market   183

AVM is simply very powerful and gives you the opportunity to flex
your programming muscles.

Screen design and development is a lot of fun. You will enjoy
this part of your game development. There are lots of ways to
develop your screen; the way I like to approach screen design is
simply to get a notepad, permanent marker, and an open mind.
Draw screens out on the notepad. Scratch out and restart as many
times as needed until you have the designs that make you feel most
comfortable. The objective is to get ideas down on paper.

When you have your ideas on paper you have a choice: either
leave them as draft ideas or flesh them out with greater detail. My
personal preference is to leave them as rough drawings. Tweaks
and modifications can be made later.

Games are multisensory. You will want to ensure that you address
this by adding audio and visual feedback to your audience as they
play your games. It is worth buying some good graphics. Don’t use
clip art—it always looks like you used clip art and looks shoddy.
There are lots of ways of getting sounds. Some of the best
resources are the collections of sounds you can buy from the BBC,
Sony, or Warner Bros. Each company has sound effect files you can
download and use in your project (Figure 5.3).

The final choice you need to make is to decide for which
device you will design your game. Is this an iPad game, an

Figure 5.2  A subselection of iOS
games that target puzzle fans.

184   Building Games with Flash for the Mobile Market

Figure 5.3  A selection of
sound effects organized by
category that the BBC offers.

Android game, or one for the BlackBerry PlayBook? Each device
is different in shape, the speed of the CPU/GPU, and technology.
Flash can handle a lot, but a game for the iPod Touch is going to
look different when run on a tablet.

After you have gone through this process you are now ready to
start developing your game.

Making It Easier to Write Code with Libraries
Code development is a lot of work. Creating simple scripts

takes time. As you can imagine, game development gets even
more complicated. To help you get through this problem you will
want to leverage code libraries. A library is a collection of AS3
classes that perform specific functions: they may be animation,
collision detection, physics, 3D, or more. There are a lot of
libraries you can use.

Before jumping into specific Game Engine libraries, let’s look
at some general code libraries that will help you in your game
development.

	 Building Games with Flash for the Mobile Market   185

There are essentially three groups of libraries you should be
concerned about as a game developer:
•	 Utilities
•	 Animation
•	 3D

This game does not contain more specific game engine tools,
such as physics engines, but we will get to that soon enough. In
many ways, this collection of libraries can be used for any appli-
cation you develop for your mobile device—they all run on AS3.
The news keeps getting better. All of these libraries are free and
open source. You can start using them in your projects right now
without spending a single penny.

Adding a Library to Your Project
Libraries can be added quite easily to your project. Generally,

you will download a library in a single ZIP file. The file will con-
tain a folder or collection of folders with the code. Find your
application folder and include the new library folders in the same
directory.

The next step is to link to the library from your ActionScript
code. The following example demonstrates how you can do
this with GreenSock’s TweenMax animation library. The first
step is to download the AS3 library (Figure 5.4). Depending
on which library you use will depend on where you can find
it. For TweenMax you can go straight to www.greensock.com

Figure 5.4 G reenSock’s
animation library is arguably
the most popular tween tool for
Flash projects.

186   Building Games with Flash for the Mobile Market

and find the link right off the home page. Make sure you select
the AS3 version of TweenMax. As with many libraries, TweenMax
comes in AS2 and AS3 flavors. As we said earlier in this book, AS2
is not supported in mobile devices.

The file you download will be a ZIP folder (Figure 5.5). The
folder contains a lot of content, but most of it is documentation
and you do not need it in your project. What you do need is the
folder called COM. Locate the COM folder and copy it to the same
folder as your Flash project.

What is inside the COM folder? It is all the classes and good-
ness that you need for adding dozens of different types of anima-
tion to your projects. You do not need to add complexity when
you have these classes. For example, the TweenMax class struc-
ture manages all the events, getters/setters, animation types
(there are a lot), layout, loading, data, motion paths, and much,
much more. The following is just one small example of the work
GreenSock has done for you. This is the class library that allows
you to add Elastic animation type to your project:

package com.greensock.easing {
public class Elastic {

private static const _2PI:Number = Math.PI * 2;

Figure 5.5 T he folder structure
for GreenSock’s library.

	 Building Games with Flash for the Mobile Market   187

public static function easeIn (t:Number,
b:Number, c:Number, d:Number, a:Number = 0, p:Number =
0):Number {

var s:Number;
if (t==0) return b; if ((t/=d)==1) return

b+c; if (!p) p=d*.3;
if (!a || (c > 0 && a < c) || (c < 0 && a <

-c)) { a=c; s = p/4; }
else s = p/_2PI * Math.asin (c/a);
return -(a*Math.pow(2,10*(t-=1)) * Math.sin(

(t*d-s)*_2PI/p)) + b;
}
public static function easeOut (t:Number,

b:Number, c:Number, d:Number, a:Number = 0, p:Number =
0):Number {

var s:Number;
if (t==0) return b; if ((t/=d)==1) return

b+c; if (!p) p=d*.3;
if (!a || (c > 0 && a < c) || (c < 0 && a <

-c)) { a=c; s = p/4; }
else s = p/_2PI * Math.asin (c/a);
return (a*Math.pow(2,-10*t) * Math.sin(

(t*d-s)*_2PI/p) + c + b);
}
public static function easeInOut (t:Number,

b:Number, c:Number, d:Number, a:Number = 0, p:Number =
0):Number {

var s:Number;
if (t==0) return b; if ((t/=d*0.5)==2)

return b+c; if (!p) p=d*(.3*1.5);
if (!a || (c > 0 && a < c) || (c < 0 && a <

-c)) { a=c; s = p/4; }
else s = p/_2PI * Math.asin (c/a);
if (t < 1) return -.5*(a*Math.pow(2,10*(t-=1))

* Math.sin((t*d-s)*_2PI/p)) + b;
return a*Math.pow(2,-10*(t-=1)) * Math.sin(

(t*d-s)*_2PI/p)*.5 + c + b;
}

}
}

That is a lot of complex code. And you do not need to write it. To
get this type of animation into your project you simply need to refer-
ence the library, its exposed classes, and add it to your own project.

To do this, you will need to save a Flash Professional file into
the same directory as your library, the folder with the COM folder.

Open the Actions panel and add the following:

import com.greensock.TweenMax;

This command will import that TweenMax class. In turn, the
TweenMax class will then import all the other Class files and
allow you to add them to your project.

188   Building Games with Flash for the Mobile Market

Now, let’s see how easy it is to add the Elastic animation to
your project.

Create a simple drawing in Flash and convert it into a movie
clip instance. Name the instance myAnimation. Place the
movie clip in the center of the stage. The objective will be to use
the Elastic animation sequence to add animation to move the
movie clip named myAnimation into the top left-hand corner.

In the Actions panel add the following:

TweenMax.to(myAnimation, 1, {x:0, y:0, ease:Elastic.
easeIn});

Test your animation. Your animation should now work using
just two lines of code.

As you can see, libraries can dramatically reduce the amount
of work needed to add core functionality.

Working with Utility Libraries
A utility is a tool that performs a function that is under the

hood. This group includes data control, security, and other func-
tions that the user does not see.

Using AS3CoreLib
The first library you will want to use is AS3CoreLib (Figure 5.6).

The library is written by some of the leading Flash evangelists—
Mike Chambers, Christian Cantrell, Tinic Uro, et al.—and covers Figure 5.6  AS3CoreLib contains

many core assets for your
projects.

	 Building Games with Flash for the Mobile Market   189

some very important behind-the-scenes features around security.
AS3CoreLib allows you to easily leverage the following in your
code:
•	 MD5 hash
•	 SHA1 hash
•	 JSON library (serialization and deserialization)
•	 JPEG and PNG encoding
•	 HTTP Utility and Helper Classes
•	 Array, String, Date, Number, and XML Utility APIs

The AS3CoreLib can be downloaded at http://github.com/
mikechambers/as3corelib.

Using AS3Crypto
As the name suggests, AS3Crypto is a library designed to add

ways in which you can encrypt your data coming in and out of
Flash (Figure 5.7). This library includes the ability to connect with
SSL. The list of supported cryptography is very impressive. You
can use the following:
•	 Protocols: TLS 1.0 support (partial)
•	 Certificates: X.509 Certificate parsing and validation, built-in

Root CAs

Figure 5.7 L everage powerful
encryption tools in your apps.

190   Building Games with Flash for the Mobile Market

•	 Public key encryption: RSA (encrypt/decrypt, sign/verify)
•	 Secret key encryption: AES, DES, 3DES, BlowFish, XTEA, RC4
•	 Confidentiality modes: ECB, CBC, CFB, CFB8, OFB, CTR
•	 Hashing algorithms: MD2, MD5, SHA-1, SHA-224, SHA-256
•	 Paddings available: PKCS#5, PKCS#1 type 1 and 2
•	 Other useful stuff: HMAC, Random, TLS-PRF, some ASN-1/

DER parsing
The library can be downloaded at http://code.google.com/p/

as3crypto/.
One note of caution when building iOS apps with cryptogra-

phy: You must ensure that you declare what type of cryptography
you are using when you submit your app to the App Store. If you
do not, Apple will reject your app.

Using AS3eBayLib
The AS3eBayLib allows you to easily connect to eBay’s public

XML API files. This allows you to create novel and unique experi-
ences with eBay’s massive amount of content and ecommerce.

You can download the library (Figure 5.8) at http://code.google
.com/p/as3ebaylib/.

Figure 5.8  Add the eBay Store
to your site.

	 Building Games with Flash for the Mobile Market   191

Using PureMVC
Model View Controller (MVC) is a classic architecture (Figure

5.9) where you separate all elements of your code, UI, and data.
Typically, if you are writing Class files and using XML, then you
are indirectly doing this in Flash already. But, you can always do
better. This set of classes forces a set of best practices when using
MVC in your development.

You can download the code at http://puremvc.org/.

Using Yahoo! ASTRA
ASTRA (Figure 5.10) is a collection of tools, web APIs, and

more. With ASTRA you can easily build solutions that tap into
Yahoo’s Web Services such as Answers and Weather.

You can download the code at http://developer.yahoo.com/flash/.

Using Animation Libraries
The following represent some of the most popular animation

libraries. The goal of each library is to simply make animation
much easier. Earlier you have seen how TweenMax reduced hun-
dreds of lines of code down to just two. The following are all built
on this principle.

Figure 5.9 M VC is a model
for developing applications.
PureMVC helps guide your
development to support the
MVC model.

192   Building Games with Flash for the Mobile Market

Using GreenSock’s TweenMax, TweenLite, and TweenNano
GreenSock could almost have its own subcategory when it

comes to animation. In addition to TweenMax, GreenSock also
has TweenLite and TweenNano. The big difference between the
different animation libraries is functionality versus file size.

For instance, you can do crazy animations in TweenMax that
you cannot do in TweenNano—but, the TweenNano file will be
much smaller. Size is a big factor when you are building apps.

In addition to the core animation solutions you get with
TweenMax and TweenLite, you can also extend both of these
libraries with custom plug-ins (Figure 5.11). The list is crazy long.
Here are some of the animation techniques you can perform:
•	 Filters
•	 Hex colors
•	 Volume
•	 Tint
•	 Frames
•	 Saturation
•	 Contrast
•	 Hue
•	 Colorization
•	 Brightness

Figure 5.10  Yahoo! ASTRA
allows you to add components,
data sources, and social
integration into your apps.

	 Building Games with Flash for the Mobile Market   193

•	 Bezier tweening
•	 OrientToBezier
•	 Round values
•	 Jump to any point in the tween with the currentTime or cur-

rentProgress property, and automatically rotate in the shortest
direction
The list goes on and on! The list of plug-ins is equally long.

I know, crazy isn’t it?
You can download all this animation goodness at the following

web address: www.greensock.com/.

Using KitchenSync
KitchenSync is a versatile animation library (Figure 5.12). The

thing I like about KitchenSync is that it hosts its documentation
on Wonderfl.net. Wonderfl.net is great for showing and sharing
AS3 code because you can play around with the code and see
what it does right in your web page.

KitchenSync is downloaded and installed exactly the same as
any other library. The following example builds a Sprite that you
then animate in a simple tween:

KitchenSync.initialize(this);
ar sprite:Sprite = new Sprite();

Figure 5.11 G reenSock gives
you access to dozens of
different animation and tween
tools.

194   Building Games with Flash for the Mobile Market

Figure 5.12 K itchenSync is a
more advanced tween library.

sprite.graphics.beginFill(0);
sprite.graphics.drawRect(10, 10, 25, 25);
addChild(sprite);
new KSSimpleTween (sprite, “x”, 0, 400, 3000, 500,

Cubic.easeInOut).start();

There is more code here than with TweenMax, but KitchenSync
does get the job done the same way.

You can download KitchenSync at http://code.google.com/p/
kitchensynclib/.

Using AS3 Animation System 2.0
When you get a little more comfortable with animation, you

will reach a point where you want to do more complex work.
This is where you will want to turn to AS3 Animation System 2.0
(Figure 5.13). Animation System is designed for developers to gain
tighter control over virtual timelines and animation sequences.
As a game developer you will need this.

The following example demonstrates how you create Sprites,
animation paths, and timelines controls all through script.
Nothing is added to the main FLA file.

Start by downloading the files and copying the COM folder
into the same folder as your project.

	 Building Games with Flash for the Mobile Market   195

Open Flash Professional and save an FLA to the same folder as
the COM object.

In Flash set the FLA class to point to SequenceValueMapExample.
A blank Class file will open. The first step is to import all the classes
you will use:

package
{

import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.MouseEvent;
import com.boostworthy.animation.easing.

Transitions;
import com.boostworthy.animation.rendering.

RenderMethod;
import com.boostworthy.animation.sequence.

Timeline;
import com.boostworthy.animation.sequence.tweens.

AdvancedTween;
import com.boostworthy.animation.sequence.tweens.

PathTween;
import com.boostworthy.core.Global;
import com.boostworthy.geom.Path;

Figure 5.13  AS3 Animation
System 2.0 is an advanced
animation library tool for
advanced developers.

196   Building Games with Flash for the Mobile Market

The following setting controls the size of the stage, frame rate
and color.

[SWF(backgroundColor=“#111111”, frameRate=“15”,
width=“480”, height=“800”)]

Next, you configure the color, width, and height of the box Sprite:

protected const BOX_COLOR:uint = 0x006666;
protected const BOX_WIDTH:Number = 60;
protected const BOX_HEIGHT:Number = 60;

Now configure the color and radius of a circle Sprite:

protected const CIRCLE_COLOR:uint = 0x006666;
protected const CIRCLE_RADIUS:Number = 5;

Now you need to set up the timeline and the method to refer-
ence the Sprites. We are not going to go too far into the details as
you can get a lot more information from the website, which tells
you how much control you have:

protected var m_objTimeline:Timeline;
protected var m_spGraph:Sprite;
protected var m_spBox:Sprite;
protected var m_spCircle:Sprite;
protected var m_objPath:Path;

Now you can set up the Event Handlers. Here the events are
mouse-driven, but as mentioned earlier, this works just fine in
simple touch-driven solutions.

public function SequenceValueMapExample()
{
init();
}
protected function onMouseDown(objEvent:MouseEvent):void
{
m_objTimeline.play();
}
protected function onMouseUp(objEvent:MouseEvent):void
{
m_objTimeline.playReverse();
}
protected function init():void
{
setDefaultValues();
Global.stage = stage;
m_objTimeline = new Timeline(RenderMethod.TIMER, 60);
createAnimationGraph();
createBox();
createCircle();
createAnimation();
stage.addEventListener(MouseEvent.MOUSE_DOWN,

onMouseDown);

	 Building Games with Flash for the Mobile Market   197

stage.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
}
protected function setDefaultValues():void
{
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;
}

The following code creates all the visuals for your animation:

protected function createBox():void
{
m_spBox = new Sprite();
m_spBox.name = “m_spBox”;
m_spBox.graphics.beginFill(BOX_COLOR);
m_spBox.graphics.drawRect(-BOX_WIDTH / 2, -BOX_HEIGHT / 2,

BOX_WIDTH, BOX_HEIGHT);
addChild(m_spBox);
m_spBox.x = Math.floor(stage.stageWidth / 2);
m_spBox.y = Math.floor(stage.stageHeight / 2) + 50;
}
protected function createCircle():void
{
m_spCircle = new Sprite();
m_spCircle.name = “m_spCircle”;
m_spCircle.graphics.beginFill(CIRCLE_COLOR);
m_spCircle.graphics.drawCircle(0, 0, CIRCLE_RADIUS);
m_spGraph.addChild(m_spCircle);
m_spCircle.x = m_objPath.start.x;
m_spCircle.y = m_objPath.start.y;
}

Up to this point you have been setting up core functionality.
Now you can add animation.

protected function createAnimationGraph():void
{
m_spGraph = new Sprite();
var nY:Number = Math.floor(stage.stageHeight / 4);
m_objPath = new Path();
m_objPath.moveTo(0, nY);
m_objPath.curveTo(30, nY - 50, 60, nY);
m_objPath.curveTo(90, nY + 50, 120, nY);
m_objPath.curveTo(180, nY - 100, 240, nY);
m_objPath.curveTo(270, nY + 50, 300, nY);
m_objPath.curveTo(330, nY - 50, 360, nY);
var objGraphics:Sprite = new Sprite();
objGraphics.graphics.lineStyle(1, 0x555555);
m_objPath.draw(objGraphics.graphics);
m_spGraph.addChild(objGraphics);
m_spGraph.x = Math.floor(stage.stageWidth / 2 - m_

spGraph.width / 2);
addChild(m_spGraph);

198   Building Games with Flash for the Mobile Market

}
protected function createAnimation():void
{
m_objTimeline.addTween(new PathTween(m_spCircle,

m_objPath, false, m_objPath.start.x, m_objPath.end.x,
Transitions.SINE_IN_AND_OUT));

m_objTimeline.addTween(new AdvancedTween(m_spBox,
“width”, m_objPath, Transitions.SINE_IN_AND_OUT));

m_objTimeline.addTween(new AdvancedTween(m_spBox,
“height”, m_objPath, Transitions.SINE_IN_AND_OUT));

}
}
}

As you can see, AS3 Animation Studio gives you a lot of control
that other animation programs do not offer.

You can download the code at www.boostworthy.com/blog/
?p=170.

Adding 3D to Apps
There are several very popular 3D libraries for Flash (Figure

5.14). Can you use them in your projects? Yes, but with caution.
Technically, each of these engines will render 3D Flash on your
phone but the results will not be good.

Figure 5.14  3D can be added
to Flash. The website for
PaperVision3D’s daily sample
will provide you with some
inspiration.

	 Building Games with Flash for the Mobile Market   199

3D requires a lot of GPU assistance and phones are strug-
gling to get that kind of power when running Flash. That is
likely to change as AIR 2.5 is more tightly integrated into the
GPU, but for now, use 3D with caution.

Using PaperVision3D
Arguably, the granddaddy of 3D libraries for Flash is

PaperVision3D. You will see that many of the game engines cov-
ered later in the chapter use PaperVision3D as their core 3D
engine (Figure 5.15).

There is a simple reason for PaperVision3D’s popularity: it is
very complete in its execution. With PaperVision3D you create
real 3D worlds that can import 3D Collada objects. The following
example demonstrates a spinning 3D cube with a loaded external
Collada object. Collada is a standard 3D file type. Out of the box,
Flash does not support Collada, but with a little PaperVision3D
love you now can load these files.

The first step is to create the Flash project and link it to the
following class:

package com.dehash.pv3d.examples.dae {
Figure 5.15  www.
optuswhalesong.com.au/
uses 3D from PaperVision to
create an interactive Whale
Song game.

200   Building Games with Flash for the Mobile Market

Next, import all the PaperVision3D class libraries. Remember
you need to keep the libraries in the same folder as the Flash
project. In this instance, the library does not start with COM, but
with ORG.

import org.papervision3d.objects.parsers.Collada;
import org.papervision3d.view.BasicView;
import org.papervision3d.events.FileLoadEvent;
import flash.events.Event;

The following code defines the size of the Flash viewport. In
this instance, the settings are set for Android:

[SWF(width=“480”, height=“800”,
backgroundColor=“0x000000”)]

public class CubeDemo extends BasicView {
The following will import the Collada object you need:
private var cube:Collada;
public function DaeCubeDemo(viewportWidth:Number = 480,

viewportHeight:Number = 800,
scaleToStage:Boolean=true, interactive:Boolean=false,

cameraType:String=“CAMERA3D”)
{
super(viewportWidth, viewportHeight, scaleToStage,

interactive, cameraType);

Here, the Collada object is a simple square:

cube = new Collada(“cube.dae”, null, 2, true);

The following are events to control loading the Collada cube:

cube.addEventListener(FileLoadEvent.COLLADA_MATERIALS_
DONE, colladaMaterialsDoneHandler, false, 0, true);

cube.addEventListener(FileLoadEvent.LOAD_COMPLETE,
loadCompleteHandler, false, 0, true);

cube.addEventListener(FileLoadEvent.LOAD_ERROR,
loadErrorHandler, false, 0, true);

cube.addEventListener(FileLoadEvent.LOAD_PROGRESS,
loadProgressHandler, false, 0, true);

cube.addEventListener(FileLoadEvent.SECURITY_LOAD_
ERROR, securityLoadErrorHandler, false, 0, true);

renderer.renderScene(scene, camera, viewport);
}

The following will control how the cube moves in the screen
and the position of the camera to view the cube:

protected override function onRenderTick(event:Event =
null):void {

cube.yaw((mouseY-(stage.stageHeight/2))/(stage.
height/2)*5);

cube.roll((mouseX - (stage.stageWidth/2))/(stage.width
/ 2) * -5);

	 Building Games with Flash for the Mobile Market   201

renderer.renderScene(scene, camera, viewport)
}
private function securityLoadErrorHandler(event:FileLoad

Event):void {
}
private function loadProgressHandler(event:FileLoadEvent)

:void {
}
private function loadErrorHandler(event:FileLoadEvent)

:void {
}
private function loadCompleteHandler(event:FileLoadEvent)

:void {
}
private function colladaMaterialsDoneHandler(event:File

LoadEvent):void {
The following adds the loaded cube onto the screen:
scene.addChild(cube);
this.startRendering();
}
}
}

You can download PaperVision3D (Figure 5.16) at http://
papervision3d.googlecode.com/. svn/trunk/as3/trunk Figure 5.16  PaperVision is an

open source project.

202   Building Games with Flash for the Mobile Market

Additional 3D Libraries You Can Use
PaperVision3D is not the only game in town. You can also use

Sandy 3D Engine and Away3D (Figure 5.17). Both frameworks are
very good and build on the success of PaperVision3D. You can
download these frameworks here:
•	 Sandy 3D Engine: www.flashsandy.org/
•	 Away 3D: http://away3d.com/

My personal preference right now is Away3D, but these
engines keep leap-frogging each other. Make sure you keep you
eyes open to what these engines can provide you.

Creating 3D Objects
There is no good using 3D if you can’t import your own 3D

models. Fortunately there is a company that has your back:
Electric Rain (www.erain.com) (Figure 5.18).

Electric Rain specializes in creating tools that make develop-
ing 3D very easy. The latest release of Swift 3D, its Flash 3D mod-
eling tool, allows you to export your 3D models as true Collada
files. Just open PaperVision 3D and bring that puppy into your
project and you are good to go.

Figure 5.17  Away3D is a rapidly
maturing framework for 3D
on the web and your mobile
devices.

	 Building Games with Flash for the Mobile Market   203

Using Game Engines
A fast way to get started in game development is to work with

established game engines. This allows you to focus on the game
instead of learning how to write a physics engine for each game.
There are several classes of game libraries you can use. They are
broken down into the following:
•	 2D game environments
•	 Social network integration
•	 Full game environments

I have intentionally kept 3D game engines out of this group
due to performance issues. At the time of writing this book, there
is a lot of rumor and speculation that Adobe will address the issue
of 3D performance in mobile apps, but it is not there yet.

Working in 2D
Many successful games on the web built with Flash start in 2D,

as shown in the FarmVille screen shot below. This is an area that
you will also want to focus on with mobile game development for
a simple reason: 2D processes faster than 3D. To this end, games
where you realistically bump into stuff, like ragdoll or canon
games, dominate this category. There are some great 2D game
engines you can leverage.

Figure 5.18 E lectric Rain’s Swift
3D comes packed with Paper-
Vision and Collada support.

204   Building Games with Flash for the Mobile Market

Using Box2DAS3 for Physics
There is a great physics engine for your games that you can

use for free. It is called Box2DAS3 (Figure 5.20). The framework
is based on the Java project called Box2D, and it is awesome.
Realistic Physics is difficult to accomplish in games: you have
objects colliding with each other; gravity affects the objects, and
each object can have a different density and elasticity. In other
words, there is a lot of number crunching.

Box2DAS3 is comprised of a number of key classes, including
Common, Collision, and Dynamics.
•	 The Common library is a collection of utility files such as color

and settings you need for your Box2DAS3 projects.
•	 The Collision collection controls the different ways in which

objects can hit each other, such as distance, time of impact,
and bounding area.

•	 Dynamics allows you to add joints to a collection of objects to
create ragdoll-like objects.
Throw all these together and you have a powerful platform for

game development.
You are not going to get a detailed analysis of game devel-

opment with Box2DAS3 here, but I will step through a simple
project to illustrate how you can add physics into your game.

Figure 5.19  FarmVille’s
technology can be ported to
Android and iOS devices very
easily.

	 Building Games with Flash for the Mobile Market   205

As with previous libraries, the code is contained in a Class file
associated with the FLA. Start by opening a new Flash movie and
associating a Class file called HelloWorld. In addition, you will
want to have the Box2D folder in the same folder as your project.

The objective of the HelloWorld Box2DAS3 project is to dem-
onstrate a simple environment that contains physics.

Let’s jump into the Class file.
The first step is to import all the Class files you will use in this

project. Here you will see all the Box2D Class files being imported
into your project:

package{
import flash.display.Sprite;
import flash.events.Event;
// Classes used in this example
import Box2D.Dynamics.*;
import Box2D.Collision.*;
import Box2D.Collision.Shapes.*;
import Box2D.Common.Math.*;
public class HelloWorld extends Sprite{
public function HelloWorld(){

Below is the event loop that adds new content into the project:

addEventListener(Event.ENTER_FRAME, Update, false, 0, true);

Figure 5.20  Physics is an
important element of any game.
Box2DAS3 is a mature platform
for ragdoll physics.

206   Building Games with Flash for the Mobile Market

BOX2D creates a world in which you place your objects. The
following sets the lower and upper boundaries of the game:

var worldAABB:b2AABB = new b2AABB();
worldAABB.lowerBound.Set(-100.0, -100.0);
worldAABB.upperBound.Set(100.0, 100.0);

The following value defined the gravity you use in your game.
A value of 0.0 is equal to Earth gravity. Changing this value will
add some interesting game physics.

var gravity:b2Vec2 = new b2Vec2(0.0, 10.0);
// Allow bodies to sleep
var doSleep:Boolean = true;

The following code allows you to construct a world object:

m_world = new b2World(worldAABB, gravity, doSleep);

The following variables are used for the objects that are on the
stage:

var body:b2Body;
var bodyDef:b2BodyDef;
var boxDef:b2PolygonDef;
var circleDef:b2CircleDef;

The following code adds the values for the ground:

bodyDef = new b2BodyDef();
bodyDef.position.Set(10, 12);
boxDef = new b2PolygonDef();
boxDef.SetAsBox(30, 3);
boxDef.friction = 0.3;
boxDef.density = 0;

Now you get to add the Sprite to the physical environment:

bodyDef.userData = new PhysGround();
bodyDef.userData.width = 30 * 2 * 30;
bodyDef.userData.height = 30 * 2 * 3;
addChild(bodyDef.userData);
body = m_world.CreateBody(bodyDef);
body.CreateShape(boxDef);
body.SetMassFromShapes();
// Add some objects
for (var i:int = 1; i < 10; i++){

bodyDef = new b2BodyDef();
bodyDef.position.x = Math.random() * 15 + 5;
bodyDef.position.y = Math.random() * 10;
var rX:Number = Math.random() + 0.5;
var rY:Number = Math.random() + 0.5;

The following code defines the physical characteristics of the
box shapes that fall onto the stage:

if (Math.random() < 0.5){
boxDef = new b2PolygonDef();
boxDef.SetAsBox(rX, rY);

	 Building Games with Flash for the Mobile Market   207

boxDef.density = 1.0;
boxDef.friction = 0.5;
boxDef.restitution = 0.2;
bodyDef.userData = new PhysBox();
bodyDef.userData.width = rX * 2 * 30;
bodyDef.userData.height = rY * 2 * 30;
body = m_world.CreateBody(bodyDef);
body.CreateShape(boxDef);

}

Now you need to define the circle objects that will fall on the
stage. Notice in the following description you can set the density,
radius, and friction level of the circles. Here the values are con-
stant, however you could easily set up the values to be dynamic
using a little math logic.

else {
circleDef = new b2CircleDef();
circleDef.radius = rX;
circleDef.density = 1.0;
circleDef.friction = 0.5;
circleDef.restitution = 0.2
bodyDef.userData = new PhysCircle();
bodyDef.userData.width = rX * 2 * 30;
bodyDef.userData.height = rX * 2 * 30;
body = m_world.CreateBody(bodyDef);
body.CreateShape(circleDef);

}
body.SetMassFromShapes();
addChild(bodyDef.userData);
}
}
public function Update(e:Event):void{

m_world.Step(m_timeStep, m_iterations);

The following will run through the code and update the posi-
tion of the objects on the screen. It is this section of code that
forces you to have fewer objects being animated for a mobile
device. This will chew up your CPU cycles.

for (var bb:b2Body = m_world.m_bodyList; bb; bb = bb.m_
next){

if (bb.m_userData is Sprite){
bb.m_userData.x = bb.GetPosition().x * 30;
bb.m_userData.y = bb.GetPosition().y * 30;
bb.m_userData.rotation = bb.GetAngle() * (180/Math.PI);
}
}
}
public var m_world:b2World;
public var m_iterations:int = 10;
public var m_timeStep:Number = 1.0/30.0;
}
}

208   Building Games with Flash for the Mobile Market

Now you can test your movie on your device. Voilà! Physics in
action!

As with any animation library you use for a mobile device, be
careful how much action is happening on the screen at once. The
previous example has a small collection of objects colliding with
each other. If you have more than 15 objects on the screen at once
then you will see the frame rate of your game drop from 20 down to
one or two per second. This will obviously change as more powerful
phones and tablets reach the market, but for now, beware.

You can download Box2DAS3 at http://box2dflash.sourceforge
.net/.

Verlet Physics Engine
From the same developer who brought you Box2DAS3 comes

a Verlet physics engine, a tool you can use to create ragdoll-like
physics.

The engine is fully documented with the source code available
at http://code.google.com/p/ape/.

Adding Physics to Your 3D Worlds
Physics is not simply the realm of 2D—you can bring it to

3D, too. JigLib for Flash is arguably the best physics engine that
integrates with 3D tools such as PaperVision and Away3D. but
be warned, the solutions are very CPU intensive. Test and refine
your code frequently to enable the games to run smoothly on an
iPhone or Android device.

You can download JigLib from www.jiglibflash.com/blog/
source/.

Making Your Games Social
Have you heard of FarmVille? More likely, who hasn’t? At

last check, FarmVille has more players than registered users of
Twitter—77+ million players. How nuts is that?

It is clear that social network is a big deal for game develop-
ment. You need your game to connect to social networks to allow
game players to promote your game for you.

Good thing this can be done in ActionScript.

Adding Facebook to Your Games
Adobe partnered with Facebook to develop Open Source

Flash classes that enable you to connect your Flash games to the
Facebook platform. Adobe has done a great job integrating Flash
into Facebook. You can do a lot with it.

The following example is one of the most basic: connecting
Flash with Facebook to show your friends. Sounds simple but it is
important.

Note

You will need to
be registered as a
Facebook developer

for the example to work.

	 Building Games with Flash for the Mobile Market   209

The structure of the Class file should be very familiar to you by
now. You will need to create a Flash project and, in the Properties
panel, associate a class with the following code. In this case, the
class is called FriendList.

The first step is to import all the libraries you will need. As with
Box2DAS3 and GreenSock’s animation libraries, you will need to
place all the library files for the project into the same folder.

Let’s step through Adobe’s basic example of integrating Flash
with Facebook. The first step is importing all the Class files:

package {
import com.facebook.graph.net.FacebookRequest;
import com.facebook.graph.utils.FacebookDataUtils;
import fl.controls.ScrollBar;
import fl.controls.TextArea;
import fl.data.DataProvider;
import fl.text.TLFTextField;
import flash.display.MovieClip;
import flash.display.NativeWindow;
import flash.display.NativeWindowInitOptions;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;
import flashx.textLayout.factory.TextLineFactoryBase;
import flash.display.Loader;
import flash.net.URLRequest;
import com.facebook.graph.controls.Distractor;
import fl.events.ListEvent;
import com.facebook.graph.FacebookDesktop;

When you have imported the Class files you will want to cre-
ate a DataProvider object to hold the Friend List data you receive
from Facebook. The following creates a new dp variable that will
be your DataProvider object.

public class FriendList extends MovieClip {
protected var dp:DataProvider;

Next, define the window where the data will be displayed:

protected var win:NativeWindow;

The following is a public function named FriendList. You will
use this in conjunction with the DataProvider to create the dis-
play on the screen, and assign the content correctly:

public function FriendList() {
dp = new DataProvider();

210   Building Games with Flash for the Mobile Market

There are two buttons on the screen, loginBtn and logOutBtn,
that allow you to connect to Facebook. The following two listen-
ers are associated with the two buttons:

loginBtn.addEventListener(MouseEvent.CLICK,
handleLoginClick, false, 0, true);

logOutBtn.addEventListener(MouseEvent.CLICK,
handleLogOutClick, false, 0, true);

In addition to the two buttons, you have a List component on
the stage named friendList. The objective of this list is to display
the data you receive from Facebook:

friendList.labelField = “name”;
friendList.addEventListener(ListEvent.ITEM_CLICK,

handleListChange, false, 0, true);
detailsBtn.addEventListener(MouseEvent.CLICK,

handleDetailsClick, false, 0, true);

The following code block is essential in connecting to
Facebook. This is where you add your developer application ID.
You will need to review Facebook’s API instructions to acquire an
Application ID. When you do, replace APPLICATION_ID in the
following ActionScript with your ID. Without it, your code will not
work.

FacebookDesktop.init(‘APPLICATION_ID’, handleLogin);
}

The following two functions are associated with the two but-
tons to log you in or out of Facebook:

protected function handleLoginClick(event:MouseEvent):
void {

FacebookDesktop.login(handleLogin);
}
protected function handleLogOutClick(event:MouseEvent)

:void {
FacebookDesktop.logout();
resetUI();
}

The following function creates a new button that will be used
in a modeless window when you log in.

protected function resetUI():void {
loginBtn.label = ‘Login’;
loginBtn.enabled = true;
detailsBtn.label = ‘Show details’;
detailsBtn.setSize(100, 22);
dp.removeAll();
friendList.dataProvider = dp;
}

	 Building Games with Flash for the Mobile Market   211

The following ActionScript informs you that you are “logged
in” to Facebook:

protected function handleLogin(response:Object,
fail:Object):void {

if (response) {
loginBtn.label = ‘You are logged in.’;
loginBtn.enabled = false;
detailsBtn.enabled = false;
loadFriends();
}
}

The next block of code loads the data you receive from
Facebook into Flash. Notice that you are stepping through an
XML tree structure. You are targeting the repeating values in the
XML group called friends:

protected function loadFriends():void {
FacebookDesktop.api(‘/me/friends’, handleFriendsLoad);
}

The following code is used to manage a failure in the code:

protected function handleFriendsLoad(response:Object,
fail:Object):void {

if (fail) { return; }
dp.removeAll();

Now that you have all the data from your “friends,” you can
post that data into an Array. In turn, that Array can post the data
into the dp DataProvider.

var friends:Array = response as Array;
var l:int = friends.length;
for (var i:int=0; i < l; i++) {
dp.addItem(friends[i]);
}
friendList.dataProvider = dp;
}

Values can be selected from the List Component. The follow-
ing ActionScript will enable the detailsBtn to display additional
details from a friend:

protected function handleListChange(event:ListEvent):void {
detailsBtn.enabled = true;
detailsBtn.label = ‘Show details ’ + event.item.name;
var w:Number = 150 + (detailsBtn.label).length;
detailsBtn.setSize(w, 22);
}
protected function handleDetailsClick(event:MouseEvent)

:void {

212   Building Games with Flash for the Mobile Market

if (!friendList.selectedItem) { return; }
FacebookDesktop.api(‘/’+friendList.selectedItem.id,

handleDetailsLoad);
}

The following script creates a new text box to display the
friend details. Notice that the TextFormat option has been used
to define the presentation of the text:

protected function handleDetailsLoad(response:Object,
fail:Object):void {

var df:TextFormat = new TextFormat(‘_sans’, 12);
var tf:TextField = new TextField();
tf.autoSize = TextFieldAutoSize.LEFT;
tf.defaultTextFormat = df;
var textToDisplay:Array = [];
var d:Object = response;
for (var n:String in d) {
var displayValue:Object = d[n];

The following switch statement allows you to change your
update status:

switch (n) {
case ‘updated_time’:
displayValue = FacebookDataUtils.

stringToDate(displayValue as String); break;
case ‘work’:
case ‘hometown’:
case ‘location’:
displayValue = objectToString(displayValue); break;
case ‘education’:
displayValue = arrayToString(displayValue as Array);

break;
}
textToDisplay.push(n + ‘: ’ + displayValue);
}
tf.text = textToDisplay.join(‘\n’);
tf.x = 200;
var init:NativeWindowInitOptions = new

NativeWindowInitOptions();
The following loads the Facebook logo into your app:
var img:Loader = new Loader();
var imgURL:String = FacebookDesktop.getImageUrl(d.id,

‘large’);
var distractor:Distractor = new Distractor();
distractor.text = ‘loading’;
img.load(new URLRequest(imgURL));
img.contentLoaderInfo.addEventListener(Event.COMPLETE,

onImageReady, false, 0, true);

	 Building Games with Flash for the Mobile Market   213

A modeless pop-up window is used to allow you to enter your
Facebook credentials. The following creates this window. Again,
you are using the same standard ActionScript you have been
applying throughout this book:

win = new NativeWindow(init);
win.width = 600;
win.height = tf.textHeight + 120;
win.stage.scaleMode = StageScaleMode.NO_SCALE;
win.stage.align = StageAlign.TOP_LEFT;
win.stage.addChild(tf);
win.stage.addChild(img);
win.stage.addChild(distractor);
win.activate();
}

The following adds the Facebook logo into the new window:

protected function onImageReady(event:Event):void {
win.stage.removeChildAt(win.stage.numChildren-1);
}

The final two functions push the value you captured in your
Arrays (the data holding the details information on a friend) to
the new modeless window.

protected function objectToString(value:Object):
String {

var arr:Array = [];
for (var n:String in value) {
arr.push(n + ‘: ’ + value[n]);
}
return ‘\n\t’ + arr.join(‘\n\t’);
}
protected function arrayToString(value:Array):

String {
var arr:Array = [];
var l:uint = value.length;
for (var i:uint=0;i<l;i++) {
arr.push(objectToString(value[i]));
}
return arr.join(‘\n’);
}
}
}

There is a lot more you can do with Facebook integration with
ActionScript. This is just a taste to get you excited.

To get all the code, jump over to http://code.google.com/p/
facebook-actionscript-api/ as shown in the screen shot below.

214   Building Games with Flash for the Mobile Market

Adding Leader Board Services with MochiAds
It is not good getting the highest score in a game if you can-

not tell the whole world. MochiAds is the very tool you need to
easily add a leader board service to your games. The concept of
MochiAds is similar to Xbox Live or Apple’s Game Center in that
you have a tool that shows who is doing the best in a game.

You can get all the code and samples on how to integrate
MochiAds at http://mochiland.com/articles/introducing-mochiads-
leaderboards.

Tweeting from Flash
Although FarmVille today has more registered users than

Twitter, it is clear from the growth curve of adoption that Twitter
will be the largest social network on the planet within the next
five years. Its goal is one billion registered users. Ambitious? Yes,
but I think they will do it.

So, with that said, having Twitter in your games it almost as
important as Facebook. It will come as no surprise, then, that
there is a great Open Source AS3 project you can use to build
games that use Twitter. Fancy that? You can get the code at http://
wiki.swfjunkie.com/tweetr.

Figure 5.21 M ake your games
social with Facebook.

	 Building Games with Flash for the Mobile Market   215

As with Facebook, you must register yourself as a developer
with Twitter to use its service and integrate the AS3 code.

Using Full Game Environments
Up to this point, you have seen how you can use third-party

products to help build out what you need to develop a game.
You have not used a single environment, such as Unity, to
build your games. Well, it seems that game development with
Flash is a big deal. There are several companies that are look-
ing to fill the need of providing a complete game environment.

Using PushButtonLabs.com
In my opinion, the current leader of full game development

environments is PushButtonLabs with its PushButton Engine
(PBE) open source game engine (Figure 5.22). It simply has a very
comprehensive set of libraries that allow you to develop complex
games. The games library includes physics engines, animation
engines, game libraries, and more. There is a lot to learn. If you
plan on using PBL then put aside a good chunk of time to learn
how the environment works. It will be worth it.

Figure 5.22  PushButtonEngine
has one of the most complete
game engines you can use for
your projects.

216   Building Games with Flash for the Mobile Market

Download the files from PushButtonLabs and open the
PBFlashCS4Demo (it will work in CS5) to get a flavor of how
these games work. There are a lot of libraries used in PushButton
Engine games. You are importing the following classes:
•	 Box2D (yes, the same Box2DAS3 used earlier in the chapter)
•	 A specialized animation class
•	 Core engine
•	 Sprite management
•	 2D rendering
•	 Class objects for the game

Getting Started with PushButtonEngine
PushButtonLabs’ PushButtonEngine is a game engine. What

that infers is that the code does a lot ! Physics, interaction, ani-
mation styles, level logic and more are built into PBE. Leveraging
additional Open Source projects, such as Box2D, you have the
tools needed for your game environment. PBE does a huge
amount of the work for you; all that is left is for you to write the
custom code, graphics, and logic specific to your game.

Setup for PBE is not hard for you to do. Let’s go through the
steps for creating a simple “Hello World” solution.

For this demo you are not going to build the final solution
for Android. The reason is simple: When you are running AIR for
Android you cannot see the Output window. It’s a known bug and
Adobe is working on a solution. With that said, we will set up the
whole program as if we were going to build an AIR for Android
solution.
1.	 Start by creating a new Adobe Flash Professional AIR project.
2.	 Save the Flash project as PBEHelloWorld.fla.
3.	 Set the size of the movie to 800 × 480 and with a frame rate of

20 fps.
4.	 Download the latest version of PushButtonEngine from http://

pushbuttonengine.com/.
5.	 Extract the folders and files from the PBE ZIP file and save them

to the same folder as the FLA file. Your folder structure should
look like the following:
•	 PBEHelloWorld.fla
•	 SRC folder
•	 Box2D folder

	 Collision folder containing all the Class files for collision
	 Common folder containing Box2D common Class files

and Math subfolder
	 Dynamics folders containing Class files and Contacts

and Joints subfolder
•	 Br folder

	 Containing subfolders for loading files

	 Building Games with Flash for the Mobile Market   217

•	 Com folder
	 Animation classes
	 Box2d classes
	 Components classes
	 Engine classes
	 Rendering2D classes
	 Screens classes
	 Sound classes
	 Tweaker classes

  6.	 Open the Flash FLA file. Go to the Properties panel and add
a new class. Name the class PBEHelloWorld. Open the Class
file in Flash Professional. The file will look something like
this:

package {
import flash.display.MovieClip;
public class PBEHelloWorld extends MovieClip {

public function PBEHelloWorld() {
// constructor code

}
}

}

  7.	 Save the Flash Class file as PBEHelloWorld.as.
  8.	 You will need to edit the Class file to use PBE. The first action

is to ensure you are importing the correct files into the Class
file. Delete line two in the preceding ActionScript (import
flash.display.MovieClip) and replace it with the following,
the import commands that will import the Class files for
PushButtonEngine into your sample application:

import com.pblabs.engine.PBE;
import com.pblabs.engine.debug.Logger;
import flash.display.Sprite;

  9.	 Modify the public class extension from the original code
(public class PBEHelloWorld extends MovieClip). You will not
actually see anything on the Stage for this example. We are
going to change the extension to the smallest image type, a
Sprite.

public class PBEHelloWorld extends Sprite

10.	 Define the class. Let’s start by declaring a public class:

public class PBEHelloWorld extends Sprite
{

11.	 Declare the static setters for the ViewPort (what you see on
the screen) for width and height:

public static var WIDTH : Number = 800;
public static var HEIGHT: Number = 480;

218   Building Games with Flash for the Mobile Market

12.	 Create the Flash SWF file width, height, and frameRate:

[SWF(width=“800”, height=“480”, frameRate=“20”)]
public function PBEHelloWorld ()
{
//SUPER
super ();

13.	 At the end of this script you will want to run a test that posts
a message to the Output panel. You will need to initialize the
PBE Logger for this action:

PBE.startup(this);

14.	 The final line of script will run a simple message when the
app is run in test/debug mode:

Logger.print(this, “PushButtonEngine wants to say:
Hello World!”);

}}}

15.	 The final step is to save your work in the Class file and test
your movie. The PBE code will load and post a message to the
Output window.

This script might seem like a lot of work to generate a message
to the Output window (after all, you can do the same thing using a
simple “trace” statement), but you have now completed this task
with a full game engine. The next section will step you through
creating the level for a game using XML and PBE. The final sec-
tion on PBE will demonstrate how you can create a Frogger-style
game using PBE.

Creating a Level Configurator in PBE using XML
A key feature you can take advantage of in PushButtonEngine

is the ability to load levels created in readable XML. Following is
an example of how you can do this.

import com.pblabs.animation.AnimatorComponent;
import com.pblabs.box2D.Box2DDebugComponent;
import com.pblabs.box2D.Box2DManagerComponent;
import com.pblabs.box2D.Box2DSpatialComponent;
import com.pblabs.box2D.CircleCollisionShape;
import com.pblabs.box2D.PolygonCollisionShape;
import com.pblabs.engine.PBE;
import com.pblabs.engine.core.LevelManager;
import com.pblabs.engine.resource.Resource;
import com.pblabs.rendering2D.BasicSpatialManager2D;
import com.pblabs.rendering2D.DisplayObjectScene;
import com.pblabs.rendering2D.SimpleSpatialComponent;
import com.pblabs.rendering2D.SpriteSheetRenderer;
import com.pblabs.rendering2D.spritesheet.

CellCountDivider;

	 Building Games with Flash for the Mobile Market   219

import com.pblabs.rendering2D.spritesheet.
SpriteSheetComponent;

import com.pblabs.rendering2D.ui.SceneView;
import com.pblabs.stupidSampleGame.DudeController;
import flash.display.Sprite;
import flash.utils.*;

PushButton Engine makes extensive use of XML to describe
custom elements. Next the ActionScript validates that all the XML
files have loaded correctly:

PBE.registerType(com.pblabs.rendering2D.
DisplayObjectScene);

PBE.registerType(com.pblabs.rendering2D.
SpriteSheetRenderer);

PBE.registerType(com.pblabs.rendering2D.spritesheet.
SpriteSheetComponent);

PBE.registerType(com.pblabs.rendering2D.
SimpleSpatialComponent);

PBE.registerType(com.pblabs.rendering2D.
BasicSpatialManager2D);

PBE.registerType(com.pblabs.rendering2D.spritesheet.
CellCountDivider);

PBE.registerType(com.pblabs.rendering2D.ui.SceneView);
PBE.registerType(com.pblabs.box2D.Box2DDebugComponent);
PBE.registerType(com.pblabs.box2D.

Box2DManagerComponent);
PBE.registerType(com.pblabs.box2D.

Box2DSpatialComponent);
PBE.registerType(com.pblabs.box2D.

PolygonCollisionShape);
PBE.registerType(com.pblabs.box2D.

CircleCollisionShape);
PBE.registerType(com.pblabs.stupidSampleGame.

DudeController);
PBE.registerType(com.pblabs.animation.

AnimatorComponent);

You have all the files loaded into Flash; now you need to ini-
tialize the engine. Time to rock and roll.

PBE.startup(this);

The following scene is set up for an Android phone. You can play
around with the view settings to match the device you are targeting.

var sv:SceneView = new SceneView();
sv.name = “MainView”;
sv.x = 0;
sv.y = 0;
sv.width = 800;
sv.height = 480;
addChild(sv);

220   Building Games with Flash for the Mobile Market

The most important part of the code is the XML document that
describes your world. This is an instance of the LevelManager.
We’ll get into more details about why this is important in a bit:

LevelManager.instance.load(“levelDescriptions.xml”, 1);

The following stops the playback in the timeline:

stop();

You will use XML to develop your games. This gives you an
edge over other game worlds. XML is easy to edit (you just need
Notepad), but XML is also a data source. This means you can load
external XML from a database. Want to create a new world on the
fly? Create a tool that allows the XML to be edited in a web page
and reloaded from the database. Here is an example of a game
level description in XML for PushButtonLabs:

<things version=“1”>
<entity name=“Platform1” template=“Platform”>
<component name=“Spatial”>
<position type=“”>
<x>94</x>
<y>450</y>

</position>
</component>

</entity>
<entity name=“Platform2” template=“Platform”>
<component name=“Spatial”>
<position type=“”>
<x>400</x>
<y>500</y>

</position>
</component>

</entity>
<entity name=“Platform3” template=“Platform”>
<component name=“Spatial”>
<position type=“”>
<x>706</x>
<y>450</y>

</position>
</component>

</entity>
<group name=“Level1Data”>

<objectReference name=“Platform1”/>
<objectReference name=“Platform2”/>
<objectReference name=“Platform3”/>

</group>
</things>

What we have here are descriptions for three platforms on
the screen and their position. You can add many, many more to
create a dynamic platform game. Cool, huh?

	 Building Games with Flash for the Mobile Market   221

You can now run the test game. What you will see is a basic
world with a jumping Sprite. Nothing special, but it does show
you that you do not need to do a lot to get a game started.

The Game Mechanics of a Frogger-Style Game
One of my favorite games in the mid-1980s was Frogger, the

game where you try to rescue a frog by moving him forward and
backward across a road and stream. The mechanics of Frogger
(movement, collision, random enemy generation) are fundamen-
tals for all games. As you would imagine, PBE allows you to tap
into these mechanics.

The following section takes you further into game develop-
ment. What you will be doing is reproducing the core game play
features of Frogger. What you will cover includes:
•	 Leveraging PBE for core game mechanics
•	 Using Flash SWF files to manage visual/audio assets
•	 Extending PBE with your own custom classes
•	 Adding a custom to manage objects on the screen (screen

wrapping, horizontal movement and collision detection)
At this point you will not be adding a scoring mechanism or

life counter. The project covered in the next chapter explores
those features in greater detail.

Getting Started with Your Game Structure
A good starting point for any game is to first sit down and

identify what you are going to accomplish in the game. For the
Frogger-style game, the mechanics come down to the following
story line:
•	 There is a frog.
•	 The frog has to move forward/backward and left/right.
•	 You move the frog from the bottom of the screen to the top.
•	 Blocking your path as you move are enemies moving from left

to right along horizontal paths.
•	 If the frog hits an enemy a sound is played.
•	 You win when the frog is able to get to the top of the screen.

Although this is not much of a story compared to modern
games such as Call of Duty, this story does reveal three core asset
groups:
•	 Visual assets (the drawings)
•	 Audio assets (the sound effects of the game starting and the

frog hitting an enemy)
•	 Game Code (this is where you extend PBE with your own

custom ActionScript)
The visual and audio assets can be shared with a linked library

in Flash. There is nothing new about linked libraries in Flash—they
have been around since Flash 6. But, this does not diminish how
useful they are. For instance, you can now create a single Flash

222   Building Games with Flash for the Mobile Market

movie that contains all the assets for your project, save the file,
and merely link to objects in the library. This allows you to keep
your elements all separate. You will appreciate the modular
approach to development as your games become more complex.

Before jumping in and creating the core elements of the game,
let’s create the assets.
1.	 Create a folder where you will store the game. Create a

subfolder and name it assets.
2.	 Create a new Flash movie and name it assets.fla.
3.	 Open assets.fla. The assets file will contain only the following

objects:
•	 Visual objects (background, the player, two enemies)
•	 Sounds (start of game, end of game, collision, movement,

sound track)
4.	 The files for assets in the game can be downloaded from the

website. Each asset requires a linking ID. A linkage name can be
created by right-clicking on an item in the library and choosing
Properties; expand the Advanced options section; you will see a
place where you can add an AS name. The AS name is a linking
name. The names for the different objects you want to add are:
•	 BackgroundMC
•	 SmallEnemyMC
•	 BigEnemyMC
•	 PlayerMC
•	 LoseSound
•	 WinSound
•	 MoveSound
•	 SoundTrackSounds

5.	 When you have added the linked IDs to all of your sounds, you
will want to save your Flash file and export the SWF into the
assets folder.
At this point you have created the visual and audio assets for

the game and placed them into a single folder. The next section of
the game will build out the game logic but before we get into that,
let’s create a Class file you can use to create ActionScript variable
names and links. Do this in one place so you do not need to keep
linking back to the original SWF file. The advantage this gives you
is that you can easily modify the Flash assets without having to
rewrite all of your code.
1.	 Let’s start by organizing the file structure. You have already cre-

ated a folder that contains your game with an assets folder;
now create a new subfolder from the main folder to hold the
source files. Name this new folder src; add a common folder
below src for all scripts and name it com. Add a subfolder to
com for your custom code and name it mad, with a projects
subfolder. Your structure should look like this: src\com\mad\
projects\pbflyergame

Note

At the time of this
	 writing, only
	 Android and
BlackBerry PlayBook fully
support AIR 2.5. The
iPhone/iPad running iOS
will not allow you to use
linked libraries. Hopefully,
by the time you are
reading this, Adobe will
have resolved this issue.
Check out the companion
website for updates.

	 Building Games with Flash for the Mobile Market   223

2.	 Open your favorite ActionScript editor, such as Flash Profess
ional, and create a new Class file named PBFlyerGame.as.

3.	 Add the following ActionScript to define a new class. You will
see that the package name follows the same path structure as
the folders you just created:

package com.mad.projects.pbflyergame
{

4.	 You will be adding the PushButtonLabs files in a moment, but
for now let’s pretend you already have, and add an import to
link to the game engine and two core Flash classes:

import com.pblabs.engine.resource.*;
import flash.media.Sound;
import flash.sampler.Sample;

5.	 The following sets up the public classes.

public class PBFlyerGameResources extends ResourceBundle
{

6.	 Earlier you created an SWF file to contain all of your assets. With
PBE you do not need to technically do this (you can link directly
to assets such as PNG or MP3 files) but this technique will work
just fine for us. This link points to the assets folder off the root
of the project:

public static var ASSETS_SWF: String = “assets/assets.swf”;

7.	 The next step is to create variable names for the linked library
instance objects. Here are new variable names for the objects
you created:

public static var MOVIE_CLIP_OBSTACLE_PLAYER: String =
“PlayerMC”;

public static var MOVIE_CLIP_OBSTACLE_BIGENEMY: String =
“BigEnemyMC”;

public static var MOVIE_CLIP_OBSTACLE_SMALLENEMY:
String = “SmallEnemyMC”;

public static var MOVIE_CLIP_BACKGROUND_GAME_SCREEN:
String = “BackgroundMC”;

[Embed(source='../../../../../assets/assets.swf',
symbol='BackgroundMC')]

public static var MOVIE_CLIP_BACKGROUND_INTRO_SCREEN:
Class;

8.	 The next step is to create variable names for the sounds you will
use. The following is the sound that will be played as you move
the main game player across the screen. The sound is created
by linking to the assets.swf file and linking the “MoveSound”
symbol with the new public variable name “MOVE_PLAYER_
SOUND”. This process is repeated for each of the sounds you
will use.

224   Building Games with Flash for the Mobile Market

[Embed(source='../../../../../assets/assets.swf',
symbol='MoveSound')]

private static var MOVE_PLAYER_SOUND_CLASS : Class;
public static var MOVE_PLAYER_SOUND: Sound = new MOVE_

PLAYER_SOUND_CLASS ();

  9.	 The following sound will be used as the background track for
the game:

[Embed(source='../../../../../assets/assets.swf',
symbol='SoundTrackSound')]

private static var SOUNDTRACK_SOUND_CLASS : Class;
public static var SOUNDTRACK_SOUND: Sound = new

SOUNDTRACK_SOUND_CLASS ();

10.	 The following sound is used when you win.

[Embed(source='../../../../../assets/assets.swf',
symbol='SoundTrackSound')]

private static var SOUNDTRACK_SOUND_CLASS : Class;
public static var SOUNDTRACK_SOUND: Sound = new

WIN_SOUND_CLASS ();

11.	 The following sound will play when you lose.

[Embed(source='../../../../../assets/assets.swf',
symbol='LoseSound')]

private static var LOSE_SOUND_CLASS : Class;
public static var LOSE_SOUND: Sound = new LOSE_SOUND_

CLASS ();}
}

12.	 Now you will want to save your new Class file as
PBFlyerGame.as.

At this point you have all the visual and audio elements for the
game. The next bit is the fun part: creating custom Class files to
extend PushButtonEngine.

Creating the Custom Class Files for the Game
As mentioned earlier, this is not a complete game, just enough

to provide you with what you need to get started in your own
development. With that said, there is a lot of code you can use.

In creating the assets Class file you also created a number of
folders. The PBLabs files should be placed in the COM folder.

The Project folder contains the Class files for your game
project. You have already created the resources Class file. Later,
you are going to string everything together with a Game Class file.
There are two main groups of Class files you will step through:
•	 Game Screens
•	 Game Play Mechanics

The structure for these files is often similar. For this reason,
I will not go through all the files in great depth. The files, along
with additional comments, can be downloaded from the website.

	 Building Games with Flash for the Mobile Market   225

There are two screens in the game: introduction screen and
game screen. They are separated into two Class files in a sub-
folder called screens. Let’s start with the introduction screen:
1.	 Using a text editor, create a new Class file and name it

IntroScreen.as.
2.	 Declare the package and import the core classes:

package com.mad.projects.flashgame.screens
{
import com.pblabs.screens.BaseScreen;
import com.pblabs.screens.ScreenManager;
import com.mad.projects.flashgame.flashgameResources;
import flash.events.MouseEvent;
import flash.text.TextField;
public class IntroScreen extends BaseScreen
public function IntroScreen ()

3.	 You are going to use a simple mouse event instead of a Tap
event. Both achieve the same results, but this allows you to
reuse the code for traditional desktop solutions.

{
super ();
addEventListener(MouseEvent.MOUSE_DOWN, _onMouseDown);
}

4.	 The following adds the introduction screen background image:

override public function onShow () : void
{
addChild(new flashgameResources.MOVIE_CLIP_BACKGROUND_

INTRO_SCREEN ());

5.	 A text field is displayed on the screen, giving the player instruc-
tions on what to do:

var textField : TextField = new TextField ();
textField.width = 500;
textField.height = 400;
textField.multiline = true;
textField.wordWrap = true;
textField.htmlText = “<P ALIGN='CENTER'><FONT

SIZE='50'>Click Anywhere to Play</P>”;
textField.selectable = false;
textField.x = 400 - textField.width/2;
textField.y = 300;
addChild(textField);
}

6.	 Finally, when the player taps the screen you will want the screen
to change to the main game screen:

private function _onMouseDown (aEvent : MouseEvent) : void
{
ScreenManager.instance.goto(“game_screen”);

226   Building Games with Flash for the Mobile Market

}
}
}

7.	 Save your file. This completes the work for the introduction
game screen.

8.	 Create the main game play screen. Create a new Class file in
the screens folder and name it GameScreen.as. This screen
does very little except load the main game screen Class
files:

package com.mad.projects.flashgame.screens
{
import com.pblabs.engine.PBE;
import com.pblabs.screens.BaseScreen;
import com.mad.projects.flashgame.flashgame;
public class GameScreen extends BaseScreen
{
public function GameScreen ()
{
super ();
}
override public function onShow () : void
{
(PBE.mainClass as flashgame).restartGame();
}
override public function onHide () : void
{
}
}
}

At this point you have both screens developed. The next step
is to add the Class files that extend the game. The additional Class
files you will create are:
•	 CollisionDetectComponent
•	 FaceForwardComponent
•	 GameOverComponent
•	 MoveHorizontallyComponent
•	 ScreenTrapComponent
•	 ScreenWrapComponent

Each of these classes are placed in a subfolder of flashgame
called components. Let’s step through each of these classes.
1.	 Create a new Class file called CollisionDetectComponent.as in

the components folder.
2.	 Add the following classes you will be importing:

package com.mad.projects.flashgame.components
{
import com.pblabs.box2D.CollisionEvent;
import com.pblabs.engine.components.TickedComponent;
import com.pblabs.engine.core.ITickedObject;

	 Building Games with Flash for the Mobile Market   227

3.	 Most of the work for collision is managed through PBE but this
class adds some extensions. The following declares that you are
extending the ITickedObject class.

public class CollisionDetectComponent extends
TickedComponent implements ITickedObject

{
public static const NAME : String =

“CollisionDetectComponent”;
private function get _gameOverComponent () :

GameOverComponent { return owner.lookupComponentByType
(GameOverComponent) as GameOverComponent; }

4.	 You will want to extend the Collision class so you can link to
your own custom events, such as which end of game screen
you want to go to:

public function CollisionDetectComponent ()
{
super ();
}
protected override function onAdd() : void
{
super.onAdd();
owner.eventDispatcher.addEventListener(CollisionEvent.

COLLISION_EVENT, onCollisionEvent);
}
protected override function onRemove() : void
{
super.onRemove();
owner.eventDispatcher.removeEventListener(CollisionEvent.

COLLISION_EVENT, onCollisionEvent);
}
private function onCollisionEvent(aEvent:CollisionEvent) :

void
{
_gameOverComponent.doLoss();
}
}
}

5.	 Save your file.
6.	 The next step is controlling the facing of the visual objects on

the screen. Again, most of this work is accomplished with PBE
but can be extended for custom properties.

7.	 Create a new Class file and name it FaceForwardComponent.
as.

8.	 Add references to the FaceForwardComponent to Class files
you want to use and extend:

package com.mad.projects.flashgame.components
{

228   Building Games with Flash for the Mobile Market

import com.pblabs.engine.components.TickedComponent;
import com.pblabs.engine.core.ITickedObject;
import com.pblabs.engine.entity.PropertyReference;
import com.mad.utils.pbe.FlyerGameHelper;
import flash.geom.Point;

  9.	 You will need to know the positions of the objects on the
screen. To do this you will need to declare public constants
for the names of the objects:

public class FaceForwardComponent extends
TickedComponent implements ITickedObject

{
public static const NAME : String =

“FaceForwardComponent”;
public var _position_propertyreference:PropertyReference;
public var _rotation_propertyreference:PropertyReference;
private var _positionPrevious_point : Point;
private var _positionCurrent_point : Point;
private var _rotationCurrent_num: Number;
public function FaceForwardComponent ()

10.	 The following forces the player that you control to face up at
the start of the game:

{
super ();
_position_propertyreference = new PropertyReference

(PlayerGameHelper.SPATIAL_POSITION);
_rotation_propertyreference = new PropertyReference

(PlayerGameHelper.SPATIAL_ROTATION);
_positionPrevious_point = new Point (0,1000);
}

11.	 The next step is to update the screens as you move the
player:

override public function onTick (aDeltaTime_num :
Number) :void

{
_positionCurrent_point = owner.getProperty(_position_

propertyreference);
_rotationCurrent_num = owner.getProperty(_rotation_

propertyreference);
var positionDeltaX_num : Number = _positionCurrent_

point.x - _positionPrevious_point.x;
var positionDeltaY_num : Number = _positionCurrent_

point.y - _positionPrevious_point.y;
if (positionDeltaX_num < 0) {

	 Building Games with Flash for the Mobile Market   229

12.	 This controls your player position as you move left on the screen:

_rotationCurrent_num = -90;
} else if (positionDeltaX_num > 0) {

13.	 This controls the player as you move right:

_rotationCurrent_num = 90;
}
if (positionDeltaY_num < 0) {

14.	 This updates as you move up the screen:

_rotationCurrent_num = 0;
} else if (positionDeltaY_num > 0) {

15.	 This controls movement down the screen:

_rotationCurrent_num = 180;
}
owner.setProperty(_rotation_propertyreference, _

rotationCurrent_num);
_positionPrevious_point = _positionCurrent_point;
}
}
}

16.	 You have now extended the code for the main player game
piece to always face the correct direction.

17.	 The next class controls what is done when the game is over.
Essentially, at this time, the only thing that happens is that the
sound clips change. Of course you can extend this yourself
with your own functionality.

18.	 Create a new Class file and name it GameOverComponent.as.
19.	 Add the classes you need to import into this class:

package com.mad.projects.flashgame.components
{
import com.pblabs.engine.PBE;
import com.pblabs.engine.components.TickedComponent;
import com.pblabs.engine.core.ITickedObject;
import com.pblabs.engine.entity.PropertyReference;
import com.mad.projects.flashgame.flashgame;
import com.mad.projects.flashgame.flashgameResources;
import com.mad.utils.pbe.FlyerGameHelper;
import flash.geom.Point;
public class GameOverComponent extends TickedComponent

implements ITickedObject

20.	 Next, identify the properties you want to control with this
class. In this case, the game is over by identifying the position
of the main game player control. If you are able to move the

230   Building Games with Flash for the Mobile Market

game controller to the top of the screen then you have won.
To understand that you have reached the top of the screen
you need to know the position of the game player control:

{
public static const NAME : String =

“GameOverComponent”;
public var _position_propertyreference:PropertyReferen

ce;
private var _size_propertyreference :

PropertyReference;
private var _position_point : Point;
private var _size_point : Point;
public function GameOverComponent ()
{
super ();
_position_propertyreference = new PropertyReference

(FlyerGameHelper.SPATIAL_POSITION);
_size_propertyreference = new PropertyReference

(FlyerGameHelper.SPATIAL_SIZE);
}

21.	 The next steps are to declare what happens when the game is
won:

public function doWin () : void
{
PBE.soundManager.stopCategorySounds(“sfx”);
PBE.soundManager.play(flashgameResources.WIN_SOUND);
_doEndGame();
}

22.	 What if you lose? The following method controls this action:

public function doLoss () : void
{
PBE.soundManager.stopCategorySounds(“sfx”);
PBE.soundManager.play(flashgameResources.LOSE_SOUND);
_doEndGame();
}

23.	 Finally, the events used to activate the methods:

protected override function onAdd() : void
{
super.onAdd();
}
protected override function onRemove() : void
{
super.onRemove();
}
override public function onTick (aDeltaTime_num :

Number) :void
{

	 Building Games with Flash for the Mobile Market   231

_position_point = owner.getProperty (_position_
propertyreference);

_size_point = owner.getProperty (_size_propertyreference);
if (_position_point.y < 60) {
doWin();
}
}
}
}

24.	 At this point, you can save your file. As you can see, each class
is very similar in structure: you import Class objects you want
to modify, you declare what you will modify, and then you
extend what you modify with custom methods, properties,
and events.

25.	 Following is a breakdown of the Move Horizontally
Component.as class:

{
import com.pblabs.engine.components.ThinkingComponent;
import com.pblabs.engine.components.TickedComponent;
import com.pblabs.engine.entity.PropertyReference;
import com.mad.utils.pbe.FlyerGameHelper;
import flash.geom.Point;
public class MoveHorizontallyComponent extends

TickedComponent
{
public static const NAME : String =

“MoveHorizontallyComponent”;
public var _position_propertyreference:PropertyReference;
public var _rotation_propertyreference:PropertyReference;
private var _position_point:Point;
public var horizontalDirection_int:int = 1;
public var horizontalSpeed_num:int = 3;
public function MoveHorizontallyComponent () : void
{
super ();
_position_propertyreference = new PropertyReference

(FlyerGameHelper.SPATIAL_POSITION);
}
override public function onTick (aDeltaTime_num :

Number) :void
{
_position_point = owner.getProperty(_position_

propertyreference);
var r : * = owner.getProperty(_rotation_

propertyreference);
_position_point.x += horizontalDirection_int *

horizontalSpeed_num/2;

232   Building Games with Flash for the Mobile Market

owner.setProperty(_position_propertyreference, _
position_point);

}
}
}

26.	 The following is the ActionScript class for an enemy trapping
the player control:

package com.mad.projects.flashgame.components
{
import com.pblabs.engine.PBE;
import com.pblabs.engine.components.TickedComponent;
import com.pblabs.engine.core.ITickedObject;
import com.pblabs.engine.entity.PropertyReference;
import com.mad.utils.pbe.FlyerGameHelper;
import flash.geom.Point;
public class ScreenTrapComponent extends

TickedComponent implements ITickedObject
{
public static const NAME : String =

“ScreenTrapComponent”;
private var _position_propertyreference :

PropertyReference;
private var _size_propertyreference :

PropertyReference;
private var _position_point : Point;
private var _size_point : Point;
public function ScreenTrapComponent ()
{
super ();
_position_propertyreference = new PropertyReference

(FlyerGameHelper.SPATIAL_POSITION);
_size_propertyreference = new PropertyReference

(FlyerGameHelper.SPATIAL_SIZE);
}
override public function onTick (aDeltaTime_num :

Number) : void
{
_position_point = owner.getProperty(_position_

propertyreference);
_size_point = owner.getProperty(_size_

propertyreference);
if (_position_point.x + _size_point.x /2 > PBE.scene.

sceneViewBounds.right) {
_position_point.x = PBE.scene.sceneViewBounds.right -

_size_point.x / 2;
} else if (_position_point.x - _size_point.x /2 < PBE.

scene.sceneViewBounds.left) {
_position_point.x = PBE.scene.sceneViewBounds.left +

_size_point.x / 2;
}

	 Building Games with Flash for the Mobile Market   233

if (_position_point.y + _size_point.y /2 > PBE.scene.
sceneViewBounds.bottom) {

_position_point.y = PBE.scene.sceneViewBounds.bottom -
_size_point.y / 2;

} else if (_position_point.y - _size_point.y /2 < PBE.
scene.sceneViewBounds.top) {

_position_point.y = PBE.scene.sceneViewBounds.top +
_size_point.y / 2;

}
owner.setProperty(_position_propertyreference,

_position_point);
}
}
}

At this point you have the files need for the core compo-
nents of the game. The final Class file strings all of these files
together.

Linking Game Code Class Files Together in the FlashGame Class
The FlashGame folder contains an additional class called

FlashGame.as that links all classes together. The structure, as with
the previous classes, should now be familiar to you. Essentially,
what you are doing is using the FlashGame class as the glue that
binds everything together.
1.	 Let’s step through the FlashGame class. Open the file in a text

editor. The first section of code should be familiar: the classes
you need to import. What is different with this import list is
you are now importing all classes you have created and will
need in the game. It is quite long.

package com.mad.projects.flashgame
{
import com.pblabs.box2D.Box2DManagerComponent;
import com.pblabs.engine.PBE;
import com.pblabs.engine.debug.Logger;
import com.pblabs.engine.entity.IEntity;
import com.pblabs.engine.entity.PropertyReference;
import com.pblabs.rendering2D.AnimationController;
import com.pblabs.rendering2D.AnimationControllerInfo;
import com.pblabs.rendering2D.SpriteSheetRenderer;
import com.pblabs.rendering2D.spritesheet.

SWFSpriteSheetComponent;
import com.pblabs.rendering2D.ui.SceneView;
import com.mad.projects.flashgame.components.

CollisionDetectComponent;
import com.mad.projects.flashgame.components.

FaceForwardComponent;
import com.mad.projects.flashgame.components.

GameOverComponent;

234   Building Games with Flash for the Mobile Market

import com.mad.projects.flashgame.components.
MoveHorizontallyComponent;

import com.mad.projects.flashgame.components.
ScreenTrapComponent;

import com.mad.projects.flashgame.components.
ScreenWrapComponent;

import com.mad.projects.flashgame.screens.GameScreen;
import com.mad.projects.flashgame.screens.IntroScreen;
import com.mad.utils.pbe.FlyerGameHelper;
import flash.display.Sprite;
import flash.geom.Point;

2.	 Define the size of the game screen area. This game is being
designed for the Android Nexus One screen size:

[SWF(width=“800”, height=“480”, frameRate=“20”)]
public class FlashGame extends Sprite
{
public static var WIDTH : Number = 800;
public static var HEIGHT: Number = 480;

3.	 Next, you will want to load the core elements that allow the
game to start:

public function flashgame ()
{
super ();
PBE.startup(this);
PBE.processManager.timeScale = 0.8;
PBE.addResources(new flashgameResources());
PBE.screenManager.registerScreen(“intro_screen”,

new IntroScreen());
PBE.screenManager.registerScreen(“game_screen”,

new GameScreen());
PBE.screenManager.goto(“intro_screen”);
}

4.	 Declare the methods you will use. The first group contains the
sounds that will play:

public function restartGame () : void
{
PBE.soundManager.play(flashgameResources.SOUNDTRACK_

SOUND,“sfx”,1,9999);
_clearEverything ();
_createScene();
_createBackgroundEntity();
_createObstacleEntities();
_createPlayerEntity();
}

5.	 You will want the screen to be clear of any enemies at the start
of the game. Notice how you are using PushButtonEngine for
most of your work.

	 Building Games with Flash for the Mobile Market   235

private function _clearEverything () : void
{
PBE.rootGroup.destroy();
PBE.rootGroup.clear();
}

6.	 Now you will want to create the default new scene setup.

private function _createScene () : void
{
var sceneView : SceneView = new SceneView();
sceneView.width = WIDTH;
sceneView.height = HEIGHT;
PBE.initializeScene(sceneView, FlyerGameHelper.SCENE,

null, Box2DManagerComponent);
PBE.scene.setWorldCenter(new Point (-WIDTH, -HEIGHT));
(PBE.spatialManager as Box2DManagerComponent).gravity =

new Point (0,0);
}

7.	 The following adds the main player to the screen:

private function _createPlayerEntity () : void
{
var position_point: Point = new Point

(WIDTH*.65,HEIGHT-50);
var size_point: Point = new Point (.1,.1);
var zIndex_uint: uint = 10;
var Player_entity:IEntity = PBE.allocateEntity();
PlayerGameHelper.createSpatialEntity (Player_entity,

position_point, size_point);
var collisionType_str : String= “Player”;
var collidesWithCollisionTypes_array : Array =

[“Obstacle”];
PlayerGameHelper.enableCollisionDetection (Player_

entity, collisionType_str,
collidesWithCollisionTypes_array, true);

8.	 Using the assets.swf file created earlier, you can now load all
the visual assets for the game:

var swfSpriteSheetComponent : SWFSpriteSheetComponent =
new SWFSpriteSheetComponent();

FlyerGameHelper.loadMovieClipAsset
(swfSpriteSheetComponent,

flashgameResources.ASSETS_SWF,
flashgameResources.MOVIE_CLIP_OBSTACLE_PLAYER);
var spriteSheetRenderer:SpriteSheetRenderer = new

SpriteSheetRenderer();
FlyerGameHelper.setupSpriteSheetRenderer

(spriteSheetRenderer,
swfSpriteSheetComponent,
0,
zIndex_uint);

236   Building Games with Flash for the Mobile Market

  9.	 Each enemy and the player have animation loops. The
following are two animation loops you can use to control
enemies and players:

var idle_animationControllerInfo:AnimationController
Info = new AnimationControllerInfo();

idle_animationControllerInfo.loop = false;
idle_animationControllerInfo.frameRate = 1;
idle_animationControllerInfo.spriteSheet =

swfSpriteSheetComponent;

10.	 Animation loop 2:

var move_animationControllerInfo:AnimationController
Info = new AnimationControllerInfo();

move_animationControllerInfo.loop = true;
move_animationControllerInfo.frameRate = 1;
move_animationControllerInfo.maxFrameDelay = 250;
move_animationControllerInfo.spriteSheet =

swfSpriteSheetComponent;

11.	 The following saves the animation loops for later reuse:

var animationController : AnimationController = new
AnimationController ();

animationController.spriteSheetReference = new
PropertyReference (PlayerGameHelper.RENDER_SPRITE_SHEET);

animationController.currentFrameReference = new
PropertyReference (PlayerGameHelper.RENDER_SPRITE_INDEX);

animationController.animations[PlayerGameHelper.
ANIMATION_IDLE] = idle_animationControllerInfo;

animationController.animations[PlayerGameHelper.
ANIMATION_MOVE] = move_animationControllerInfo;

animationController.defaultAnimation =
PlayerGameHelper.ANIMATION_IDLE;

animationController.currentAnimationName=
PlayerGameHelper.ANIMATION_IDLE

animationController.changeAnimationEvent=
PlayerGameHelper.ANIMATION_CHANGE_EVENT;

animationController.currentAnimationReference= new
PropertyReference (PlayerGameHelper.CURRENT_ANIMATION_
REFERENCE);

Player_entity.addComponent(animationController,
PlayerGameHelper.ANIMATION_CONTROLLER);

Player_entity.addComponent(spriteSheetRenderer,
PlayerGameHelper.RENDER);

12.	 Now add the ActionScript to allow for the correct facing of the
enemies:

var faceForwardComponent : FaceForwardComponent = new
FaceForwardComponent();

Player_entity.addComponent (faceForwardComponent,
FaceForwardComponent.NAME);

	 Building Games with Flash for the Mobile Market   237

13.	 Collision detection between the player and enemy objects
can be detected with the following:

var collisionDetectComponent : CollisionDetectComponent =
new CollisionDetectComponent();

Player_entity.addComponent (collisionDetectComponent,
CollisionDetectComponent.NAME);

14.	 And you need code to initialize the whole thing:

Player_entity.initialize(“Player_entity”);
}

15.	 The following extends PushButtonEngine and renders the
game elements on the screen:

private function _createObstacleEntities () : void
{
_createObstacleEntity (flashgameResources.MOVIE_CLIP_

OBSTACLE_SMALLENEMY, new Point (WIDTH*.0,HEIGHT*0.20), 1, 1, 30);
_createObstacleEntity (flashgameResources.MOVIE_CLIP_

OBSTACLE_BIGENEMY, new Point (WIDTH*.20,HEIGHT*0.40), 2,
-1, 25);

_createObstacleEntity (flashgameResources.MOVIE_CLIP_
OBSTACLE_SMALLENEMY, new Point (WIDTH*.35,HEIGHT*0.55), 3,
1, 15);

_createObstacleEntity (flashgameResources.MOVIE_CLIP_
OBSTACLE_BIGENEMY, new Point (WIDTH*.50,HEIGHT*0.70), 4, -1, 35);

}
private function _createObstacleEntity (aMovieClipName_

str : String,
aPosition_point : Point,
aZIndex_uint: uint,
aHorizontalDirection_int: int,
aHorizontalSpeed_num : Number) : void

16.	 The following is used to extend collision detection:

{
var obstacle_entity:IEntity = PBE.allocateEntity();
PlayerGameHelper.createSpatialEntity (obstacle_entity,

aPosition_point);
var collisionType_str : String= “Obstacle”;
var collidesWithCollisionTypes_array : Array =

[“Player”];
PlayerGameHelper.enableCollisionDetection (obstacle_

entity, collisionType_str, collidesWithCollisionTypes_
array, false);

17.	 This identifies the Sprites you will load from the linked SWF
asset library:

var swfSpriteSheetComponent : SWFSpriteSheetComponent =
new SWFSpriteSheetComponent();

238   Building Games with Flash for the Mobile Market

PlayerGameHelper.loadMovieClipAsset
(swfSpriteSheetComponent, flashgameResources.ASSETS_SWF,
aMovieClipName_str);

var spriteSheetRenderer:SpriteSheetRenderer = new
SpriteSheetRenderer();

PlayerGameHelper.setupSpriteSheetRenderer
(spriteSheetRenderer, swfSpriteSheetComponent, 0, aZIndex_
uint);

obstacle_entity.addComponent(spriteSheetRenderer,
PlayerGameHelper.RENDER);

18.	 Horizontal movement is initialized:

var moveHorizontallyComponent:MoveHorizontallyComponent
= new MoveHorizontallyComponent();

moveHorizontallyComponent.horizontalDirection_int =
aHorizontalDirection_int;

moveHorizontallyComponent.horizontalSpeed_num =
aHorizontalSpeed_num;

obstacle_entity.addComponent (
moveHorizontallyComponent, MoveHorizontallyComponent.NAME);

var screenWrapComponent : ScreenWrapComponent = new
ScreenWrapComponent();

obstacle_entity.addComponent (screenWrapComponent,
ScreenWrapComponent.NAME);

19.	 Correcting facing of the moving objects is initialized:

var faceForwardComponent : FaceForwardComponent = new
FaceForwardComponent();

obstacle_entity.addComponent (faceForwardComponent,
FaceForwardComponent.NAME);

obstacle_entity.initialize(“obstacle_entity” + aZIndex_
uint);

}
private function _createBackgroundEntity () : void
{
var position_point: Point = new Point (0,0);
var zIndex_uint: uint = 1;
var background_entity:IEntity = PBE.allocateEntity();
background_entity.initialize(“background_entity”);
PlayerGameHelper.createSpatialEntity (background_

entity, position_point);
var swfSpriteSheetComponent : SWFSpriteSheetComponent =

new SWFSpriteSheetComponent();
PlayerGameHelper.loadMovieClipAsset

(swfSpriteSheetComponent, flashgameResources.ASSETS_SWF,
flashgameResources.MOVIE_CLIP_BACKGROUND_GAME_SCREEN);

var spriteSheetRenderer:SpriteSheetRenderer = new
SpriteSheetRenderer();

PlayerGameHelper.setupSpriteSheetRenderer
(spriteSheetRenderer, swfSpriteSheetComponent, 0, zIndex_
uint);

	 Building Games with Flash for the Mobile Market   239

background_entity.addComponent(spriteSheetRenderer,
PlayerGameHelper.RENDER);

}
}
}

20.	 Now save your file.
21.	 The final step is to create an empty Flash file that will link

to the Class files for the game. Create a new Flash FLA file
at the root of your folder. Name the file FlashGameFrogger.
fla. Set the publish properties to AIR for Android and cre-
ate a Class file in the Properties. Edit the Class file to sim-
ply extend the FlashGame class you just created, as shown
here:

package {
import com.mad.projects.flashgame.FlashGame;
public class FlashGameFrogger extends FlashGame {
public function PBFlyerGameDocumentClass() {
super();
}
}
}

At this point you can save your work and publish your pro-
totype game. As mentioned before, this is not a fully func-
tional game, but it does give you access to how you can extend
PushButtonEngine for your own platform games.

Creating Isometric Worlds with TheoWorlds
Isometric is a term used to describe games such as the original

SimCity and The Sims. It looks 3D (you move around a board) but
it is really just 2D.

TheoWorlds is very good game environment you can use to
develop your Isometric game. The Software Developers Kit from
TheoWorlds includes:
•	 TheoChat, for online chat
•	 TheoMap Editor, so you can create your own worlds
•	 Documentation and source code

You can check it all out at www.theoworlds.com/.

Zero Game Development Skills Needed for Platogo
Excited to get your own games developed but do not have

the time to learn all the libraries listed in this chapter? Check
out Platogo. Platogo is a place where you can go to play Flash
games. It also has a great tool you can use to create your own
games without needing to learn ActionScript. Platogo has an
excellent designer that allows you to build simple, functional
games.

240   Building Games with Flash for the Mobile Market

Right now it does not fully support mobile platforms but you
can fake the games by publishing the SWF and then loading the
SWF into your Android games. This method will not work for
iPhone (yet).

You can play with Platogo at www.platogo.com/.

Developing Your Game
You can have a lot of fun developing games for your mobile

device. There are some caveats you need to keep in mind: An
Android phone or iOS device is simply not as powerful as a
desktop computer. Test, test, and retest your game code on your
target devices to ensure that the frame rate and response time is
meeting your needs.

With that said, game development is a lot of fun; the incep-
tion phase, through the design and develop phases, and even
through the QA phases can be very rewarding. It seems that Flash
is maturing as one of the world’s more important game develop-
ment environments. Time for you to get your game on! Get it?
“Game on”? No? OK, I will leave the pathetic puns alone.

241© 2011 Elsevier Inc. All rights reserved.

Often the most complex type of app you will build for your
mobile device will be a game. There are lots of good reasons for
this: games use data, interaction, sound, video, pictures, and
more to provide a complex experience. To the person playing the
game, the work should just come together. When you play a game
you should not be thinking, “Wow, this game must have been very
hard to build.” All you should be thinking is, “How do I kill this
enemy and get to the next level?”

The goal of the project in this chapter (Figure 5.1Proj) is to give you
an idea of what is needed to build a game and the types of decisions
you need to make for the game to work effectively on a mobile device.

Project: Building a
Mobile Game

Figure 5.1Proj  This project will
create a space‑shooting game
where you blow up meteors.

242   Project: Building a Mobile Game

The discipline of game development is changing rapidly on
mobile platforms. The type of work you can do today will seem
simple in the future. There are two good reasons for this: the first
is the processing power of mobile systems. Today’s devices are
good, but future phones will be even better. The CPU/GPU power
of a phone is growing faster than Moore’s Law, and a time when
phones run close to the same speed as desktop PCs is not far off.
The second advancement is coming directly from Adobe: the
Flash Player and AIR are being optimized to leverage GPU accel-
eration in desktop and mobile devices. Future games will be able
to run complex, 3D worlds.

Playing Space Rocket
The game you’ll be developing is called Space Rocket. In the

game you control a rocket that fires missiles and blows up falling
rocks. Each exploding rock gives you a score of 5 points.

So, let’s see what is going on in this app:
•	 Controls let you move left and right
•	 A third control allows you to fire a missile
•	 Rocks fall randomly down the screen
•	 A random space background is constantly changing
•	 The score is calculated as you blow up each rock
•	 At the end of the game you go to a screen that tells you the

game is over and lists your score
•	 You can tap the end of game screen to replay

As you can see, there is a lot happening. To keep things simple,
I have not included any sound or 3D. You can build on top of this
project and make it more complicated.

Getting Started
The first step in the project is to create a new Flash movie. This

movie will have a lot of action. Rocks, rockets, and background
animation are all going at once.

A challenge you have in the mobile world is the speed of
the processor running your game. If you have a lot happen-
ing on the screen at once then the game play will be slow. So
how do you create the illusion of fast animation on a mobile
device?

A method you can use to speed up animation is to reduce
the size of the screen. When you do this, there are fewer pixels to
move. This is the method you will use in the AIR app for Space
Rocket.

	 Project: Building a Mobile Game    243

1.	 Start Flash and create a new AIR Android app. The principles
you use in the AIR Android app will also work for the BlackBerry
PlayBook and iOS.

2.	 The default screen setting is 480 × 800. Change the size of the
screen by 50%. This will make the screen 240 × 400 (Figure
5.2Proj). You still want your app to play full screen when it is
loaded in Android.

3.	 A second modification you can make is the frame rate of the
game. The default is 24fps. Change it to 15fps. Overall, you
will not see much change in the graphic display, but there
will be fewer frames allowing the device to keep up with your
animation.

4.	 Open the Android Settings (Figure 5.3Proj) and, from the
General tab, select the checkbox for full screen. Now your app
will play full screen on any Android device.

5.	 While you have the Android Settings window open, change the
name of the APK file to spaceRocket.apk, and the name of the
app as it will appear on the Android device to Space Rocket.

6.	 Save your Flash project as Space Rocket.
At this point you have the basic structure for you app. Next

step is to import graphics.

Figure 5.2Proj  The screen
resolution has been reduced
to reduce the number of pixels
that need to be moved on the
screen.

244   Project: Building a Mobile Game

Figure 5.3Proj  The Android
Settings. Game Assets and Default Layer Structure

There are three game assets you will use: a rocket, rock, and mis-
sile. Each file is included in the library of the game on the website
for this book. Download the files from www.visualizetheweb.com/
flashmobile.

In the library, notice that there are two elements that have
ActionScript Linkage names:
•	 Bullet
•	 Enemy

The files themselves reference two additional Class files you
will create to control how the missile and enemies react when
they collide with objects.

You will see that the default Flash file has a timeline with two
frames. The first frame contains the game and the second frame
contains the end of the game.

The app is also broken up into the following elements:
Frame 1:
•	 Left button (mcLeft)
•	 Right button (mcRight)
•	 Fire button (mcFire)
•	 Rocket (mcMain)
•	 Dynamic white text area at the top of the screen (txtScore)

	 Project: Building a Mobile Game    245

Frame 2:
•	 Dynamic white text areas on the screen (txtFinalScore)
•	 Static text block stating the game is over
All three of the text areas use the default _Sans font.
These are the only assets you need for the game to work. Next,

it is time to code.

Adding the Code to the Game
The code for this project is split into three distinct areas:

•	 Core game code
•	 Bullet interaction
•	 Enemy interaction

Let’s start with the core game code. In your game, open the
Timeline panel and create a new layer called Actions. This is
where you will add our ActionScript for the core game code.
	 1.	 Open the Actions panel. The first action you will want to add

is a stop() action preventing the movie from playing in a loop
between the first and second frame. Add the following code:

stop();

	 2.	 The second line of code will add a control that lets Flash know
that you are going to be using Multitouch controls. No key-
boards here:

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

	 3.	 You will want to control two main buttons, the left and right
buttons. These two buttons will move the rocket left and right.
The following two Boolean variables see whether or not the
buttons have been pressed.

var leftMovement:Boolean = false;
var rightMovement:Boolean = false;

	 4.	 The mainSpeed integer controls how fast the elements move
on the screen. This is again another place where you can con-
trol the hardware of your device by keeping the speed low:

var mainSpeed:int = 5;

	 5.	 The following integer controls the time, in milliseconds, you
want to allow between missile shots:

var bulletTime:int = 250;

	 6.	 The bulletTime integer controls the life of the missile. The
following setting is 12 frames. In future versions of this game you
control the bulletTime speed to be more or less. For instance, a
harder game will have the missile dying after four frames.

var bulletLimit:int = 12;

246   Project: Building a Mobile Game

	 7.	 The following Boolean looks to see if a missile can be fired.
Again, in a future version of this game, you may want to set up
a rule such as: if you hit three rocks in a row, you cannot fire
your missile for 2 seconds.

var shootAllow:Boolean = true;

	 8.	 The enemyTime integer controls how often a new enemy is
made. The value is in milliseconds. Keep the number high to
reduce the number of objects simultaneously on the screen.

var enemyTime:int = 1000;

	 9.	 The following specifies the time it takes to create an enemy.
The lower the number, the more enemies you have on the
screen.

var enemyLimit:int = 20;

	10.	 The “score” integer holds the value of the score in the game.
The default is zero.

var score:int = 0;

	11.	 The following section of code controls all the interactions of
the missile on the screen. We will come back to this later in the
chapter.

var bulletContainer:MovieClip = new MovieClip();
addChild(bulletContainer);

	12.	 Is the game over or not? The gameOver Boolean value can
store the state of the game.

var gameOver:Boolean = false;

	13.	 The following section of ActionScript controls the movements
of the rocket. In the code the rocket has the name mcRocket.

mcRocket.addEventListener(Event.ENTER_FRAME, moveChar);
function moveChar(event:Event):void{

	14.	 The following ActionScript checks that the Booleans are true
and adjusts the movement of the rocket.

if(leftMovement){
mcRocket.x -= mainSpeed;
}
if(rightMovement){
mcRocket.x += mainSpeed;
}

	15.	 The following ensures that the rocket stays on the screen.

if(mcRocket.x <= 0){
mcRocket.x += mainSpeed;
}

	 Project: Building a Mobile Game    247

if(mcRocket.y <= 0){
mcRocket.y += mainSpeed;
}
if(mcRocket.x >= stage.stageWidth - mcRocket.width){
mcRocket.x -= mainSpeed;
}
if(mcRocket.y >= stage.stageHeight - mcRocket.height){
mcRocket.y -= mainSpeed;
}

	16.	 The next section starts the control over the missiles. The first
step is to check if you have reached your limit of missiles that
can be fired at the same time.

if(bulletTime < bulletLimit){
bulletTime ++;
} else {
shootAllow = true;

	17.	 When you are done firing missiles you will need to reset the
bulletTime.

bulletTime = 0;
}

	18.	 Now you will want to add rocks falling onto the screen. The
first check you need to do is to see how many rocks are on the
screen. What is your limit?

if(enemyTime < enemyLimit){

	19.	 If everything is OK then add a new rock. The ++ adds just one
rock. Again, this is a point where you can experiment with the
code by stating if you want to add more than one new rock at
a time.

enemyTime ++;
} else {

	20.	 The following is a variable that holds the information needed
for a new rock:

var newEnemy = new Enemy();

	21.	 You do not want the rock to be created on the stage, otherwise
it will look like it is blinking into existence. You want to create
the illusion that the rock is coming from space. The following
code ensures that the enemy is created off the stage.

newEnemy.y = -1 * newEnemy.height;

	22.	 The following will randomly place the falling rock along the X
axis.

newEnemy.x = int(Math.random()*(stage.stageWidth -
newEnemy.width));

248   Project: Building a Mobile Game

	23.	 Now you can add the new falling rock to the stage.

addChild(newEnemy);

	24.	 The cacheAsBitmap is an optimization feature for mobile
apps. This changes the image into a bitmap. The bitmap file
format is managed more efficiently on mobile devices.

newEnemy.cacheAsBitmap=true;
enemyTime = 0;
}

	25.	 The next section of the game controls the actions when you
press the mcFire movie clip. You will be using a single Tap
touch event to control the button. To activate the button, the
player will need to keep tapping.

mcFire.addEventListener(TouchEvent.TOUCH_TAP, fl_
TapHandler);

function fl_TapHandler(event:TouchEvent):void
{
shootAllow = false;

	26.	 The first action is to create a new bullet.

var newBullet:Bullet = new Bullet();

	27.	 You have control over the position of the rocket on the screen.
The following will look for the current position of the rocket
and move the bullet to that position. In addition, the bullet will
divide the width of the rocket by 2 to ensure the bullet fires
from the center.

newBullet.x = mcRocket.x + mcRocket.width/2 -
newBullet.width/2;

newBullet.y = mcRocket.y;

	28.	 The following adds the bullet to the Stage.

bulletContainer.addChild(newBullet);
}
var fl_PressTimer:Timer = new Timer(100);
fl_PressTimer.addEventListener(TimerEvent.TIMER, fl_

PressTimerHandler);
function fl_PressTimerHandler(event:TimerEvent):void
{

	29.	 Now you want to add code that will control the left and right
buttons. Unlike the fire button where a user will be tapping on
the screen, you will find that most users will hold down the left
or right button. You can emulate a long tap in Flash that, while
you hold down the button, the rocket will move.

leftMovement = true;
}

	 Project: Building a Mobile Game    249

	30.	 The first step is to add the event listeners.

mcLeft.addEventListener(TouchEvent.TOUCH_BEGIN, fl_
PressBeginHandler);

mcLeft.addEventListener(TouchEvent.TOUCH_END, fl_
PressEndHandler);

mcLeft.addEventListener(TouchEvent.TOUCH_OUT, fl_
PressEndHandler);

mcLeft.addEventListener(TouchEvent.TOUCH_ROLL_OUT, fl_
PressEndHandler);

function fl_PressBeginHandler(event:TouchEvent):void
{

	31.	 You will be using a timer to control when to start a long tap
event.

fl_PressTimer.start();
}
function fl_PressEndHandler(event:TouchEvent):void
{
fl_PressTimer.stop();
leftMovement = false;
}

	32.	 The following sets the variable that will hold the value for
when to start the long tap. The value is set to 1/10 of a second,
or 100 milliseconds.

var RightBtn_PressTimer:Timer = new Timer(100);
RightBtn_PressTimer.addEventListener(TimerEvent.TIMER,

RightBtn_PressTimerHandler);
function RightBtn_PressTimerHandler(event:TimerEvent):void
{
rightMovement = true;
}

	33.	 You can add the long tap event listeners for the right button.

mcRight.addEventListener(TouchEvent.TOUCH_BEGIN,
rightBtn_PressBeginHandler);

mcRight.addEventListener(TouchEvent.TOUCH_END,
rightBtn_PressEndHandler);

mcRight.addEventListener(TouchEvent.TOUCH_OUT,
rightBtn_PressEndHandler);

mcRight.addEventListener(TouchEvent.TOUCH_ROLL_OUT,
rightBtn_PressEndHandler);

function rightBtn_PressBeginHandler(event:TouchEvent):void

	34.	 As with the left button, a timer is used to control when to start
the long tap event.

{
RightBtn_PressTimer.start();
}

250   Project: Building a Mobile Game

function rightBtn_PressEndHandler(event:TouchEvent):vo
id

{
RightBtn_PressTimer.stop();
rightMovement = false;
}

	35.	 The final piece of code creates the random particles on the
stage background.

stage.addEventListener(Event.ENTER_FRAME,
generateParticles);

	36.	 The first action is to see if there is already a particle on the
stage.

if(particleContainer == null){

	37.	 The following movie clip object will hold a new value for a
particle object.

var particleContainer:MovieClip = new MovieClip();
addChild(particleContainer);
}
function generateParticles(event:Event):void{

	38.	 You do not want hundreds of particles being created all the
time. The following will randomly generate how often the
particles are created.

if(Math.random()*25 < 2){

	39.	 You also do not want all the particles the same shape. Why not
have them randomly created from 1 to 5 pixels?

var mcParticle:Shape = new Shape();
var dimensions:int = int(Math.random()*5)+1;

	40.	 Now add color to your shape. Again, these are options you can
modify in your own version of the game.

mcParticle.graphics.beginFill(0x999999,1);
mcParticle.graphics.drawRect(dimensions,dimensions,dime

nsions,dimensions);

	41.	 As with the falling rocks, you do not want your particles all
appearing at the same point. The following code randomly
positions the particles on the screen.

mcParticle.x = int(Math.random()*stage.stageWidth);
mcParticle.y = -10;
particleContainer.addChild(mcParticle);
mcParticle.cacheAsBitmap=true;
}

	 Project: Building a Mobile Game    251

	42.	 You will want to have your particles fall down the stage using
the following ActionScript.

for(var i:int=0;i<particleContainer.numChildren;i++){
var theParticle:DisplayObject = particleContainer.

getChildAt(i);
theParticle.y += mainSpeed*.5;

	43.	 The following ActionScript looks to see where on the screen
the particle is. If it has reached 400 px on the Y axis, the par-
ticle will be off the bottom of the screen. ActionScript can now
remove the particle and reduce your memory usage.

if(theParticle.y >= 400){
particleContainer.removeChild(theParticle);

	44.	 The final piece of code is used to update the score.

txtScore.text = ‘Score: ’+score;
}
}
}
}

At this point you are very close to being done. You have two
final Class files you need to create to control the missiles you fire
and the rocks you hit.

Controlling the Missiles
Up to this point in the book you have added Class files mainly

to the root Flash movie. Here you are going to see how you can
add Class files to movie clips in the library (Figure 5.4Proj). As
you would expect, the structure of a Class object on a movie clip
is just the same as any Class object.
	 1.	 Let’s start in Flash Professional. Open the library. Right-click

on the Bullet movie clip and choose Properties.
	 2.	 The Properties window will open. Expand the Advanced

Settings so you see all options. You will see an option called
Class (Figure 5.5Proj).

	 3.	 Add the class name “Bullet” and select the “Edit Class
Definition.” An empty class will open.

package{

	 4.	 The first action is to import the objects you will use in this
class.

import flash.display.MovieClip;
import flash.events.*;

252   Project: Building a Mobile Game

Figure 5.4Proj C lass definitions
can be added to movie clips.

Figure 5.5Proj  The class name
can be added in the Symbol
Properties window.

	 Project: Building a Mobile Game    253

	 5.	 The following will force the bullet to act as a movie clip.

public class Bullet extends MovieClip{

	 6.	 The _root variable allows you to target objects on the main
stage.

private var _root:Object;

	 7.	 The following variable controls the speed at which the bullet
moves.

private var speed:int = 10;

	 8.	 The following function is used every time a missile is on the
stage.

public function Bullet(){
addEventListener(Event.ADDED, beginClass);

	 9.	 The following event controls the missile when it is on the
screen.

addEventListener(Event.ENTER_FRAME, eFrame);
}
private function beginClass(event:Event):void{
_root = MovieClip(root);
}
private function eFrame(event:Event):void{

	10.	 The following will move the missile up the screen.

y -= speed;

	11.	 When the missile hits –1 px on the Y axis it will be removed
from the stage.

if(this.y < -1 * this.height){
removeEventListener(Event.ENTER_FRAME, eFrame);
_root.bulletContainer.removeChild(this);
}
if(_root.gameOver){
removeEventListener(Event.ENTER_FRAME, eFrame);
this.parent.removeChild(this);
}
}
public function removeListeners():void{
removeEventListener(Event.ENTER_FRAME, eFrame);
}
}
}

	12.	 Save your Class file.
You have the first of your two custom Class files.

254   Project: Building a Mobile Game

Controlling the Falling Rocks
The objective of the Falling Rock class is to control how the

rocks interact with the missile and the space ship.
	 1.	 Right-click on the movie clip in the library called Enemy movie

clip and choose properties.
	 2.	 The Properties window will open. Expand the settings so you

see all options. You will see an option called Class. Add the
class name Enemy and select the Edit Class Definition. An
empty class will open.

package{

	 3.	 Import the Class objects you will be using.

import flash.display.MovieClip;
import flash.events.*;

	 4.	 Now set the Rock to behave like a movie clip.

public class Enemy extends MovieClip{

	 5.	 The following variables allow the rock to interact with objects
on the main timeline and the speed of the falling rocks.

private var _root:Object;
private var speed:int = 5;

	 6.	 The following function will run every time a rock is added to
the screen.

public function Enemy(){
addEventListener(Event.ADDED, beginClass);
addEventListener(Event.ENTER_FRAME, eFrame);
}
private function beginClass(event:Event):void{
_root = MovieClip(root);
}
private function eFrame(event:Event):void{

	 7.	 The following checks to see if the missile collides with a falling
rock.

for(var i:int = 0;i<_root.bulletContainer.
numChildren;i++){

var bulletTarget:MovieClip = _root.bulletContainer.
getChildAt(i);

	 8.	 Using hitTest, you can do something when objects collide. In
this case, if a missile hits the rock, the rock is removed from
the screen.

if(hitTestObject(bulletTarget)){
removeEventListener(Event.ENTER_FRAME, eFrame);
_root.removeChild(this);
_root.bulletContainer.removeChild(bulletTarget);
bulletTarget.removeListeners();

	 Project: Building a Mobile Game    255

	 9.	 When a missile hits a rock, the score is increased by 5.

_root.score += 5;
}
}

	10.	 What happens if the rock hits your rocket? Dude, you lose. The
following hitTest advances the game to the final screen.

if(hitTestObject(_root.mcRocket)){
_root.gameOver = true;
_root.gotoAndStop(2);
}
if(_root.gameOver){
removeEventListener(Event.ENTER_FRAME, eFrame);
this.parent.removeChild(this);
}
}
public function removeListeners():void{
this.removeEventListener(Event.ENTER_FRAME, eFrame);
}
}
}

	11.	 Save your file.
At this point you are ready to play your game. Connect your

Android device to your computer and publish your app. You will
see that by controlling the screen size, the number of objects on
the screen, and by forcing objects into bitmaps you have created
a fast-paced arcade game.

There is a lot you can do with this game by modifying vari-
ables. Play around and have fun.

This page intentionally left blank

Section

6

This page intentionally left blank

259© 2011 Elsevier Inc. All rights reserved.

You’ve done it. You have your app ready to go into the wild and
make some money; but you are not quite there yet. In this final
chapter you will see what you need to do to get your app online
and ready for people to purchase. You will cover the following:
•	 Building your app for deployment using iTunes Connect
•	 Building your app for deployment on the Android Market
•	 Building for iPad devices
•	 Building for Android tablets and Google TV
•	 Adding advertising to your apps
•	 Tracking your app’s success
•	 Marketing your app

This may sound contrary, but I often find that making your
application available to the world is the most painful part of sell-
ing your app—particularly when it comes to Apple’s iTunes. So,
without much ado, let’s start with the most painful process you
will ever endure: submitting an app to iTunes.

Deploying Your Apps to Apple’s iTunes
Apple’s iTunes Store is an amazing success story: 250,000+

apps and 6 billion downloads is nothing to sneeze at. There are
many success stories of groups making millions from Apple. But,
before you can get any money, you need to have your app ready
for deployment.

Let’s step through what you need to do to package an app for
iTunes App Store.
	 1.	 You will first need to go to the Provisioning section of the iOS

Developer Program Portal (Figure 6.1; https://developer.apple
.com/ios/manage/overview/index.action).

	 2.	 Select the Distribution tab.

Deploying Mobile Apps
with Flash CS5

260   Deploying Mobile Apps with Flash CS5

	 3.	 Choose the New Profile button (Figure 6.2).
	 4.	 Choose App Store as the Distribution Method.
	 5.	 Provide a name for your app.

Figure 6.1  Apple’s iOS
Provisioning Portal; you will
need to start here with every
app you create for the iPhone.

Figure 6.2  Create a new Profile
for your app.

	 Deploying Mobile Apps with Flash CS5   261

	 6.	 Select the App ID from the drop-down list that matches the
app you are going to deploy (Figure 6.3).

	 7.	 Select the Submit button. You will be taken to the main
Distribution Provisioning Profile page. Your new profile will
take about 30 seconds to generate.

	 8.	 Select the Download button to save the new App Store profile
to your desktop.

	 9.	 Open Flash and locate the Flash movie you have been work-
ing on.

	10.	 Open the Properties panel.
	11.	 Expand the Publish settings so you can see the different

publishing profiles.
	12.	 Select the iPhone Profile Edit button. The iPhone settings

window will open (Figure 6.4).
	13.	 Select the Deployment tab. At this time you will want to change

the provisioning profile to the App Store Distribution Profile
you downloaded (Figure 6.5).

	14.	 Change the certificate to a published certificate P12 file
(Figure 6.6).

	15.	 Select Deployment > App Store from iPhone Deployment
Type.

Figure 6.3 S electing the
different options for your app
profile.

262   Deploying Mobile Apps with Flash CS5

Figure 6.4 S etting iOS as the
default build type.

Figure 6.5  iOS Properties you
can modify in Flash.

	 Deploying Mobile Apps with Flash CS5   263

	16.	 Press the Publish button. It will take 6 to 10 minutes for your
app to be created.

	17.	 A new iPhone IPA file will be created in the same folder as your
Flash files when the process has been completed.

	18.	 Locate the IPA file. You will need to change the extension of the
file from IPA to ZIP. Both file formats are container formats.
That is, they contain all the files needed for the app to run;
however, iTunes Connect will accept files only in ZIP format.

At this time your app is ready for deployment to the iTunes
App Store.

Using iTunes Connect to Publish Your App
You are now very close to having an app available on the

iTunes store. Can’t you feel the rush! You could be selling thou-
sands of apps in a matter of a few days. The gap between you and
riches is just Apple’s iTunes Connect publishing tool. You are very
close now.

You will be using a new website to upload your final iPhone
apps. The site is called iTunes Connect (Figure 6.7; https: //
itunesconnect.apple.com/). In every sense, iTunes Connect is
your business relationship with Apple. The site allows you to

Figure 6.6 S elect a valid p12
certificate.

264   Deploying Mobile Apps with Flash CS5

set up your contracts, tax records, banking information, review
sales trends, download financial reports, and manage your In
App Purchases. You will need to complete these sections in order
to sell your app in iTunes. This section is going to focus on the
important part of iTunes Connect: managing your applications.

There are some tasks you can complete before you upload
your app. They are:
	 1.	 Create your iPhone app in Flash Professional and compress

the IPA into a ZIP.
	 2.	 Convert the 512 × 512 PNG pixel image into a JPG image. Label

the new file 512.jpg.
	 3.	 You will need at least one screen shot of your app as it appears

in your iPhone. Fortunately there is a very easy way to do that.
At any time when your app is playing on your iPhone press the
Home and Sleep buttons at the same time. The screen will flash
and a screen shot will be taken of your app. The image is stored
in your Camera Roll and is exactly the same size Apple needs.

	 4.	 When you have completed these three tasks you will need
to go to https://itunesconnect.apple.com. Use your Apple
Developer ID and password to log into the site.

	 5.	 Select Manage Your App from iTunes Connect. You will be
taken to a screen where you can add new apps and review
apps you are selling.

Figure 6.7  Apple’s iTunes
Connect is the place where you
will manage your applications.

	 Deploying Mobile Apps with Flash CS5   265

	 6.	 Select the Add New App button to start the process of creating
a new iTunes app.

	 7.	 For the most part, the content you enter on the summary
screen can be edited after your app has been submitted.
There are two sections that cannot change: Application Name
and Keywords. Ensure that you select a name that accurately
describes what you are selling. You are allowed up to 100 char-
acters of keywords. Use your Search Engine Optimization
experience to add keywords that categorize your app. These
two sections are very important.

	 8.	 The remaining fields allow you to add a description, submit
the app to main categories, add copyright, version number
(start with 1.0), SKU number, application/support URL, and
support e-mail.

	 9.	 Upload a 512.jpg for the large icon.
	10.	 Upload a 480 × 320 jpg image for the primary screenshot.
	11.	 Add one to four 480 × 320 jpg images for the additional screen-

shots. You will get a green check mark for each successfully
loaded image.

	12.	 Select Continue to go to the Pricing and Availability screen.
	13.	 You do not get to select a specific price for your app. Instead,

Apple lists a number of tiers from which you can choose. At
first glance this may seem frustrating but what Apple has done
is to remove the pain of selling with different currencies. A Tier
2 app will be $0.99 in the United States, 59 pence in England,
and AU$1.29 in Australia. There are over 70 different curren-
cies that Apple manages for you. You can also choose to have
screens that show the app going on sale in different countries.

	14.	 Select the Continue button when you have completed the
page. Submit the screen.

	15.	 You will need to be on a Mac and use Apple’s Application
Loader to upload your packaged app to the iTunes App Store.

	16.	 Using the Application Loader app, upload your ZIPed IPA file.
The upload will take about 20 minutes. The upload is checking
for some basic settings such as including the correct profile.
If everything is OK then you will get an e-mail letting you know
that the file has been uploaded successfully.

	17.	 The availability option allows your app to go on sale at a
specific time in the future.

	18.	 At this point you get to review all of your content and press the
Submit button.

Apple has done a lot to improve the review process for new
apps. Today it takes only 5 to 7 business days for an app to be
approved by Apple and appear in iTunes. I have had personal expe-
rience where an app can get rejected because the description text
is not 100% correct. It can get frustrating, but once you are in the
App Store you can expect exposure to 100+ million iOS devices.

266   Deploying Mobile Apps with Flash CS5

Deploying Your Apps to Google’s Android
Market

In contrast to Apple’s uber complex process, Google’s Android
Market is very easy to use. Essentially, you need three things:
•	 A Google account
•	 An APK app ready to go
•	 $25

Let’s step through what you need to do:
	 1.	 Before going to the Android Market you will need to create

an APK file that can be uploaded to the store. An APK file is
the package format Google uses for Android apps. No need to
compress your app into a ZIP folder.

	 2.	 Open Flash and go to your Android app. Open the Android set-
tings and select Deployment. As this now is going to be a real
app, you need to create a valid certificate. Make sure the certifi
cate has a life of 25 years (it is the default, but double check).

	 3.	 Choose Device as the deployment mechanism. Select Publish
and an APK file will be created. Now you are ready for the
Android Market (Figure 6.9).

	 4.	 Start by going to http://market.android.com. This is the place
where you will upload your apps.

Figure 6.8  As you can see, the
app is the same as the iOS app,
but Flash allows you to quickly
change the app to an Android
version.

	 Deploying Mobile Apps with Flash CS5   267

	 5.	 In the bottom left-hand corner of the page is a developer’s
link. If you blink, you might miss it. Click on the link to start
the process to become a developer. You can also write in the
following URL: http://market.android.com/publish/Home

	 6.	 You will be asked to log in with your Google Gmail account. It has
to be a Google account and not a Google Apps account.

	 7.	 You will have to pay $25.
	 8.	 When you have gone through all this, you will land on a page

that will list all of your Android apps.
	 9.	 Before adding your first app, select the Merchant Account

link. Selecting this link will allow people to purchase apps
and, more importantly, allow you to get paid. The pay scale is
70:30—you get 70% and the carrier gets 30%.

	10.	 Unlike Apple’s complex submission process, you only need
to complete five sections of content all on one page. They are:
Upload Assets, Listing Details, Publishing Options, Contact
Information, and Consent.

	11.	 The Upload Assets section allows you to upload your APK file
created from Flash, two screen shots, and one promotional
image.

	12.	 The Listing Details allow you to name your application and
provide a description. You can choose any name you like.

Figure 6.9 T he Android Market.

268   Deploying Mobile Apps with Flash CS5

	13.	 The important part of the process is price. You can choose
either free or U.S. dollars. A free app can never be converted
into a paid app. The U.S. dollars option also allows you to
name any price, from $0.01 to as high as you want to go. The
ability to price your apps is a big difference between Apple
and Google.

	14.	 The final three sections are merely paperwork saying that you
have approved the app for sale.

	15.	 Hit Save at the bottom of the screen and you are live. There is
no process check. You app is immediately live.

As you can see, the process for deploying to the Android
Market is much easier than Apple iTunes Store. Both Apple and
Google continue to tweak the way the market stores works for
them.

Building for iPad Devices
There are over 120 million iOS devices on the market.

Interestingly, the iPad accounts for 10% of the market. What is
more interesting is that many analysts expect the iPad to even-
tually outsell handheld devices. There has never been a product
launch as successful as the iPad—including the DVD player, the
iPod, and the iPhone. Good thing Flash lets you build for the iPad.

As you might expect, developing for the iPad is almost identi-
cal to the iPhone in Flash Professional. After all, you are still using
the same Flash, the same ActionScript, and the same process to
build your API files.

But there are some differences. The main difference is the over-
all screen size. The iPad has a screen resolution of 1024 × 768 pix-
els. This gives you dramatically more room to work with than the
iPhone screen. The current iPad supports 132 ppi images, but it
is fully expected that the next version will also support the super
high-density 320 ppi images used in the iPhone 4 Retina display.
With that said, you can use some gorgeous images on the iPad.

The overall speed of the iPad is very good. The iPad was the
first device from Apple to support the A4 System-on-Chip design
that later appeared on the iPhone 4 and iPod Touch. The iPad has
less RAM than the iPhone 4. This can be a problem when creating
apps that use a lot of data. For instance, you may have an app
with two or more video screens going at once. You will see a frame
rate drop if you do that.

Memory management is something you need to be con-
scious of when you develop for the iPad. The main issue you are
presented with is the large screen. A larger screen means more
pixels. Even with a faster chip than the iPhone 3GS, you will still
see dropped frame rates if you have large animation sequences.

	 Deploying Mobile Apps with Flash CS5   269

Finally, when you are packaging your iPad app there are two
additional steps you need to take. The first is to ensure that you
use a large Default.png screen image. The screen size is 1024 × 768
pixels. The second is that you will want to add a new launch icon
that will show up on the iPad. The icon will need to be 72 × 72
pixels.

With this all in mind, the development and submission
process for the iPad is almost identical.

Building for Tablets and TV
It is likely that 2011 will be known as the year the tablets went

to war. In 2010 Apple released the iPad to massive success. Other
hardware companies, such as Dell and Samsung, are pushing out
their own tablets running a slew of different technologies, the
most popular being Android.

The problem is that Google has already stated that Android
2.2 is not the tablet version of Android. The tablets Dell and oth-
ers are pushing out are, in many respects, big phones. Google
is pushing for Android 3.5 to support tablets. Expect that in
early 2011. As with the iPad, expect each Android Tablet to have
its quirks. Will Adobe be there to support your work? Well, it is
there already.

But there are other tablets on the market. BlackBerry’s
PlayBook tablet is a real tablet; to create apps on the device you
have to use AIR. A third operating system that hardware com-
panies are looking to use for tablet form factors is Microsoft’s
Windows 7. AIR has been supported on Windows 7 for two years.

Today, Flash Professional gives you the tools to target all the
popular tablets on the market. Watch the tablet wars take shape
in 2011—mark my words, this is the next “big deal.”

So what about the news around Smart TVs? There is Google
TV, Apple TV 2 (running iOS), and many other smaller companies.
What about these groups?

Over the last two decades many companies have tried to
convert the way we consume TV. Frankly, no one has succeeded.
The core problem is that watching TV is a passive experience
done within a group. When you are sitting down watching a
show, doesn’t it drive you nuts when someone else in the room
has the remote control and insists on channel surfing? Imagine
what it will be like when that same person has a keyboard and,
in the middle of your favorite show, decides to update their
Facebook page?

It will likely be 2012 or even 2013 before anything happens
with apps on the TV. Of course, Flash is already there. Google TV
is built on Android and Apple’s TV is built on iOS. Both are not

Publishing Universal
Apps

Flash does give
you the ability to
build apps that

will publish to both the
iPhone and iPad. These
are called Universal Apps.
You will need to
experiment with this
process to get it right. My
personal experience is that
some apps port well as
Universal Apps and others
simply do not. Try it out.

270   Deploying Mobile Apps with Flash CS5

accepting third-party apps yet. But both have the potential, and
Google has already said they want apps.

You may want to take this progression in developing your first
apps: develop for handheld devices, then tablets, and wait to see
what happens with Smart TVs.

Adding Advertising to Your Apps
You hear it all the time: how can I make money from my apps?

This is not an easy question to answer.
The current implementation of app development in Flash

really only allows for you to either sell or give your apps away
for free. Currently, Adobe does not easily support advertising or
in-app purchases in your apps. But, expect this to change as the
ability to add advertising and in-app purchases comes to mobile
AIR.

Both ad and in-app supported models are based on a busi-
ness model called Freemium. The concept is this: Give away
your apps and eliminate the purchase barrier but then make
money later.

The advertising model is an easy model to understand. Two
groups are emerging as the leaders for mobile ad revenue: AdMob
(owned by Google) and Apple’s iAds.

In-app purchasing is a model where you give away your game
but to add additional levels or buy virtual goods you allow a user
to purchase these features on the game. This is the approach
Zynga uses for its wildly popular FarmVille—need more virtual
currency, then buy it with real cash.

There are real benefits to the Freemium model. Experiment
with selling and giving apps away for free. You will be surprised
how many downloads you get when you give away your app. The
difference can be a 100:1.

Of course, the Freemium model requires that Adobe provide a
vehicle for developers to use it. It will be surprising if they do not.

Tracking Your App’s Success
You have built your app, you have made money from sales,

and you need to go to the next stage: building version 2.0. How
do you go about that? Often, when you are building an app, it
is difficult to tell how well your customers are receiving it. What
is the most popular level of a game? Is feature XYZ being used
in the app? How often is the app played each day and in which
country?

	 Deploying Mobile Apps with Flash CS5   271

In other words, how do you track your app’s success? A tool
used by many website owners to track user activity on a website
is Google Analytics. Fortunately, there is a version of Google
Analytics you can use for your Flash apps.

To get started you will need to go to the following web address:
http://code.google.com/apis/analytics/docs/tracking/flash
TrackingIntro.html

From here, Google provides ways you can add Google
Analytics tracking to your applications. This applied to all Flash
applications, not just apps. We will get into the details of using
the tracking in the project after this chapter.

To use Analytics you will need to have a registered Analytics
account. You can do that at the following web address: www.
google.com/analytics/. The sign-up process is very easy. For your
work, you will get a Google Analytics ID. It will look something
like this: UA-XXXXXXXXX. Once you have the UA ID then you will
be able to successfully add analytics to your apps.

The Google Analytics website is always expanding and offer-
ing new features and services. Check out the following YouTube
channels for more information on Google Mobile and Google
Analytics:
•	 www.youtube.com/user/GoogleMobile
•	 www.youtube.com/user/GoogleWebmasterHelp

These tools will give you additional knowledge to make more
informed decisions about how to expand your apps.

Marketing Your Apps
The final step you need to take with your apps is to market

them. At the end of the day this really comes down to two things:
(1) writing a lot about your apps to increase interest in them and
(2) buying ad space. There is no holy grail solution when it comes
to marketing. Yes, there are some companies who have had run-
away success without spending a single dime on advertising, but
they are the exception, not the rule.

Check out how Chase is marketing its apps: it uses conven-
tional TV ads. Other companies, such as Zynga, make frequent
posts to their blogs and take advantage of viral advertising on
websites such as Facebook. And yet other companies (such as the
makers of Doodle Jump—one of my personal favorite games) use
Twitter as the main tool for advertising.

What I am saying is this: There are no clear and defined paths
for marketing your apps. What you need to do is experiment with
all of them to see which models get the best response. It will be a
lot of hard work but the result will be worth it.

272   Deploying Mobile Apps with Flash CS5

Summary
It seems like a contrary thing to say, but creating your app is

the easy task for a developer: selling your app is hard work. First
you need to choose which market store you will be selling your
app through and then you need to track the sales process to see
how well your app is doing. There will be times when you take an
iOS app and port it to another platform. When you do this make
sure you update your Google Analytics tracking so you keep track
of the sales for each platform.

Finally, you need to tell the world that they must buy your
app. Reach in and channel your inner sales skills. It may take a
village to raise a child; it certainly takes a team to sell an app.
But get your apps out there. Mobile devices are the next wave of
technology; time to jump onto a new train to find out where it
takes you.

273© 2011 Elsevier Inc. All rights reserved.

The focus of this project is not the creation of an iOS or Android
app: It is the publication process. If I have said it once, I have said it
a thousand times: Creating your app is the easy task. Publishing is
a pain in the….

By the time you finish this project you will be able to success­
fully submit your app to the iTunes App Store and Google’s
Android Market.

Choosing Where to Sell Your Application
Why is publishing an app so difficult? Well, it depends on

where you are publishing. All online app stores are not created
equal. Are you just targeting the iPhone crowd? Do you want your
app on Android devices? What about BlackBerry?

Currently, Flash Professional will build apps that you can
submit to the following:
•	 Apple’s iTunes App Store
•	 Google’s Android Market (Figure 6.1Proj)

The list is increasing regularly. The challenge you have is to
understand all the different requirements each store has.

Did I mention that the list of stores is growing? Here are more
stores coming during 2011:
•	 Verizon and T-Mobile Market Stores
•	 Amazon Market Store
•	 BlackBerry PlayBook Market Store
•	 Android App Store

In addition, Adobe will also likely support stores such as:
•	 Windows Phone 7
•	 Direct-to-TV devices, such as Sony Blu-ray App Store
•	 Nokia’s Symbian and MeeGo App Stores

The goal for Adobe is developing an application that can run any­
where on any device on any screen size. This makes it a challenge for
you as the developer to understand where to place your focus.

Project: Publishing
Your Apps into the Many
Different App Stores

274   Project: Publishing Your Apps into the Many Different App Stores

For now, the two leaders are Apple and Google. Apple services
hundreds of millions of customers with its App Store and Google
is catching up fast. No doubt a third company will follow suit.

To demonstrate the different steps you need to take, you can
use the Space Rocket game you created in the previous project as
the app you will be submitting to different app stores.

Publishing Android Apps in Your Own Store
Let’s start with the easiest app submission process: deploying

an Android app directly from your own website.
	 1.	 Start by opening the Space Rocket game you created earlier.
	 2.	 Open the Android settings.
	 3.	 Select the second tab, Deployment, and change the Deployment

Type to Device Release.
	 4.	 Publish your app.
	 5.	 You now have an APK file. To publish this app from your web­

site, all you have to do is upload the APK to your website and
link to it. When a customer comes to your website using their
Android phone and selects the link, the APK file will install on
their Android phone.

Figure 6.1Proj T he Android
Market.

	 Project: Publishing Your Apps into the Many Different App Stores   275

How about that? Super easy, wasn’t it?
Now, let’s take it up a notch and head over to Google’s Android

Market.

Deploying to the Android Market
As with publishing an app to your website, the Android

Market will require an APK file. There are some additional steps
you need to take to make sure your app can be accepted.
	 1.	 Open the Space Rocket Flash movie.
	 2.	 From the Properties panel select the Android settings and

open the Application & Installer Settings window.
	 3.	 You have four taps you can control: General, Deployment,

Icons, and Permissions (Figure 6.2Proj).
	 4.	 Select the General tab.
	 5.	 In the previous chapter you gave your app a name. Now you

must give your app an ID, a unique identifier for your app.
The convention is this: com.websitename.appname. So, if
your website is www.focalpress.com and you have an app called
SpaceRocket, then you would write com.focalpress.spacerocket.

	 6.	 Select the Deployment tab.
	 7.	 From Deployment Type, choose Device Release.

Figure 6.2Proj  Publish settings
for Android deployment.

276   Project: Publishing Your Apps into the Many Different App Stores

	 8.	 In the certificate section, press the New button. You will need
to create a 25-year certificate for your app. After 25 years the
customer will need to update the app (but what they should
really do is replace their phone—can you imagine how out of
date a 25-year mobile is?).

	 9.	 Select the Icons tab.
	10.	 You do not need to have icons when you submit your app to

the Android Market Store, but it really helps. There are three
different icon sizes you need: 36 × 36, 48 × 48, and 72 × 72.
Unlike Apple iTunes App Store icon requirements, you can
have icons with a transparent background. This is easily done
using Adobe’s Fireworks.

	11.	 Finally, select the Permissions tab. Select the hardware features
used in the app. If you have a link to a web page, you must
select the INTERNET option.

	12.	 Now you can publish your APK file.
	13.	 Once you have your APK file, head over to the Google Android

Market at http://market.android.com.
	14.	 If you have not already done so, register as an Android devel­

oper. This will set you back $25 but will give you access to a
global market. I think it is a fair deal.

	15.	 Google’s submission process places a focus on simplicity.
You have most of the files you need to submit to the Android
Market Store. You will add a couple more in a moment.

	16.	 To get started loading a new app, go to the following URL
after you have been accepted into the program: http://market
.android.com/publish/Home.

	17.	 This page is your landing app management page. It allows
you to see at a glance all the apps you are selling, how many
have been sold, any errors that have been reported, and, most
importantly, a button to upload a new app.

	18.	 Select the Upload Application button; you will be taken to a
single page where Google is going to ask you for a few details.
Nothing too crazy, you just need to provide a title for your app,
a description (you only get 325 characters, so make it good), a
promotional description (even fewer characters, 80, so think
Twitter text), and you can choose which type of app you are
uploading. (Figure 6.3Proj)

	19.	 In addition, pick out whether the app is free or has a price.
If you make the app free, then you can never charge a price
for it in the future. Bummer. If you do add a price, then the
price will be U.S. dollars. All transactions for new apps is man­
aged by Google Checkout. Using Google Checkout means that
when someone buys something from you, you receive the
payment in 48 hours.

	20.	 The most important part of the Upload an Application screen
is the first section of the screen: Uploading Assets.

	 Project: Publishing Your Apps into the Many Different App Stores   277

	21.	 Choose and upload the APK file you created.
	22.	 You will also need to develop two screen shot images. Take

screen shots of the app from your phone. There are several
apps you can get that will help you with this (such as Edward
Kim’s Screenshot It). The two images you need to create should
be either 20w × 480h or 480w × 854h.

	23.	 You also have the option of creating a small Promo Image
(180 × 120). I would create one. You never know when Google
will use your app for a promotion.

	24.	 Complete the rest of the Upload page (checking boxes, mostly)
and select Publish. Your app is now immediately available for
sale to all countries the Android Market services.

That’s it. The Google app submission process is very easy. The
hard process comes next: Apple’s iTunes App Store.

Running the Gauntlet That Is Apple’s iTunes
App Store Submission Process

The third part of this project is to successfully submit an app
to Apple’s iTunes App Store. This is not an easy accomplish­
ment. Typically, I put aside one to two hours to step through the

Figure 6.3Proj U ploading
a new app to the Android
Market.

278   Project: Publishing Your Apps into the Many Different App Stores

process. Apple has made the process so complicated that you
need to download a submission guide. The document can be
found at https://itunesconnect.apple.com/docs/iTunesConnect_
DeveloperGuide.pdf. (Figure 6.4Proj).

Amazingly, Apple’s submission guide is over 170 pages. In addi­
tion, Apple changes its rules and process regularly. For instance,
in February 2010 you could submit apps created with Flash to the
App Store, then in March you could not, then in September Apple
once again changed its mind. During this time the screens you
use to submit your apps also changed three times.

With that said, the following steps are guidelines. I fully expect
that some of these steps will have changed by the time you
come to read this book. Just send me an e-mail if you have any
questions.

So, before we jump into the process, why do we need to
submit apps to Apple’s App Store? The answer is numbers:
120 million iOS devices. The market for Apple’s iOS is huge.
It includes phones (iPhone), portable game systems (iPod Touch),
Tablets (iPad), and soon, the Apple TV (it runs iOS, too). These are
all systems running today. A simply huge market.

Figure 6.4Proj  Publish settings
for Android deployment.

	 Project: Publishing Your Apps into the Many Different App Stores   279

So, without further ado, let’s jump in.
	 1.	 As with Google Android Market, there are two steps you need

to go through in creating an iPhone App: building the IPA
file and the submission process. Start by opening the Space
Rocket game you created earlier. In File Settings, change the
publish type to iOS.

	 2.	 Open the iOS Settings. You will see you have three tabs:
General, Deployment, and Icons. (Figure 6.5Proj)

	 3.	 The General tab allows you to name the app as it appears on
the screen in iOS; choose the target device and select where
you are saving your final IPA file. Something to note is that the
IPA file you create is an iOS 3 app, not iOS 4.

	 4.	 Select the Deployment tab. This is one of two hard sections.
Adobe has a helper file you can view at http://help.adobe.com/
en_US/as3/iphone/index.html, which walks you through add­
ing a Developer/Release certificate. You will be creating an IPA
for submission to the iTunes App Store. You will want to use
your Release iOS Certificate.

	 5.	 In addition, you will need to download a Deployment
Provisioning Profile from the iTunes App Store. Again, Adobe
covers the details, but it essentially requires that you go to
Apple’s Developer site (http://developer.apple.com/ios), regis­
ter your app, and create a deployment profile. Figure 6.5Proj  Publish settings

for iOS deployment.

280   Project: Publishing Your Apps into the Many Different App Stores

	 6.	 The AppID is the name you give the application on Apple’s
Developer site.

	 7.	 The final step is to create the icons for your app. There are five
different icons you need to create: 29 × 29, 48 × 48 (for iPad),
57 × 57, 72 × 72 (for iPad), 512 × 512.

	 8.	 Select OK and build your app. Cross your fingers you got it
all right. Don’t get too frustrated if you have to review Adobe’s
documents a few times the first time you try this process (or
the seventh or twentieth), because you have to remember a lot
of different things for the application build to work correctly.

	 9.	 Now you have an IPA file that works correctly. When you are
developing your app, use a Developer version of the Provisioning
Profile to load the app, via iTunes, onto your iPhone. Capture
screen shots of your app by pressing the Home and Close but­
tons together. There will be a screen shutter sound and an
image of your screen will be saved to the Camera Roll. Take a
few of these, you will need them in the submission process.

	10.	 You will need to compress your IPA file into a ZIP file. The
iTunes App Store will only accept applications in ZIP format
from Flash Professional.

	11.	 Applications for the iTunes App Store are all managed through
Apple’s iTunes Connect website: http://itunesconnect.apple.com.

	12.	 Apple provides you with a lot of different tools and services
at this site, but for now, the focus is on uploading a new
application.

	13.	 Select the Manage Your Applications button. You will see a list
of all the applications you have written.

	14.	 Select Add New App.
	15.	 The first screen will ask you to give your app a name and a

SKU (Figure 6.6Proj). These can be anything you want.
	16.	 The third option requires that you associate your new app with

a named app from the iOS Developers site. Select Continue
when you have these options selected.

	17.	 The next screen requires that you add metadata about your
app (Figure 6.7Proj). This includes Keywords, Description
(6500-character limit, so get as descriptive as possible), and
the primary and secondary category for the app.

	18.	 You will also need to upload screen shots of the app and a
512 × 512 image. This is where you use the screen shots you
took earlier on your iPhone.

	19.	 Save your settings. You will be taken to a summary screen of
your settings. Select the View Details button. When you go
to the metadata summary screen you will see a blue button
named Ready to Upload App. Select the button.

	20.	 You will be asked if the application has encryption. Do not use
encryption for your first app to keep things easy. Say “no” on
this screen.

	 Project: Publishing Your Apps into the Many Different App Stores   281

Figure 6.7Proj  Adding metadata to your application.

Figure 6.6Proj U ploading a new app to iTunes Connect.

282   Project: Publishing Your Apps into the Many Different App Stores

	21.	 The next screen lets you know that now is the time to upload
your app—BEWARE: MAC ONLY AREA. Sorry folks, by the
time you get to this screen you will see that you need to down­
load an OS X app to upload your app. There is no Windows
love on the Apple iTunes Store.

	22.	 Download and install the Application Loader app.
	23.	 Open the Application Loader. The first thing it will ask you is

for your iTunes Connect ID and Password. Enter both. A list of
the new apps waiting to be submitted will appear in a drop-
down. Select the app you want to upload from the drop-down.
The next screen will ask you to find the ZIP file containing the
app.

	24.	 Click the next screen to upload the app.
	25.	 You will receive an e-mail letting you know that your app has

been submitted to the iTunes App Store.
	26.	 Now you need to wait. It could be a week or two before your

app is reviewed. The review also does not mean your app will
be accepted. My personal experience for the 24 iTunes apps I
have submitted has been a 1:4 rejection ratio. So far, not one
rejection has been due to the app not working. It is typically
for more weird and obscure reasons. You will no doubt have
fun finding these out.

At this point, you have submitted your app to the iTunes App
Store and you are ready to start making money.

During this project you did not create anything tangible, such
as a game, but you covered what I think is the hardest and most
rewarding element of creating applications: submitting to online
stores.

Adobe is working on ways in which you can submit to many
online stores more easily. Watch what they are doing carefully as
the online market stores will continue to increase due to a simple
reason: they work. Both the iTunes App Store and Android Market
provide evidence that customers like having all their apps in one
place. Get used to submitting your apps to many stores.

283

Numbers
1 GHz CPU/SOC, running at, 9t
2D game environments, working

in, 203–208
3D

adding to apps, 198–202
Collada objects, 199
libraries for Flash, 198
models, 84, 202
objects, 202
rotation, 84
Rotation tool, 94
Transform tool, 84, 85f
working in, 83–86
worlds, adding physics to, 208

A
A4 System-on-Chip design, 268
AAC/LTP format, 72t
About screen, in Sprite's 123,

133
Accelerometer

adding with ActionScript,
150–151

controlling orientation with,
150–151

in Flash Player apps, 151b
role of, 150–151

accelerometers, 12
ACCESS_FINE_LOCATION

permission, 152, 157
Acer Inc, Android phones, 9t
Actions layer

adding, 131, 131f
locking, 103
opening Actions panel, 151

Actions panel, opening, 39, 105,
106f, 151

Actions window, opening, 19–20
ActionScript, 101

added to Actions window, 80

adding, 19–20, 21f
adding complex animation

using, 123–124
applying a fade-in transition

effect, 118
controlling animation, audio,

and video, 118–125
controlling content, 120–125
controlling time, 119
converting Motion Tween to,

68–71
leveraging interface calls,

141–164
pasting into a text editor, 69
referencing a class from, 129,

130f
referencing a named movie

clip, 41, 42f
referencing a named movie

clip in, 41f
stopping the movie from

playing, 131
timeline managing, 131
triggering an event, 132
ways of managing, 103
working with, 78–80

ActionScript 2.0 (AS2), 101–102,
104

ActionScript 3.0 (AS3), 7,
101–102

changes in, 102
compared to ActionScript 2.0,

104
main features of, 103–104
open source libraries, 153
power of, 182–183
stop() command, 95

ActionScript libraries, utilizing
open source, 125

ActionScript Virtual Machine
(AVM), 102

ad space, buying, 271
Add New App button, at iTunes

Connect, 265
AdMob, 270
Adobe, 5, 6
Adobe Air. See AIR (Adobe

Integrated Runtime)
Adobe Extension Manager, 16
Adobe Soundbooth. See

Soundbooth
advertising, adding to apps, 270
AIFF (Macintosh only) format,

72
AIFF (Windows or Macintosh)

format, 72
AIR (Adobe Integrated Runtime)

giving immediate in-road into
mobile device development, 6

maturing at a rapid clip, 141
for mobile devices, 6
optimizing to leverage GPU

acceleration, 242
running Palm's WebOS and

RIM's BlackBerry phones,
151

AIR 2.5, Android and BlackBerry
PlayBook fully supporting,
222

AIR Android app, creating, 243
AIR Android Settings, 43, 43f,

150
AIR Android Settings button,

Permissions tab, 152
AIR applications, installing onto

an Android OS, 17–18
AIR for Android

almost complete version of
AIR 2.5, 157

files, downloading, 32f
getting started with, 31–32
Output window, 216

Index
Note: Page numbers followed by b indicate boxes, f indicate figures and t indicate tables.

284   index

AIR for Android (Continued)
settings in Properties panel,

20, 22f, 157
template, 19, 33f
web page, 16, 17f

Align panel, opening, 38
AlivePDF open source library,

125
Alpha, from the Style drop-down

menu, 56, 57f
Alpha levels, changing, 60
altitude, printing to screen, 177
Amazon Market Store, 273
AMR-NB format, 51f
AMR-WB format, 51f
Analytics account, getting a

registered, 271
Android 2.2

device running, 27–28
downloading, 16f
Flash Player available for, 6

Android 3.5, to support tablets,
269

Android Accelerometer. See
Accelerometer

Android App Store, 273
Android applications

building, 18–25
creating, 22f
creating graphics in, 35
focus of, 49
publishing in your own store,

274–275
Android deployment type

option, 24, 24f
Android developer, registering

as, 276
Android development, setting

up Flash CS5 for, 15–17
Android development site, 29,

29f, 30f
Android device

loading data from remote sites
onto, 141

for testing, 27–28
Android hardware

acceleration, 11–12
designing and developing for,

7–12
working with, 8–11

Android logo

creating icon of, 35
fading, 57, 58f
PNG graphic of, 35f
rotating, 52

Android Market, 266, 267f, 273,
274f

deploying to, 266–268,
275–277, 278f

Android Market Place, 181
Android Market Store,

submitting icons, 276
Android MXI extensions, for

Flash CS5, 31–32, 32f
Android OS

ActionScript 3.0 required, 102
additional features on AIR 2.5

for, 164
game development on,

181–184
installing AIR application,

17–18
as OS for tablet computers, 6
running on a slower CPU, 49
running on tablets and TVs, 6
software features specific to,

164
Android phone(s)

capable of running Flash and
AIR, 5f

creating content without
programming, 49

differences from a desktop, 8
running an application on,

43–46
scene set up for, 219
supporting Flash and AIR, 8
testing on, 96–98

Android publishing permissions,
176

Android SDK. See also SDK
(software development kit)

ADB tools, 24–25
configuring, 12–14
downloading and installing, 13
installing, 13
manager, 13
minimum requirements, 13
releases, 13, 15f
site, 14f

Android tools, installing for
Flash CS5, 16

Android version, changing an
app to, 266f

Android-specific features,
requiring specific
permissions, 156

AndroidWelcomeMessage.xfl
Flash movie, 37–43

animated object, forcing
movement of, 65b

animation
adding, 94–96, 197
controlling on the screen, 122
creating random effects, 101f
extending period of time for,

64
frame rate for, 50b
images in, 50b
lengthening of time of, 62
loops controlling enemies and

players, 236
making invisible, 53f

animation libraries, using,
191–198

animation path
adding more detail to, 65
creating through script, 194
modifying, 61
rotating, 65, 67f

animation sequences, number
on the screen, 71

Animation Splines, 61, 61f
exacting control over, 118
moving whole Motion Tween

sequence, 64, 64f
stretching, skewing, and

rotating, 65
updating without adding

additional keyframes, 62,
62f, 63f

Animation System, 194–198, 195f
animation techniques, on

mobile devices, 50–71
AnimatorFactory function, 122
AnimatorFactory object class, 120
APK file

Android Market requiring, 275
format, 21
including additional files in,

96–97
installing on an Android

phone, 274

	 index   285

loading, 160
as package format for Android

apps, 266
App ID, 22

for Apple, 280
selecting at iTunes App Store,

261, 261f
App name, 21
App Store, as the Distribution

Method, 260
Apple

business relationship with,
263–264, 264f

position on Flash, xiv
Apple TV 2, 269–270
Application & Installer Settings

window
Auto orientation, 150, 150f
Deployment tab, 44, 45f
General tab, 44f
Icons tab, 46f
opening, 43, 44f
tabs, 275

Application & Installer window,
Permissions tab, 156

Application and Installer options
window, 20, 23f, 24f, 25f

Application ID, acquiring from
Facebook, 210

Application Loader
at iTunes Connect, 282
uploading packaged app to

iTunes App Store, 265
Application Name at iTunes

Connect, at iTunes Connect,
265

applications (apps)
building, 37–43
choosing where to sell,

273–274
completing, 137
developing for Android

devices, 7–12
marketing, 271
publishing, 43–46
running on an Android phone,

43–46
tracking success of, 270–271

Archos Android tablet, running
Flash and AIR, 7f

ARM architecture, 8

ARM CPUs, 8
arrays, 113, 113f, 114b
AS name, adding, 222
AS3. See ActionScript 3.0
AS3 Animation System 2.0,

using, 194–198, 195f
AS3 event, adding, 108
AS3 event model, 108, 109
AS3CoreLib, 188–189, 188f
AS3Crypto library, 189–190,

189f
AS3eBayLib, 190, 190f
as3syndicationlib, 153–154
ASND (Windows or Macintosh)

format, 72
Aspect ratio, 22
assets

creating for frogger-style
game, 222

SWF file containing, 223
ASTRA, 191, 192f
Audacity

audio editing tool, 91
editing a sound clip, 76f
Open Source solution, 74, 75f

audience, for a game, 182
audio

adding, 96
collecting, 91
connecting to in movies, 71

audio assets, linked library for,
221–222

audio CODEC, 80
audio files

delay, 164
saved to hard drive on

Android phone, 161
supported on the Android OS.,

71, 72t
AUDIO permission, 159
Audio stream and Audio Event

Setting buttons, 77, 77f
augmented reality, adding to AIR

apps, 163
Auto orientation

checkbox, 22
selecting, 150, 150f

Autoplay, 83
AVM (ActionScript Virtual

Machine) 2.0, 102
Away3D, 202, 202f

B
background image, for

introduction screen, 225
Background layer, adding, 131
backward buttons, 165, 166f
ball, flying, 95
baseball game project, 90
Basic Motion controls, in Motion

tool, 68
BBC, sounds from, 183, 184f
Begin Event, listener for,

143–144
Behaviors, introduced with

Flash MX 2004, 108
beTouch E400, 9t
bitmap images, in Library, 93
bitrate, changing, 77, 78f
BlackBerry

adopting Adobe technology, 6
PlayBook Market Store, 273

box shapes, physical
characteristics of, 206

Box2D
Class files, 205
creating a world in, 206
Java project, 204
Physics Engine open source

library, 125
Box2DAS3, using for physics,

204–208, 205f
bullet

acting as movie clip, 253
controlling speed of, 253

business relationship, with
Apple, 263–264, 264f

buttons, listeners associated
with, 210

C
cacheAsBitmap, 164, 248
cacheAsBitmapMatrix, 164
camera

in all Android phones, 12
controlling, 161–163

CAMERA permission, 157, 161
Cantrell, Christian, 188–189
Canvas Size screen, 36
CD quality sound, 77
certificates, 189

changing to published
certificate P12 file, 261, 263f

286   index

certificates (Continued)
creating 25-year, 276
creating valid, 266

Chambers, Mike, 188–189
Chase, marketing apps, 271
child's game, building, 127–137
circle objects, defining, 207
Class files

adding to movie clips in the
library, 185f, 242

creating, 109, 222
editing directly in Flash

Professional, 110f
editing to use PBE, 217
extending the game, 226
groups of, 224
importing, 209
structure of, 209
as text files, 109
using, 103

Class option, 186f, 245
class references, adding directly

to movie clips, 110
classes, working with, 109–110
Classic Tween

animation dictated by the
timeline, 68

keyframes required for, 56f
leveraging techniques, 55–57
requiring two keyframes, 127f

CLICK event listener, creating, 136
code libraries, leveraging, 184
Code Repository, 153–154
Code Snippets

checking YouTube for videos
explaining, 125

organized in groups, 105
quickly adding complex

interactivity, 79f
quickly generating code, 132f

Code Snippets panel
in ActionScript, 78
learning ActionScript quickly,

105
opening, 79, 79f
setting started, 104–108

Code Snippets window, 104, 105f
CODEC (Compression/

Decompression)
licenses, 80
technology, 80

Collada 3D models, bringing
into Flash, 85–86

Collada cube, 200
Collada file format (DAE file

types), 85
Collada object, as a simple

square, 200
Collision class, 227
Collision collection, in

Box2DAS3, 204
collision detection, 237
CollisionDetectComponent

class, 226
Color Effect, in Motion tool, 68
COM folder

from GreenSock, 124
from a library, 186

Common library, in Box2DAS3, 204
compass hardware, 12
Component panel, 81, 82f
components, working with, 81b
confidentiality modes, 190
content

animating with ActionScript,
120–125

single finger to interact with,
142–143

updates dynamically loaded,
119

Convert to Symbol option, 39,
40f, 55, 55f

Copy Motion as ActionScript
3.0, 68

core asset groups, for frogger-
style game, 221

core elements, loading, 234
core game code, for Space

Rocket, 245
CoreLib open source library, 125
“cork pop” sound, playing, 135
corkPop sound, in the library,

136
corkPop sound file, choose

Properties, 130
counting, in arrays, 114b
CPU/GPU power, of a phone,

242
Create Classic Tween option,

57, 58f
Create Motion Tween option,

59, 59f

cryptography, supported, 189
cue points, 83
custom Class files, creating to

extend PBE, 224–233
custom plug-ins, for TweenMax

and TweenLite, 192, 193f

D
data, controlling in AS3, 113–116
DataProvider object, holding

Friend List data, 209
default 24 fps, in Flash, 65
default scripts, turning on and

off features, 169f
Default.png, selecting, 128, 129f
Default.png screen image, 269
delay, creating a 4-second, 159
DELAY_LENGTH period, 159
Dell, Android phones, 9t
Deployment Provisioning

Profile, downloading, 279
Deployment screen, in

Application & Installer
Settings, 23, 24f

Deployment tab
in Application & Installer

Settings, 44, 45f, 275
of iPhone OS Settings, 279
at iTunes App Store, 261, 262f

Deployment Type, changing to
Device Release, 274

developer application ID,
adding, 210

Developer certificate, creating,
23, 24f, 25f

Developer folder, creating, 13
Developer version, of the

Provisioning Profile, 280
Developer/Release certificate,

adding, 279
developer's link, on Android

Market page, 267
development environment,

setting up, 27–33
Device debugging option,

selecting, 24, 24f
Device Release option,

choosing, 275
Direct-to-TV devices, 273
display, changing for correct

screen position, 150–151

	 index   287

Distribution Provisioning Profile
page, at iTunes App Store, 261

Distribution tab, of iOS
Provisioning Portal, 259,
260f

DOM3 event model, developing
solutions, 108–109

Doodle Jump, markers of, 271
doTransition function, 169–170
drag and drop gestures, adding,

174–176, 175f
drag event, defined by two

events, 143–144
Droid Incredible, 9t, 142
dynamic data, controlling with

visual tools, 119
dynamic text fields, creating, 116
Dynamics collection, in

Box2DAS3, 204

E
E4X standard, manipulating

XML with, 114–115
Earth gravity, 206
Eases, in Motion tool, 68
eBay Store, adding to a site, 190,

190f
ECMA XML standard, E4X, 114
ECMAScript, DOM3, 108
Edit Application Settings icon,

for iPhone OS Player, 128
Edit with Soundbooth, selecting,

74
editing tools, 90
Elastic animation, 188
Elastic animation type, 186
Electric Rain, tools for 3D

development, 202, 203f
e-mail, navigateToURL opening

blank, 133, 134f
e-mail address, pattern looking

for, 115, 116
encryption

application having, 280
public key, 190

End Event, listener for, 143–144
enemies, allow for correct facing

of, 236
enemy trapping the player

control, ActionScript class
for, 232–233

Event Handlers, setting up, 196
event listeners

adding, 167, 249
waiting for Accelerometer to

be triggered, 141
EventsDispatcher class, 109
Export for ActionScript option,

110

F
Facebook, adding to games,

208–213, 214f
Facebook credentials, entry of,

213
Facebook data, loading into

Flash, 211
Facebook logo, adding, 213
FaceForwardComponent class,

227
Falling Rock class, 254
falling rocks, controlling in

Space Rocket, 254–255
FarmVille, 182, 183, 204f, 270
file formats, supported in Flash,

72, 73f
file structure, organizing for

Class file, 222
files

adding into the library,
129–130

creating for Flash projects,
89–91

importing into Flash, 91–93
filters, in Motion tool, 68
fingers

interacting with applications,
142

tending to be big, 142
Fire button, pressing, 248
Fireworks CS5

creating image icons, 36f
editing images, 90f
as PNG image editor, 35

Fireworks PNG image, flattening
imported, 38f

first-person shooter (FPS)
games, 65

FLA class, 195
Flash CS5, 9t

adding frame-based
animation to, 50–51

adding rotation in, 147
adding sound files to, 72–77
applications, running in AIR, 7
building solutions without

programming, 49
building your first

application for Android
using, 18–25

components, 81
connecting with Facebook, 208
content, 33, 34f
cookies, 114
creating 3D in, 83
deploying mobile apps,

259–272
extending with open source

libraries, 125
files and tools needed to test,

14
as game development

environment, 240
getting latest version of, 31–32
as ideal platform for game

development, 182
image manipulation tools, 39f
importing files into, 91–93
inclusion of classes, 109
on mobile devices, xiii
range of media, 49
rapid Android development

in, 49–87
support for iPhone

development, 16f
template for Android

applications, 18f
updating sound files, 74
version coming to the

Android, 5
versions of ActionScript,

101–102
Flash CS5 Professional

AIR apps built in, 6
choices for apps built on, 273
setting up for Android

development, 15–17
tools to target all popular

tablets, 269
Flash FLVPlayBack component,

83
Flash Geom Matrix, importing,

164

288   index

Flash movies
adding 3D models to, 84–86
adding video, 81–83
converting into an Android

application, 20
publishing as an Android

application, 43–46
running on your Android

phone, 18
testing, 20

Flash Player, 6, 102, 114, 242
Flash projects, creating files for,

89–91
Flash SWF file, creating, 217
Flash symbols, in Android apps,

40f
Flash tools, leveraging for 3D, 84
Flash Video Player component,

82f
Flash VP6, legacy format, 81
FlashGame class, 233–239
FlashGameFrogger fla, 239
Flex development, requiring

command lines, 15–17
FLVPlayBack 2.5 component,

selecting, 81
FLVPlayBack video component,

properties, 83, 96
forward buttons, 134, 165, 166f
frame, adding to extend text on

the screen, 57
frame rate

for animations, 50b
controlling user expectation,

65
frame rate refresh speed

reducing, 65
frame-based animation, 50–55,

51f
frameworks

references to, 161
supported in an animation

sequence, 121
free app, at Android Market, 268
Free Transform tool, 53f, 65, 95

selecting, 65, 66f, 94
Free Transformation cursor, 52
Freemium business model, 270
friend details, displaying, 212
FriendList public function, 209
frog, movement of, 221

Frogger, described, 221
Frogger style game, 221–239
Froyo, 28f
full game environments, 215
full screen, checkbox for, 243,

244f
Full screen setting, 22
full-screen mode, 83b
function

capturing sound to phone's
memory, 160

creating, 108, 109
sending user back to the

home screen, 133
FutureSplash, frame-based

animation in, 50–51

G
gain (loudness) property, 159
Galaxy A, 9t
Galaxy S, 9t
game(s)

adding code to, 245–251
building, 127–137
building with Flash, 181–240
creating the custom class files

for, 224–233
developing, 240
making social, 208–215
as most complex type of app,

241
as multisensory, 183
planning, 182
types of, 182
understanding what you want

it to be, 182
game assets, for Space Rocket,

244–245
game development, 181–184, 242
game elements, rending on the

screen, 237
game engines

PushButtonEngine as, 218
using, 203–240

game libraries, classes of, 203
Game Screen, 225–226
game screen area, defining size

of, 234
game structure

getting started with, 221–224
sections of, 182

gameOver Boolean value, storing
state of the game, 246

GameOverComponent class, 229
GameScreen class file, 226
General tab

in Application & Installer
Settings, 21, 275, 275f

of iPhone OS Settings, 279
Geolocation

finding where you are,
152–153, 176–177

importing namespaces
needed to leverage, 177

looking to see if supported, 177
using both GPS and WiFi, 178f

Geolocation class, properties,
152

gesture(s)
adding two or more together,

149
creating, 143
declaring the type of, 173
instructing Flash you are

using, 167
types of, 146
using, 142–146
working with, 146–149

gesture mode, setting, 173
GESTURE_ROTATE event, 147
GESTURE_SWIPE event, 148, 173
GESTURE_TWO_FINGER_TAP

event, 146
GESTURE_ZOOM event, 147
gesture-driven application,

building, 165–178
Global Positioning System

(GPS), 12
Google, Android SDK site, 14f
Google Analytics, 271
Google Analytics Flash

Component, 131b
Google Analytics ID, 271
Google Checkout, 276
Google Gmail account, 267
Google Marketplace, AIR freely

available in, 17–18
Google Mobile, 271
Google Nexus One, 9t
Google TV, 6–7, 269–270
Google's Android Market. See

Android Market

	 index   289

Google's Code Repository,
153–154

“gotoFunction,” creating, 109
GPS (Global Positioning

System), 12
GPS hardware, extracting data

from, 153
GPS tool, draining battery

quickly, 177
Graphic symbol, for Classic

Tween, 55
graphics

creating, 35–36
editing, 90–91

gravity, defining, 206
GreenSock

animation frameworks, 123–124
animation libraries, 192–193
leaner animation toolkit, 124
library folder structure, 186f
tools, 122
Tween libraries, 125
TweenMax animation library,

185–186, 185f
gyroscopes, in newer phones, 12

H
haptic feedback, 12
hard drive, extracting Files for

Android SDK to, 31f
hardware technologies, in

Android phones, 11–12
hashing algorithms, 190
HE-AACv1 (AAC+) format, 51f
HE-AACv2 (enhanced AAC+)

format, 51f
HelloWorld Box2DAS3 project, 205
hiking project, 166f
horizontal accuracy, printing to

screen, 177
horizontal movement,

initializing, 238
HP/Palm WebOS, adopting

Adobe technology, 6
HTC Corporation, Android

phones, 9t

I
#i9200, 9t
iAds, 270
icons

creating, 35, 280
selecting default for a project,

129
Icons tab, in Application &

Installer Settings, 45, 46f,
276

ID (unique identifier), for your
app, 275

IF statement, detailing
animation movement, 121

images
in animation, 50b
changing into bitmaps, 248
importing, 91, 92f
moving into the library, 129

Images and Sounds section, of
Flash Publish Settings, 77

iMovie, editing video, 91, 92f
import action, including

transition functions, 169
Import Fireworks Document

window, 37, 38f, 93, 93f
Import window, opening, 37,

37f, 91
in-app purchases, 270
Included files section, 23
Insert Keyframe command, 53f
instructions text field, 225
integers, controlling time of

game actions, 245, 246
interaction, adding to number

screens, 134–137
intermediate technology,

developing using, 4, 5
INTERNET permission

allowing loading external RSS
feed, 154

on the Permissions tab, 158
Introduction Screen, 225
iOS

building apps with
cryptography, 190

game development on,
181–184

market for Apple's, 278
publish settings for

deployment, 279f
IPA file

building, 279
compressing into a ZIP file,

280

locating, 263
iPad

building for, 268–269
described, 6
packaging apps, 269
success of, 268

iPhone
ActionScript 3.0 required, 102
IPA file, 263
using as a recorder, 91

iPhone 4
retina display, 268
sensitivity of, 142

iPhone apps
creating in Flash Professional

and compressing IPA into
ZIP, 264

steps in creating, 278
uploading, 263–264

iPhone Flash XFL project, 128
iPhone OS Settings, tabs, 279, 279f
iPhone Profile Edit button, 261
iPhone settings window, 261,

262f
Isometric worlds, creating with

TheoWorlds, 239
ITickedObject class, extending,

227
iTunes, deploying apps to,

259–265
iTunes App Store, 273

games in, 181, 181f
packaging an app for, 259
selection of games available

on, 182, 183f
submission process, 277–282
success story of, 259

iTunes Connect, 263–264, 264f
publishing tool, 263–265
selecting Manage Your App,

264
uploading a new app to, 280,

281f
website, 280

iTunes Connect ID and
Password, 282

J
Java, used by Google, 5
Java Developer Kit (JDK), 13
JavaScript, scripting games, 5

290   index

JigLib for Flash, 208
Jobs, Steve, xiii

K
keyframe process, starting, 52f
keyframes, 52, 56f, 95
Keywords, at iTunes Connect,

265
KitchenSync animation library,

193–194, 194f

L
Landscape aspect ratio, 22
large icon, 512.jpg for, 265
latitude, printing to screen, 177
launch icon, for the iPad, 269
leader board service, adding to

games, 214
left button, controlling, 248
LevelManager, instance of, 220
libraries

adding files into, 129–130
adding to projects, 185–188
groups of, 185
making it easer to write code,

184–202
types of, 184

Library, playing back sound files
from, 73, 74f

linkage name, creating, 222
linked libraries, in Flash,

221–222
Linked Libraries, iPhone/iPad

running iOS and, 222
Liquid E, 9t
Liquid E Ferrari, 9t
Liquid Stream (S110), 9t
List component, named

friendList, 210
listener event, 136
Listener object

adding, 109
parts to, 108
using, 108

Listing Details section, at
Android Market, 267

lists, arrays managing simple, 114
loadURL property, 158
logo, spinning, 53
long press event, adding,

144–146

long tap, emulating in Flash,
248, 249

longitude, printing to screen,
177

M
main player, adding to the

screen, 235
main player game piece, code

for, 229
mainSpeed integer, 245
Manage Your App, at iTunes

Connect, 264
Manage Your Applications

button, at iTunes Connect,
280

MANIFEST element, 157
marketing, applications, 271
Math.random property, 135
mcFire movie clip, pressing, 248
mechanics, of Frogger, 221
media class, handling audio, 71
MeeGo App Store, 273
memory management, in iPad

development, 268
Merchant Account link, 267
metadata, 280, 281f
methods, 230, 234
microphone

in all Android phones, 80b
controlling use of, 159–161
on every Android device,

11–12
properties for, 159
setting to stop working, 159

microphone object, creating,
159

microphone object listener,
triggering, 159

MIDI format, 51f
Milestone XT720, 9t
missiles

Class files controlling in Space
Rocket, 251–253

control over, 247
controlling interactions of, 246

mobile apps
deploying with Flash CS5,

259–272
developing using ActionScript,

101–125

mobile devices
animating fewer objects, 207,

208
animation techniques on,

50–71
creating illusion of fast

animation, 242
“real” 3D in Flash on, 84–86

mobile game, building, 241–255
mobile phones, world wide

usage of, 3
mobile systems, processing

power of, 242
MochiAds, 214
Model View Controller (MVC),

191
modular approach, to

development, 221–222
Motion Editor, 65, 67f

creating a simple animation of
20 frames, 120

sections of, 68
working with, 65–68

Motion Pictures Experts Group,
81

Motion tool, areas, 68
Motion Tween

adding new points in the
timeline, 62

animation created
mathematically, 68

animation sequence, 64, 64f
Animation Spline path, 65
controlled through first frame,

68
converting to ActionScript,

68–71
dragging last frame of, 62,

63f
method for animation, 61
requiring more graphics

processing, 71
running for one second, or 24

frames, 60, 60f
technique, 59–65
updating Animation Spline

without new keyframes, 62,
62f

MotionBase object, declaring,
121

MOTO XT720, 9t

	 index   291

Motorola
Android phones, 9t
Droid, 9t, 142
Droid X, 9t
Milestone, 9t

mouse, as much more accurate,
142

mouse click, simple listener
looking for, 143

mouse event, 225
MouseClick event, 143
MouseEvent.CLICK, 142
Move Horizontally Component

class, 231–232
movie clip, rotating, 147
Movie Clip symbol, 55, 95
movie clips, adding code to, 105,

106f
moving objects, correcting

facing of, 238–239
MP3 format, 51f, 72, 80
MP3 playback, adding, 78
MPEG-4, 81
multitasking feature, in

 Android, 8
Multitouch

controls, 245
programming into apps,

142–146
Multitouch class, GESTURE

event, 146
Multitouch events

new, 144
single tap as symbol of, 143

MVC (Model View Controller), 191
myTouch 3G Slide, 9t

N
namespace reference, 112
namespaces

managing control over XML
data, 113

in projects, 110–113
native development language, 5
navigateToURL property, 133
New from Template window, 33,

34f
new scene setup, creating

default, 235
nextSlide action, adding, 167,

167f

nextSlideButton, listener calling,
167

Nexus One, testing with, 9t
Nokia, adopting Adobe

technology, 6
Nokia's Symbian Store, 273
notepad, drawing screen on,

183
number screens, adding

interaction to, 134–137

O
Objective-C, used by Apple, 5
object-oriented approach, to

development, 101–102
object-oriented design concept,

103
objects

dragging across the stage,
143–144

knowing positions of, 228
rotating and resizing, 53f
swiping, 147–149

Ogg Vorbis format, 72t
On2 (company), 81
Open Source AS3 project,

building games using
twitter, 214

Open Source Flash classes,
enabling connecting to
Facebook platform, 208

open source libraries, extending
Flash, 125

orientation, controlling with
Android Accelerometer,
150–151

OS X app, downloading to
upload your app, 282

Output file, 21

P
paddings, 190
Pantech, Android phones, 9t
PaperVision3D

class libraries, 200
as core 3D engine, 199, 199f
daily sample, 198f
framework, 85–86
open source project, 85
using, 199–201, 201f

parlor games, 182

particles, controlling random,
250, 251

PavTube, converting video files
into MPEG-4, 81

PBE Logger, initializing, 218
PBE ZIP file, extracting folders

and files, 216–217
PBEHelloWorld class, 217
PBFlashCS4Demo, opening, 216
PBFlyerGame.as Class file, 223
PCM/WAVE format, 72t
pencil icon, in the Class field, 109
permissions, adding to apps,

156–157, 156f
Permissions tab, in Application

& Installer Settings, 276
physics engine, 204
physics games, 182
pinch and zoom, adding,

146–147
Platogo, creating games,

239–240
PlayBook tablet, from

Blackberry, 269
PNG bitmap format, 35
PNG graphic, of the Android

logo, 35f
PNG images

frame-based animation using,
54

using when possible, 164
PNG pixel image, converting

into a JPG image, 264
Pop property, removing last item

of an array, 113
Portrait aspect ratio, 22
PressTimer variable, calling,

145
pricing, apps at Android Market,

268
Pricing and Available screen, at

iTunes Connect, 265
primary screenshot, jpg image

for, 265
private function, defining

physical position of text
field on the screen, 116

Private keyword, 103
private property, 110
private variable, defining

dynamic text, 116

292   index

processor, speed of, 242
Profile, creating for an app at

iTunes App Store, 260f
projects

adding libraries to, 185–188
namespaces in, 110–113
setting up to run on an

iPhone, 128–130
Promo Image, creating for

Android Market, 277
properties, defining visibility of,

110
Provisioning Portal, 259, 260f
public class, extending

functionality of Sprite
object, 111

public constants, for names of
objects, 228

public functions
adding to use RSS namespace,

112
tying text string to new

formatted text field, 117
public key encryption, 190
public property, 110
publication process, 273–282
Publish button

in Application and Installer
Settings, 25

at iTunes App Store, 263
selecting, 45, 45f

Publish Preview mode, Flash
movie in, 42f

Publish setting, in Properties
panel, 109

Publish Settings window, Flash
tab, 77

PureMVS, using, 191, 191f
“push” property, 113
PushButton Engine (PBE)

games, libraries used in, 216
initializing, 219
making extensive use of XML,

219
open source game engine,

215, 215f
PushButtonEngine

creating a level configurator
in, 218

getting started with, 216–218
PushButtonLabs (PBL)

full game development
environments, 215–240

game level description in
XML, 220

puzzle fans, iOS games
targeting, 183f

Q
QuickTime 4, 72

R
ragdoll-like physics, creating, 208
RAM

in current smart phones, 8
iPad, 268

random number, generating,
105, 106f, 135

random page, button sending
you to, 134

Ready to Upload App button, at
iTunes Connect, 280

record audio, playing back, 160
RECORD_AUDIO permission,

157
rectangular viewport, creating,

158
Regular Expressions, using,

115–116
rejection ratio, for iTunes apps,

282
Release iOS Certificate, using,

279
review process, for new apps at

iTunes, 265
rich media techniques, in Flash

CS5, 49
right button, controlling, 248
rocket

controlling movements of, 246
controlling position of, 248
keeping on the screen, 246

rocks
controlling, 247, 248
interacting with missle and

space ships, 254–255
role-playing games, 182
_root variable, allowing targeting

of objects, 253
rotate gesture, 147
rotate icon, changing cursor

to, 65

Rotation Pitch and Skew tool, 94
RSS

data, loading into Flash,
153–155

feed, 155
formatted XML document,

111
readers, connecting to, 153
technologies, 153
XML types, 112

S
Samsung Group, Android

phones, 4f, 9t
Sandy 3D Engine, 202
Satellite GPS coordinates,

pinpointing location, 152
Scale mode, 83
scaling, indicating none, 122
score, updating, 251
“score” integer, 246
screen(s)

changing size of, 243, 243f
design and development, 183
in a game, 225
going back to previous, 172
moving from one to the next,

169
reaching the top of, 229–230
reducing size of, 242
updating text along the

bottom of, 168f
screen resolutions

for Android phones, 8
reducing, 243f

screen shots
images for Android Market,

277
uploading of the app, 280
of your app on iPhone, 264

screen size
for Android development, 8
of the iPad, 268

screen to screen, transition
from, 168

SDK (software development kit).
See also Android SDK

developing directly to, 4
frequent updates of, 5

SDK tab, in Android
development, 29, 30f

	 index   293

Search Engine Optimization
experience, 265

secret key encryption, 190
Shared Objects, in AS3, 114
SHIFT key, fixing movement, 65
simultaneous tap, up to 11

fingers, 142
single finger, interacting with

content, 142–143
single tap, using, 142
Sirius Alpha, 9t
Sirius lzar, 9t
Sirius Sky, 9t
skins, 83
SkinUnderPlay.swf file, 97
slide, moving to next, 168
smart phone market

companies leading, 3–4
potential for growth, 4

smart phones
as computers in your pocket, 3
developing for, 4

Smart TVs, 269
Smoke, 9t
Snapdragon, design of, 3–4
social network integration class,

of games, 208–215
software development kit. See

SDK (software development
kit)

Sony, sounds from, 183
sound

controlling, 71–80
recording on an Android

phone, 80b
Sound Channel, playing the

sound variable, 136
sound clips

adding to timelines, 96
capturing, 91
editing, 73, 75f, 76f

Sound Designer II (Macintosh
only) format, 72

sound file wave pattern, visual
copy of, 76

sound files
adding to Flash, 72–77
giving a class name, 129, 130f
naming, 73
playing back from the Library,

73, 74f

using mic object to record,
160

Sound Only QuickTime Movies
(Windows or Macintosh)
format, 72

Sound Properties window,
ActionScript tab, 130

Sound Settings window,
opening, 77, 78f

Sound snippet, 105, 106, 106f,
107f

Sound variable, declaring, 136
Soundbooth, editing, 74
SoundChannel class, function

associated with, 135
sounds, resources for, 183
Sounds folder, 129
source files, subfolder for, 222
source property, 83
Space Rocket game

adding code to, 245–251
playing, 242

space-shooting game, creating,
241f

speed, of the iPad, 268
spinning 3D cube, 199
spinning animated sprite, as a

visual cue, 135
spinning logo, 53
Sprite image

applying a fade-in transition
effect to, 118

creating, 110
Sprite Object Class, drawing

with, 117–118
spriteBlu75, dragging from the

library, 135
Sprites

adding to the physical
environment, 206

configuring box, 196
configuring circle, 196
creating through script, 194
loading, 237–238
timelines referencing, 196

Sprite's 123
building, 127–137
converting into an iOS app,

128f
setting up to run on an

iPhone, 128–130

SSL, ability to connect with, 189
StageWebView

ActionScript loading, 158
benefits to running, 159
caveats, 158
loading web pages into,

157–159
object, 158

standard frame, keeping text on
the screen, 54f

stop() action, preventing movie
from playing in a loop, 95,
245

stopTouchDrag property,
triggering, 175

stylus, as much more accurate,
142

submission guide, for iTunes,
277–278

submission process, for Android
Market, 267

subselection handles, 65
Subselection tool, 63f, 65
Sun AU (Windows or Macintosh)

format, 72
SWF file, adding, 97
Swift 3D tool, 84, 85, 202
swipe gesture, 147, 172–174,

173f
swiping, objects on the screen,

147–149
symbol, resizing, 94
Symbol Properties window, 110,

252f
Syndication Library open source

library, 125
syntax structure, in both

versions of ActionScript,
104

System 7 Sounds (Macintosh
only) format, 73

system-on-chip design (SOC), 8

T
tablet computers

building apps for, 269–270
emergence of, 6

tap gesture, navigating using,
167–172

target device, for a game,
183–184

294   index

text
controlling, 116–117
keeping on the screen, 54f

text fields, formatting visual
presentation of, 162

text format, changing to Classic
Text, 19, 20f

Text object, creating dynamic
text fields, 116

text tool, drawing a text region,
19

TextFormat object, 117
TheoWorlds game environment,

239
third dimension (3D), 83–86. See

also 3D
third-party tool, updating sound

clips, 74
Thunder, 9t
tiers, for app pricing, 265
time

controlling, 136
controlling with ActionScript,

119
timelines

adding ActionScript to, 103, 103f
setting up, 131–133
setting up to reference Sprites,

196
timelines controls, creating

through script, 194
Timer, 145, 249
Timer class, 119
Timer listener, 145
Timer object, 119, 160
timerListener function, 119
TLF text, on Android phones,

38, 40f
T-Mobile G2, 9t
T-Mobile Market Stores, 273
touch screens

accuracy of, 12
differences in, 142

TOUCH_BEGIN event, 144, 145
TOUCH_BEGIN listener, 174
TOUCH_END event, 144
TOUCH_POINT, input type of,

174
TOUCH_TAP event, 143
TouchBeginHandler function,

144

TouchEvent listener, using, 143
touching, applications, 12
touch-sensitive screen, as main

input, 11–12
trace statement, accessing data

in an array, 113
Transformation controls, in

Motion tool, 68
TransformGestureEvent, 147
Transition class, controlling

animation, 135
transitions

adding, 169–170, 170f
changing, 169
random feature changing, 171

triangular polygons, 3D models
constructed in, 83–84

True/False variable, setting, 169
TV, building apps for, 269–270
Tween techniques, 55
Tween tool, for Flash projects,

185f
TweenLite, 192–193, 193f
TweenLite library, 124, 125
TweenMax, 192–193

AS3 version of, 185–186
class structure, 186
custom plug-ins for, 192, 193f
importing, 187

TweenMax library, 124, 125
linking to, 185–186, 185f

TweenNano, 192–193
TweenNano file, as smaller, 192
TweenNano library, 124, 125
tweeting, from Flash, 214–215
Twitter, registering as a

developer with, 215
two-finger tap control, adding,

146

U
uncompressed file format, in

Flash CS5, 50–51
Unity 3D, 5
Update Library Items window,

opening, 74
Upload An Application screen,

276, 277f
Upload Application, selecting

for Android Market, 276,
277f

Upload Assets section, at
Android Market, 267

URLLoader file, 114
URLRequest, mailto command

in, 133, 134f
Uro, Tinic, 188–189
utilities, 188
utility libraries, 188–191

V
variable names

for linked library instance
objects, 223

for sounds, 223–224
variables, declaring, 161
Vector art files, 90–91
vector points, 65, 122
vector-based images, restricting

use of, 164
Verizon Market Stores, 273
Verlet physics engine, 208
version number, adding, 22, 128
VIBRATE, support for, 157
vibration, adding, 12
video

adding, 81–83, 96
controlling, 84–86
creating, 91
playing, 96, 97f

video camera, sending
performance data, 163

Video components, 81
video conferencing, 163
video editing, 163
video file, linking to an external,

83
video formats, playing back, 80
video frames per second

playback, 163
video playback, 163
video player, world's leading, 118
viewports, 158

defining the size of, 200
loading two or more, 159
static setters for, 217

viral advertising, 271
visual assets, 221–222, 235
visuals, creating for animation, 197
volume, setting default for a

video file, 83
Vorbis audio format, 71

	 index   295

W
Warner Bros, sounds from, 183
WAV (Windows only) format, 72
WAV (Windows or Macintosh)

format, 73
WAV files

exporting, 91
importing to the library, 129

web browser, used to load the
page, 158

web pages
loading, 157–159
local to the application, 159

WebM format, 81
webports, launching, 157
website

deploying an Android app
directly from, 274

for this book, 35
WebView object, loading an

external web page, 158
Whale Song game, interactive,

199f
Windows 7, for tablet form

factors, 269

Windows Phone 7, xiii, 6,
 273

Wonderfl.net, 193
world object, constructing, 206

X
X (horizontal) interaction, of a

swipe gesture, 148
XFL file format, 54b
XML

describing elements in
PushButton Engine, 219

developing games in PBE, 220
loading levels created in

readable, 218
manipulating with E4X, 114–115

XML configuration file, for each
application, 157

XML data, advanced control of,
115b

XML documents
describing your world, 220
importing as data types, 114
modifying content of, 115
tracing contents of, 115

XML manifest document,
manually updating, 158

XML tree structure, stepping
through, 211

XML types, in RSS, 112

Y
Y(vertical) interaction, of a

swipe gesture, 148
Yahoo! ASTRA, using, 191, 192f

Z
ZIP file, compressing IPA file

into, 280
ZIP folder, downloaded files in,

186, 186f
ZIP format, changing to, 263
ZIPed IPA file, uploading, 265
zoom. See pinch and zoom
Zynga, 270, 271

	Front Cover
	Flash Mobile: Developing Android and iOS Applications
	Copyright
	Dedication
	Contents
	Author’s Note
	Foreword
	Section 1
	Setting up Flash CS5 for Android Development
	Designing and Developing for Android Hardware
	Configuring the Android SDK Publish Setting
	Setting up Flash CS5 for Android Development
	Installing Your AIR Application onto an Android OS
	Building Your First Application for Android Using Flash CS5

	Project: Creating Your First App Using Flash CS5
	Setting up Your Development Environment
	Creating the Graphics
	Building an Application
	Running Your App on Your Android Phone

	Section 2
	Rapid Android Development in Flash CS5
	Creating Content for Your Android Phone That Does Not Require Programming
	Animation Techniques You Should Use on Mobile Devices
	Controlling Sound
	Controlling Video
	Working in the Third Dimension
	What You Have Learned

	Project: Optimizing Animation, Audio, Video, and Component Use in Your AIR for Android Apps
	Your Building Blocks
	Importing Files into Flash
	Adding Animation
	Adding Audio
	Adding Video
	Testing on Your Android Phone

	Section 3
	Developing Mobile Apps using ActionScript
	Enabling Flash to Execute Solutions Faster with AVM 2.0
	What You Can Expect When You Use AS3
	Controlling Data
	Controlling Text
	Drawing with the Shape Class
	Using ActionScript to Control Animation, Audio, and Video in Your Android Apps
	Extending Flash with Open Source Libraries
	Summary

	Project: Building Sprite’s 123
	Setting Up the Project to Run on an iPhone
	Setting Up the Timeline
	Adding Interaction to Your Number Screens
	Completing the Application

	Section 4
	Leveraging Custom iPhone and android Interface Calls with ActionScript
	Using Gestures in Your Apps
	Working with Gestures
	Which Way is Up? Controlling Orientation with the Android Accelerometer
	Knowing Where you are, Using Geolocation
	Loading RSS Data into Flash
	Adding Permissions to Your Apps
	Loading Web Pages into the StageWebView
	Controlling the Use of the Microphone
	Controlling the Camera
	Additional Features on AIR 2.5 for Android
	Summary

	Project:Building a Gesture-Driven Application
	Getting Started
	Navigating Using the Tap Gesture
	Adding a Swipe Gesture to Move from One Screen to the Next
	Adding Drag and Drop Gestures
	Using Geolocation to Find Where You Are
	Summary

	Section 5
	Building Games with Flash for the Mobile Market
	Getting Started with Game Development
	Making it Easier to Write Code with Libraries
	Using Game Engines
	Developing Your Game

	Project:Building aMobile Game
	Playing Space Rocket
	Getting Started
	Game Assets and Default Layer Structure
	Adding the Code to the Game
	Controlling the Missiles
	Controlling the Falling Rocks

	Section 6
	Deploying Mobile Apps with Flash CS5
	Deploying Your Apps to Apple’s iTunes
	Deploying Your Apps to Google’s Android Market
	Building for iPad Devices
	Building for Tablets and TV
	Adding Advertising to Your Apps
	Tracking Your App’s Success
	Marketing Your Apps
	Summary

	Project: Publishing Your Apps into the Many Different App Stores
	Choosing Where to Sell Your Application
	Publishing Android Apps in Your Own Store
	Deploying to the Android Market
	Running the Gauntlet That Is Apple’s iTunes App Store Submission Process

	Index

