

Flash® and PHP
Bible

Matthew Keefe

01_258248 ffirs.qxp 3/28/08 1:34 PM Page iii

Flash® and PHP
Bible

01_258248 ffirs.qxp 3/28/08 1:34 PM Page i

01_258248 ffirs.qxp 3/28/08 1:34 PM Page ii

Flash® and PHP
Bible

Matthew Keefe

01_258248 ffirs.qxp 3/28/08 1:34 PM Page iii

Flash® and PHP Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25824-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008925780

Trademarks: Wiley, and the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Flash is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_258248 ffirs.qxp 3/28/08 1:34 PM Page iv

www.wiley.com

About the Author
Matthew Keefe is a new-media designer and developer, with a strong background in application
development for the Web and offline. Originally a full-time graphic artist, he found that much of
the programming associated with his design work was being outsourced. Matt quickly learned pro-
gramming for the web and uncovered a valuable but little-known skill set in this industry, that skill
being the ability to build a site and also the ability to powerfully design it. This was preferred by
clients because they could do the entire project with one studio.

Matt has worked with companies such as Delphi, PhotoshopCafe, Kineticz Interactive, and Organi
Studios to name a few. His work has been published in How To Wow with Flash (Peachpit Press) for
which he was a contributing author and technical editor. Matt has also recently finished up work
as the technical editor for Essential ActionScript 3 (Adobe Dev Library).

Examples of his work can be found in his personal portfolio at mkeefe.com.

01_258248 ffirs.qxp 3/28/08 1:34 PM Page v

Credits
Senior Acquisitions Editor
Stephanie McComb

Project Editor
Beth Taylor

Technical Editor
Navid Mitchell

Copy Editor
Kim Heusel

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Barry Pruett

Project Coordinator
Erin Smith

Graphics and Production Specialists
Claudia Bell
Jennifer Mayberry
Ronald Terry

Quality Control Technician
Susan Moritz

Media Development Project Manager
Laura Moss-Hollister

Media Development Coordinator
Jenny Swisher

Associate Producer
Shawn Patrick

Proofreading
Christine Sabooni

Indexing
Broccoli Information Management

To my loving father.

01_258248 ffirs.qxp 3/28/08 1:34 PM Page vi

Macromedia . . . errr Adobe Flash is hands down one of the most impressive and powerful
tools for any designer when it comes to bringing an experience to a user. And as Flash
continues to evolve not just web, for which it got popular, but also offline users with plat-

form developments such as Adobe AIR and the wide range of third-party tools that can be used.

But to a hardcore developer Flash has had a bad rap. Mainly due to the fact that AS 1.0 was an
awkward, gawky, and immature language. Compared to other languages popular when AS 1.0 was
introduced, it wasn’t something to be taken seriously in a developer’s eye and rightfully so. But
then if Flash is so hindering, why am I even reading a foreword for a book on the subject?

Things have changed, drastically changed. AS 3.0 is here and it is one of the best languages around
when understood. AS 2.0 was a step in the right direction, but AS 3.0 has surpassed every Flash
developer’s dreams. Small file sizes, very solid performance, and even some data handling that
rivals Java, so really there isn’t a developer who can say it is no longer a concrete language.

And with AS 3.0 a new era of data handling is introduced into Flash. And not only with Flash, but
when you start mixing in PHP5, MySQL 5, ASP, AMFPHP, and other methods of handling data, the
possibilities open up into a new realm. Data is up for grabs in AS 3.0, and it’s only a matter of read-
ing a book like this to apply it. Sockets, xml, web services, and other external data sources allow a
Flash developer to get really dirty in a data source and update the content without touching the
Flash files again. The benefit is allowing more time to develop an engaging user experience without
worrying about repeat edits, a client’s future budget, etc. It actually allows a serious Flash devel-
oper to continue to work with data sources as they are developed and concentrate on the benefits
of finessing the content itself, rather than what the content is at the time of development that can
change on a client’s whim later on.

Gone are the days that you would build a client’s website, have a ton of large swfs, only for them to
constantly need updates for photos, copy, catalog items, etc. In this book you will read how to uti-
lize the methods mentioned to broaden your understanding of taking out the last restriction to
knowing powerful Flash, updating without ever republishing, opening up an FLA, or worrying if
the client sent you the right copy, image, or other asset.

Get rid of the idea that a Flash project is now plagued with an ever-so-changing fla file and
embrace the idea of run-time content generation.

Michael Minor
Director of Interactive Media

invertedCreative.com

vii

01_258248 ffirs.qxp 3/28/08 1:34 PM Page vii

01_258248 ffirs.qxp 3/28/08 1:34 PM Page viii

Iwould like to thank Laura Sinise for helping me to get started. This book would not have been
possible without the following people: Senior Acquisitions Editor, Stephanie McComb; Project
Editor, Beth Taylor; Copy Editor, Kim Heusel; Technical Editor, Navid Mitchell; and Mary Keefe.

I would also like to thank my friends Colin, Philip, Brooke, Frank, Jimmy, and Daz and my cousin
Teisha for their huge amount of support. And lastly, I would like to thank my family for their under-
standing and patience while I was locked away in my office during all hours of the night.

ix

01_258248 ffirs.qxp 3/28/08 1:34 PM Page ix

About the Author ..v
Foreword ..vii
Acknowledgments..ix
Introduction ..xix

Part I: Understanding the Basics . 1
Chapter 1: Getting Started with Flash and PHP ..3
Chapter 2: Exploring Flash and PHP ..37
Chapter 3: Getting Connected ..63
Chapter 4: Working with Data ..85
Chapter 5: Interacting with the User ..99
Chapter 6: Working with Cookies ..113

Part II: Developing Interactive Content 125
Chapter 7: Maintaining Security while Working with User Input ..127
Chapter 8: Using Sockets ..153

Part III: Extending Flash and PHP . 189
Chapter 9: Working with Third-Party Libraries ..191
Chapter 10: Using Object-Oriented Programming ..219

Part IV: Developing Applications . 237
Chapter 11: Developing Basic Applications ..239
Chapter 12: Developing Real-World Applications ..289
Chapter 13: Using Advanced Real-World Applications..335
Chapter 14: Debugging Applications ..381

Part V: Server, Application, and Database Maintenance 393
Chapter 15: Maintaining an Application..395
Chapter 16: Maintaining a Scalable and More Efficient Server ..405
Chapter 17: Building Complete Advanced Applications ..429

Index ..487

x

02_258248 ftoc.qxp 3/28/08 1:34 PM Page x

About the Author . v

Foreword . vii

Acknowledgments . ix

Introduction . xix

Part I: Understanding the Basics 1

Chapter 1: Getting Started with Flash and PHP 3
Adding Apache to a Web Server ..3

Installing Apache for Windows..4
Installing Apache for UNIX..9
Modifying Apache for Windows and UNIX ..13

Installing MySQL ..14
Installing MySQL for Windows..14
Installing MySQL for UNIX ..25
Protecting MySQL ..26

Setting up PHP on the Web Server ..27
Installing PHP for Windows ..27
Installing PHP for UNIX ..33

Summary ..35

Chapter 2: Exploring Flash and PHP . 37
Introduction to the Web Server ..37

Working with .htaccess files ..37
Protecting your content ..38
Gathering information about Apache ..40
Using custom error documents..42

Exploring the Basics of PHP ..47
Understanding variables ..47
Working with functions ..49
Understanding control structures ..51
Using type checking in PHP ..56

xi

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xi

Exploring the Basics of MySQL ..57
Using statements ..57
Conditions ..58

Exploring Flash ..59
Flash IDE ..59
Alternative editors ..61
Flash-enabled devices ..62
Moving forward ..62

Summary ..62

Chapter 3: Getting Connected . 63
Understanding Communications in Flash..63

Determining the status of PHP ..64
Working with various connection types ..65

Connecting Flash to PHP ..69
Connecting PHP to MySQL ..73

Determining the status of MySQL ..73
Connecting to MySQL ..74
Bringing it all together ..77

Summary ..84

Chapter 4: Working with Data . 85
Loading Data in Flash..85

Understanding the classes used to load data ..86
Putting it all together ..87

Handling Loaded Data ..88
One-way loading ..88
Two-way loading ..88

Loading XML in Flash ..89
Working with XML in PHP..92

Loading XML ..92
Sending XML ..93

Loading Images Using PHP ..95
Setting up the image loader ..96

Summary ..98

Chapter 5: Interacting with the User . 99
Form Development Using Flash ..99
Creating a Contact Form ..101

Calling the PHP ..103
Contact form event handlers..103
Mailing in PHP ..105

Login Module in Flash ..106
Code skeleton..106
Login event handlers ..107
Server integration for login module ..110

Summary ..111

xii

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xii

Chapter 6: Working with Cookies . 113
Loading Cookies..113

Using cookies with PHP ..114
Using cookies in Flash ..118
Discovering the benefits of using PHP cookies ..122

Summary ..124

Part II: Developing Interactive Content 125

Chapter 7: Maintaining Security while Working with User Input 127
Using Caution with User Input..127

Safely handling file uploads ..128
Checking for valid input..131

Cleaning User Data..132
Sanitizing the data ..133
Properly cleaning HTML data ..136

Storing Data ..136
Securely writing to a file ..137
Creating and storing a safe password using PHP..141

Returning Data ..143
Securely returning data..143
Using a more secure approach for returning data ..144

Understanding the Flash Security Sandbox ..145
Setting the sandbox type..145
Using the sandboxType property ..145
Determining the active sandbox ..147
Ensuring an application cannot be shared ..151

Summary ..152

Chapter 8: Using Sockets . 153
Understanding Sockets..153

Security in sockets ..154
Implementing a socket server ..154
Understanding the socket connection..154

Working with Sockets in PHP..154
Looking for command-line version of PHP ..155
Building a socket server ..156
Testing the socket server..158
Creating a persistent socket server ..160

Working with Sockets in Flash ..161
Initializing a socket connection..161
Event handlers ..162
Remote socket connections..163
Using a class for socket connections ..164

xiii

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xiii

Building a Chat Client with Sockets Using Flash and PHP ..167
PHP socket server for the chat client..167
Connecting to the socket server ..175
Building the Flash client ..177

Summary ..188

Part III: Extending Flash and PHP 189

Chapter 9: Working with Third-Party Libraries 191
Going over Third-Party Libraries ..191

Other types of third-party libraries ..192
Libraries in PHP ..193

Installing Third-Party Libraries ..193
Installing libraries in Flash CS3 ..193
Installing libraries in PHP ..195

Using Third-Party Libraries ..196
Working with libraries in Flash CS3 ..196
Working with Libraries in PHP ..197

Glancing at AMFPHP ..198
AMFPHP for AS3 and PHP Developers ..198
Testing AMFPHP with a custom service ..201
Using AMFPHP in Flash ..205

Building a Real-World Application Using AMFPHP ..210
AMFPHP services ..210
ActionScript for AMFPHP integration ..216

Summary ..218

Chapter 10: Using Object-Oriented Programming 219
Understanding OOP..219

Overview of OOP practices..220
Using Classes in PHP ..225

Importing classes in PHP ..226
Instantiation ..226
Multiple classes ..228

Using Classes in Flash ..229
Importing ..229
Document class ..229
Library classes ..230

Using Flash and PHP to Build Custom Classes ..231
Summary ..235

xiv

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xiv

Part IV: Developing Applications 237

Chapter 11: Developing Basic Applications. 239
Understanding Elements of an Application..239

Understanding application design ..240
Finalizing the planning stage ..242

Developing a Chat Client ..242
The Flash portion ..242
PHP for chat application..252

Using PHP to Develop a Photo Gallery ..260
Developing the ActionScript ..261
Photo gallery navigation ..266
PHP for the photo gallery ..270

Using PHP to Develop an RSS Reader..274
Importing classes ..275
Loading the PHP..275

Using PHP, Flash, and MySQL to Develop a Dynamic Banner Ad279
Opening a browser window ..281
Developing the PHP ..283
Random selection ..283

Using PHP to Develop a Hit Counter ..285
Hit counter logic..285
Developing the Flash hit counter ..286

Summary ..287

Chapter 12: Developing Real-World Applications 289
Understanding Real-World Applications..289
Using PayPal in Flash ..290

Using POST data ..293
Using sendToURL..294
Setting up PayPal communication..294

Using Flash and PHP to Build a Cart ..295
Designing the shopping cart ..296
Building the PHP ..306

Using PHP and Flash to Build an Amazon Search Application ..317
Using the Amazon Web Service ..317
Simplifying the XML response ..319

Developing a Photo Gallery Using flickr ..326
Interfacing with the Web service..331
Building the custom XML document ..332

Summary ..333

xv

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xv

Chapter 13: Using Advanced Real-World Applications. 335
Building a Drawing Application in Flash ..335

Drawing API in Flash ..336
Using GD Library in PHP ..341

Generating an image in the GD library ..343
Gathering the pixel data in Flash ..345

Using Flash to Develop a Site Monitor ..347
Developing the PHP for the site monitor ..347
Using PHP to e-mail the administrator ..349
Developing the ActionScript for the site monitor ..351

Using Flash to Develop a Video Player ..359
Developing a Poll Application ..364

Building the PHP and MySQL..364
Developing the ActionScript for the poll..368

Building a Simple File Editor ..373
Summary ..380

Chapter 14: Debugging Applications . 381
Using Error Reporting in PHP ..381

Displaying errors for debugging ..383
Understanding the error levels ..383

Debugging in Flash ..385
Using an Alternative Trace ..389
Summary ..392

Part V: Server, Application, and Database Maintenance 393

Chapter 15: Maintaining an Application 395
Commenting Code ..395

Understanding styles for commenting code ..396
Removing comments and debug helpers..399

Managing a ChangeLog ..399
Bug tracking ..399
Additional uses..400
Dynamic creation of changes ..400

Managing Multiple Versions ..401
Version control applications ..401
Version control support in CS3..401
Setting up version control..402

Using Custom Libraries ..403
Using custom libraries with version control ..403
Publishing an SWC..404

Summary ..404

xvi

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xvi

Chapter 16: Maintaining a Scalable and More Efficient Server 405
Running an Updated Server ..405

Using automatic updates ..406
Zend Platform..406

Working with Development Installs ..406
Building another version of Apache on the same system..406
Working with bleeding-edge technology..407
Dependencies ..407

Caching and Optimizing ..408
Optimizing PHP ..408
Optimizing Apache..412
Optimizing MySQL ..413
Caching ..416
Installing memcached on Linux ..416
Installing memcached on Windows ..418
Wrapping up installation for Linux and Windows ..418
Managing servers ..420

Handling Backups ..421
File management ..421
Backup management ..421
Using PHP to back up databases..424

Summary ..427

Chapter 17: Building Complete Advanced Applications 429
Building a Basic Video Player ..429
Building a Video Player in Flash and PHP ..432

Getting started ..432
Remoting integration ..437
Advanced video player development ..446
Building the VideoListItem class ..456

Working with Video Tracking..461
Updating the video class..462
updateVideoTracking method..463

Building a User Login Component in Flash ..465
Developing the LoginWindow class ..466
Testing the login component..473
Building the PHP login manager class..476
Adding remoting to the login component ..478

Finalizing the Video Player ..481
Using an external library ..482
Adding the login component ..482

Summary ..486

Index . 487

xvii

Contents

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xvii

02_258248 ftoc.qxp 3/28/08 1:34 PM Page xviii

This book is a multipart exploration into Flash and PHP. Flash has been used for everything
from basic banner ads to fully functional applications across the web and desktop.

Oftentimes you can find information required to write amazing Flash applications or the server-
side counterpart but rarely both. This book builds both aspects and explains the process of work-
ing with PHP in your Flash projects.

The first part of the book is a step-by-step walkthrough of the installation and configuration pro-
cess for PHP and all the necessary components. Once the components are installed, the next step is
an overview of PHP and a guide to what features and techniques you will find in the book as you
continue through the chapters.

Each chapter starts off with a basic overview and then moves quickly into the relevant information,
leaving out any fluff to ensure you are getting all of the important information right away.

Part II focuses on the importance and best practices of making your applications more secure while
maintaining functionality. The topic of security is repeated throughout the various examples in this
book, but this part in particular is where you will find the majority of the security information.

Part III is extending Flash and PHP by working with various third-party applications and libraries.
This chapter finishes with an overview of AMFPHP to build more-advanced and easier-to-maintain
applications.

Part IV takes all the previous information and walks you through the process of building complete
real-world applications in Flash and PHP. These real-world applications will help you build your
own custom versions and ultimately allow you to create more-advanced and dynamic applications.

Examples and Source Files
You can find all the source code and starter files for the examples in this book on the following
web site.

www.wiley.com/go/flashandphpbible

xix

03_258248 flast.qxp 3/28/08 1:35 PM Page xix

What You’ll Need
The ActionScript used in this book is not advanced, but a basic understanding of the fundamentals
would allow you to better understand the examples. The Flash Bible is a perfect complement to
this book and I highly recommend it.

A basic understanding of OOP practices would help you in the second portion of the book but is
not required to understand the examples overall. You may want to pick up a book on advanced
OOP practices to gain a more thorough understanding of the topic.

The PHP used in this book is assuming a very basic understanding of the subject. This means you
will not only learn the advanced topics but how to get there by starting at the beginning. PHP also
allows you to develop in a class-based format, so that will be utilized in the full-application chap-
ters to ensure you are building a more complete and updatable application.

The last thing you will need is an Internet connection to download the code for the book and work
with some of the third-party services. This is not used in the entire book, but to get the full experi-
ence the Internet connection will be needed.

That is everything you will need. Now is the time to jump in. Chapter 1 is only a few pages away.

xx

Introduction

03_258248 flast.qxp 3/28/08 1:35 PM Page xx

Understanding
the Basics

IN THIS PART
Chapter 1
Getting Started with Flash
and PHP

Chapter 2
Exploring Flash and PHP

Chapter 3
Getting Connected

Chapter 4
Working with Data

Chapter 5
Interacting with the User

Chapter 6
Working with Cookies

04_258248 pp01.qxp 3/28/08 1:36 PM Page 1

04_258248 pp01.qxp 3/28/08 1:36 PM Page 2

The process of getting started includes the installation and configura-
tion of Apache, MySQL, and PHP. The examples in this book assume
the installation will be done locally; however, you can modify the

paths and URLs if you want to use a remote server.

The order in which you install these programs is important because they use
paths and variables from each other, which results in the complete develop-
ment environment.

This installation guide covers Windows and UNIX systems. If you have
decided to work from the book on an existing server, you can skip to
Chapter 2. However, there is some security and configuration information
within this chapter you may find useful.

Adding Apache to a Web Server
The first step to working with Flash and PHP is to install the necessary com-
ponents. The installation process is defined by installing Apache, then
MySQL, and finally PHP. This order is required because PHP needs paths to
Apache and MySQL in order to provide that support.

You can recompile (build) any one of these components in the future.
However, if you follow this installation order it will mean less work and
rework in the future.

The components to be installed change from time to time, but the overall
installation process remains fairly constant. This means you can download

3

IN THIS CHAPTER
Apache installation

PHP installation

MySQL installation

Getting Started with
Flash and PHP

05_258248 ch01.qxp 3/28/08 1:36 PM Page 3

the latest files from their respective project sites, or to ensure all the components work together,
you can obtain these files from the book’s site.

You should have a basic understanding of the system on which you will be installing. It is impor-
tant to run a development system in a secured location. The best setup is a computer behind a
physical firewall or on an internal network. If this is not possible, simply configure Apache to not
allow remote connections and you can change the port number to hide it on your network.

Development systems can require more advanced configuration depending on how they
have been set up. You can find common issues explained on the book’s Web site.

Installing Apache for Windows
Once you determine on which system you are installing the development system you can begin to
download the necessary components. It is recommended that you use the files provided with the
book. I also provide the necessary locations to download the latest files.

Access the latest version from Apache’s Web site. It is easier to install from the binary installer ver-
sion rather than compiling the source. However, compiling from source does offer a higher level of
customization and allows you to understand what is running under the hood.

Building from source is not for the beginner. It does require a certain level of experience
and is only recommended to those who truly feel up to the challenge.

The latest Windows binary installer files for Apache can be found at
www.apache.org/dyn/closer.cgi/httpd/binaries/win32/.

Installing
Start the installation process by opening the Windows installer file that was either downloaded
from the book site or directly from Apache’s Web site.

This installation will be mostly visual because the Windows installer is a graphical setup. The key
to a successful installation is carefully following and reading the screens throughout the entire
installation process. The first screen, as shown in Figure 1.1, requires no modification.

The next two screens are the license agreement, which you can take the time to read or you can
simply click Next, because it is pretty standard information.

After that, you will find an introduction to Apache, which gives you a good overview of what
Apache has to offer, as shown in Figure 1.2. The screen will also provide links to very valuable
resources surrounding the Apache community.

CAUTION CAUTION

NOTENOTE

4

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 4

FIGURE 1.1

The first screen requires no user modification. Simply click Next to continue the installation process.

FIGURE 1.2

The Server Information for a development system does not need to be real, as this figure shows.

5

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 5

The server installation is where you define the specific configuration for your environment. If you
were installing Apache on a real system, you would fill in this page with the correct information,
otherwise Apache would not route requests correctly. You can accept the default options for a
development setup, such as this.

Being that this installation is for a development server you don’t have to fill in the screen with real
data, unless you are using this guide to install on a live server.

The Install Apache HTTP Server 2.0 programs and shortcuts for: option is when you want to install
Apache so only the current user can access it. If you want all users to be able to access Apache,
then you will want to install it as a service.

The installation process of Apache can be done in two ways, as shown in Figure 1.3. The first
option is to accept all of the default settings, which results in a quicker installation, but it’s not
always the best option.

The second more common option is the Custom alternative where you tell Apache which tools and
libraries you want to install. Occasionally when installing an application you can experience a
shortage of hard drive space.

Apache, on the other hand, is so small with all of the extra tools installed that you should not have
a problem installing it.

FIGURE 1.3

The Custom option is selected to ensure all of the development tools are installed, such as library and
module building capability.

6

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 6

For the examples in this book, it is best to accept the Custom installation and make sure all of the
libraries and extensions are installed. For example, some of the modules used to modify the user
requests are only available when you install the full version.

Depending on the system, it may take a while to install Apache. Even if the status bar stops moving
don’t get concerned; some of the files take longer than others to install. The application notifies
you if something happens during the installation process, which is very rare. Apache will update
the progress bar, as shown in Figure 1.4, while the installation is occurring.

FIGURE 1.4

Apache installation status

The last screen you should see is a note that the installation was successful. A DOS prompt may
appear notifying you that the Apache service is starting. You may also get a Firewall warning, and
you will need to grant Apache the access it requests.

Testing
Congratulations. If all went well you should now have Apache installed on your Windows
machine. To test the installation, open a Web browser and point it to the local Apache Web server,
which is also known as localhost.

http://localhost/

You should be presented with a screen similar to what is seen in Figure 1.5, which basically
informs you that Apache is properly installed and is ready to start serving up your content.

7

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 7

Depending on the installation process, you can modify this location, which is sometimes required
when installed on a remote server. You would not be able to access the Apache Web server on the
localhost address. Instead, you would point to the IP address or the domain name of your Web
site.

FIGURE 1.5

The default Welcome Screen for Apache

With Apache installed, you can modify the default page to truly see how Apache functions.

The Web files that Apache serves are located in the document root. This is similar to the
public_html or www that you have most likely seen on a remote Web server. Unlike a remote
Web server, permissions on these files are often unavailable to other users not viewing from your
own personal computer.

The location of this Web directory in Windows using a default installation is:

C:\Program Files\Apache Group\Apache2\htdocs

You will see many different files in this directory, such as the same index files in various languages.

You don’t want to modify any of these files because it could mess up the core of Apache or intro-
duce errors that would be very hard to track, so create a new file.

8

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 8

Using your favorite text editor, create a very simple HTML page, such as the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>
<head>

<title>My Custom Page</title>

<body>

<h1>Welcome to my custom page</h1>
<p>This is a test of the customization of Apache!</p>
<p>Pretty cool huh?</p>

</body>

</html>

Save this new file in the Apache Web directory and name it myPage.html. After saving the file,
open it in your Web browser to witness the flexibility in Apache.

This is not the most advanced example, but it should give you the basic idea of how to modify and
work with the Apache Web server. Now is the time to create more useful examples, because you
have the basics down.

At this point, with Apache installed and tested, you can move on to the installation and configura-
tion of PHP, or you can jump ahead to the configuration process of Apache.

Alternatively, you can read through the installation of Apache on UNIX, which is covered in the
next section.

The installation of Apache in UNIX would be closer to working with a remote server, because you
will find that most Web servers are built on Linux. This doesn’t mean you will never find a
Windows-based live Web server, but it certainly isn’t as common.

Installing Apache for UNIX
The installation process in UNIX is more advanced than the Windows installation. However, the
UNIX installation is often the more common scenario for a live server.

The first step to installing Apache is downloading the source. This source can either be down-
loaded from the book’s site or directly from Apache’s Web site. Using the source provided on the
book site ensures you’re running a nearly identical system to the one used for writing this book.

You will find the source, as shown in Figure 1.6, directly from Apache at the following URL:
http://httpd.apache.org/download.cgi.

9

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 9

FIGURE 1.6

Here is a list of the possible versions of the source code to download from the Apache server.

After downloading the source for Apache, you can begin the installation process.

Preinstallation
Before installation can begin, the source must be extracted from the downloaded file. This is done
by simply uncompressing the tarball file and untarring the uncompressed file.

$ gzip -d httpd-2.2.6.tar.gz
$ tar xvf httpd-2.2.6.tar

Once the previous two processes are complete, you are left with a new directory containing the
source code.

Before continuing, change to this directory, which means you will be in the directory the source
code is located in.

$ cd httpd-2.2.6/

10

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 10

Installation
When the source code is extracted, you can begin the installation process. Apache will install using
its own set of options, but you have the ability to modify these. If you want to configure Apache
using the defaults, simply type ./configure.

However, it is a better practice to tailor the installation process to your environment.

One of the most important options you can define is the --prefix, which is where Apache will
be installed. This option is used throughout the application and also is used later during the PHP
installation and configuration section.

For simplicity a partially modified configuration process is used, but feel free to look through the
Apache documentation to gain a better understanding of what settings can be changed.

$./configure --prefix=/usr/local/apache
--enable-rewrite=shared \
--enable-spelling=shared

Once the configuration process begins, it can take a few minutes to complete. Most of the time you
will see the process printing in your terminal window, but even if it is not, it is running.

After the configure command has completed you can run make to build the Apache package.

$ make

Again, this process may take time depending on your system, so please be patient. Once the make
command is complete, the last command to run installs the package and wraps up the installation
portion.

$ make install

Testing
With Apache installed, you can start it and test it in the browser.

Apache installs a very useful tool, apachectl, which can be found in the bin/ directory of the
installation location. Using the path chosen for this installation, the apachectl application
would be found here.

$ usr/local/apache/bin/apachectl

Use the following command to start the Apache server:

$ usr/local/apache/bin/apachectl start

Use this command to stop the Apache server:

$ usr/local/apache/bin/apachectl stop

11

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 11

To restart the Apache server, use this command:

$ usr/local/apache/bin/apachectl restart

Testing out the server is done by making a call to localhost from your web browser at
http://localhost/.

As you can now see, the installation was a success. To further test and better understand how to
modify the files Apache serves, create a new HMTL file and save it in the Apache Web root.

Using your favorite text editor, which in UNIX will most likely be vi, create this new HTML file.
The following commands assume you are using vi.

Create a new file:

$ vi /usr/local/apache/htdocs/sampleFile.html

In order to begin entering the HTML code, you need to tell vi to enter Insert mode, which is done
by pressing I. Press ESC to exit Insert mode.

Paste or type the following sample HTML code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>
<head>
<title>My Custom Page</title>
<body>

<h1>Welcome to my custom page</h1>
<p>This is a test of the customization of Apache!</p>
<p>Pretty cool huh?</p>

</body>
</html>

Once the file is created, press ESC and type the following command to save and close the editor.
Note, the : is part of the command.

:wq

Certain files you add or modify require you to restart Apache; however, basic Web files do not fall
into that category. You can now display the new page by appending the filename to the local-
host call at http://localhost/sampleFile.html.

As you can see, the Apache server has been properly installed and you were able to add a custom
file that Apache properly served up. At this point, you should have a basic understanding of how
Apache functions. The next section (platform independent) goes into more detail about how you
can modify Apache.

12

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 12

Modifying Apache for Windows and UNIX
The following tips, tricks, and tweaks can be performed on Windows or UNIX installations. This is
because they are specific to Apache and not the environment it runs on.

When working on development systems it isn’t rare to require more than one installation of
Apache. This could be to test bleeding-edge code, support more plug-ins, or just to ensure a proj-
ect is running on a clone of the live system.

The installation process of Apache stays pretty much the same. You only need to change the prefix
option by pointing it to a new/different location. You can run multiple versions of Apache; how-
ever, they require separate installation locations. Running multiple versions of Apache at the same
time using only the default installation options isn’t possible. This is due to Apache being set up to
listen for requests on port 80 by default.

You can modify the port that Apache listens on by editing the configuration file. The configuration
files are located in the conf/ directory, which is located in the directory that you designate during
the Apache install.

For example, you can change the port that Apache runs on. Start by opening the configuration file.

To open the configuration file in UNIX, use vi.

$ vi /usr/local/apache/conf/httpd.conf

To open the configuration file in Windows, navigate to the installation directory and open the
httpd.conf file in your favorite text editor.

C:\Program Files\Apache Group\Apache2\conf\httpd.conf

When the file is open, scroll down or search for the Listen directive, which will look similar to
the following:

#
Listen: Allows you to bind Apache to specific IP addresses

and/or
ports, instead of the default. See also the <VirtualHost>
directive.
#
Listen 80

Apache will only look at this file during startup. When you are finished editing, make
sure you restart the Apache server.

Changing that one value allows you to run multiple copies of Apache. However, running multiple
Apache instances can be processor intensive, so make sure you only run as many instances as
required. In most cases, you will run only one instance on a live server.

NOTENOTE

13

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 13

Installing MySQL
Now that Apache is installed, the next component to install is MySQL. This would be the database
that your application contents are stored in and managed using PHP.

Installing MySQL for Windows
Much like the Apache installation process, MySQL has a Windows installer that makes the entire
process much easier. The installer guides you through the process of installing the core database
and any additional components you need. For this setup, the default installation is used, but feel
free to customize, which is a very good way to learn.

Downloading
The first step to installing MySQL is downloading the latest install files. You can use the files pro-
vided on the book’s Web site to ensure compatibility or you can visit MySQL’s Web site at
http://dev.mysql.com/downloads/mysql/5.0.html#win32 to get the latest stable ver-
sion at this time.

Choose the Win32 installer with Setup to make the overall installation process easier. This allows
you to use the GUI instead of the traditional command-line process of previous versions.

Installation
After you download and open the installer a Welcome page appears, followed by other pages that
make up the install process, as shown in Figure 1.7. Similar to the Apache installation, MySQL also
has various configuration options that need to be modified. Carefully look over the following steps
to ensure your database will function properly.

Choose the Typical install option, which installs the core components necessary to run and main-
tain a MySQL database. Click Next to move to the next step.

At this point, MySQL has been installed. The final page gives you the option to launch the configu-
ration section when you click Next.

Make sure you select this option. If you accidentally close this page you can rerun it or open the
configuration application in the mysql/ directory in program files.

The installation of MySQL does not offer all that much in modification. This is because the sup-
porting application Configuration Wizard handles all the necessary configuration options.

Select the Detailed Configuration option, as shown in Figure 1.8. This allows you to fine-tune the
MySQL configuration as opposed to using all of the defaults. Click Next to continue.

14

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 14

FIGURE 1.7

This page is the install process. The install can take several minutes, depending on the system.

If you select the Standard Configuration option you are presented with a smaller list of configura-
tion screens. This speeds up the configuration process, but doesn’t allow you to customize the
functionality of MySQL and could result in a less efficient system.

FIGURE 1.8

Select the configuration type.

15

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 15

The server type determines the memory, hard drive, and CPU usage. This has been installed on
your development machine so you want to ensure that MySQL doesn’t become overly processor or
resource intensive. Selecting the Developer Machine option ensures this doesn’t happen.

The other two options are for dedicated servers. The Server Machine option would be used when
you install MySQL on the same machine your Web server, such as Apache, is running. This is okay
for a medium-trafficked site, but you may find a spike in resource usage as your site becomes more
active.

When this happens, you will want to introduce a dedicated machine to run your MySQL database,
which at this time you would select the Dedicated MySQL Server Machine option. This option tells
MySQL it is installed on a dedicated machine and to use all the resources and memory that are
present.

Be sure you never accidentally select the Dedicated MySQL Server Machine option
when installing on a Web server. Your system will not be able to manage resources prop-

erly and could eventually fail.

MySQL will constantly attempt to allocate all free memory whenever it is made available, which
means when your Web server closes a stale connection, MySQL could potentially steal that free
memory until there is no more room for connection available.

After you select an option (in this example Dedicated Machine), click Next (see Figure 1.9).

FIGURE 1.9

Select the Developer Machine option for your server type.

Select the Multifunctional Database option as the database usage type to allow the ultimate
expandability of the system. This allows MySQL to optimize for both InnoDB and MyISAM storage
engines. If this is your first time installing MySQL, which is very possible because many systems
ship with it already installed, you may be asking how the other two options are used.

NOTENOTE

16

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 16

The Transactional Database Only option is used when you will be running a lot of transaction-
based queries. This means you would be wrapping a bunch of queries (UPDATE, SELECT,
DELETE, INSERT) in one run to ensure all the proper tables and data are modified. But if some-
thing goes wrong in one of those modifications it could ruin the remaining data.

This would mean a lot of unnecessary data editing and in some cases could result in bad data. A
transaction looks for an error or trigger and if found all the modifications made during the start of
the transaction are rolled back and reverted to their nonmodified state.

Here is a simple example of a MySQL-based transaction, which modifies two separate portions of
data on the same table.

START TRANSACTION;

UPDATE users SET credits = credits - 100 WHERE id = 3002;
UPDATE users SET credits = credits + 100 WHERE id = 3002;

COMMIT;

During the process of a transaction those entries are made unavailable to other sessions to ensure
the data cannot be read or modified while a transaction is being performed. You can think of this
process as being similar to turning the power off in your house to ensure someone can’t acciden-
tally flip a light switch while you are working on something.

The Non-Transactional Database Only option is selected when you know you will never need
transaction abilities. This only enables the MyISAM storage engine, which can provide better
results, but also limits overall functionality.

Oftentimes you will find the Multifunctional Database option, as shown in Figure 1.10, to the best
choice, but it is also good to know what the other options offer.

FIGURE 1.10

The Multifunctional Database option is selected as the database storage type.

17

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 17

The next page allows you to customize the InnoDB storage system, but it is best to just leave it
with the default settings.

In some instances, you may want to choose a separate location, which you can do by clicking the
Browse button to the right of the installation box. Choosing a different location is only necessary
when the Drive Info notice at the bottom of the window reports a small amount of Free disk space,
which means your database could consume the remainder of your resources.

Make sure you never choose a removable drive as the storage location because you
could harm the database if that drive is not attached at all times.

As stated earlier, most often it is best to leave this option at its default choice, as shown in Figure
1.11, to ensure your database functions properly.

FIGURE 1.11

InnoDB Tablespace settings

The next option is an approximation of how many concurrent connections your MySQL database
will need to handle. Because this installation is being performed on a development server, an esti-
mate of no more than 25 is a realistic assumption. Actually, it would be rare to have more than 5,
but 25 is a good base number.

Select the Online Transaction Processing (OLTP) option under the “Decision Support” heading
when you are developing a Web application to which the public has access. This is because you
really have no idea how many people may attempt to access the system at any given time. As your
application continues to grow you may even need to chain multiple databases together to handle
the load, but for now one database is enough, especially considering this installation is being per-
formed on your local system.

CAUTION CAUTION

18

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 18

Select the Manual Setting option when you want to specify an exact number. This is only necessary
when you want full control over your Web application. Oftentimes you see this manual number set
to 300 on live Web applications. This appears to be a good average with the ability to handle many
connections.

Be careful not to set the concurrent connections option, as shown in Figure 1.12, too high because
your system will only have so many resources that can be split and shared by each connection. If
you add more memory to your application you can increase this number, but that may not always
be the best option.

FIGURE 1.12

Set the approximate number of concurrent connections.

The networking options determine if your MySQL databases will be visible to other machines
beyond the local setup. For the ultimate security, disable the Enable TCP/IP option. If you have
multiple development machines, you can enable it and choose a nonstandard port.

For this installation, networking is enabled, as shown in Figure 1.13, and the default port is used
because I do not intend to allow others to connect, but my Web server is located behind a hard-
ware firewall for added security.

Choose a nonstandard port number if you install another version of MySQL on the same system.
This is not very common, but sometimes you have to deploy backwards-compatible environments
to test your code in various setups. This is a cost-effective alternative to building and maintaining
another physical machine to handle the testing process.

Make sure you select the Enable Strict Mode option to ensure your database server functions properly.

19

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 19

FIGURE 1.13

Setting the networking options

On the next page you can select the default character set used in your database. The Standard
Character Set option is selected for this example (see Figure 1.14), but oftentimes this is not the
best option because it does not allow the most compatibility with existing systems or allow for
expansion over time. For this example it will work just fine because you will not have any
advanced characters being used.

You can, of course, select any option that best fits your usage, but I prefer the Best Support for
Multilingualism option. This option allows for greater expansion and is highly recommended when
storing text in many different languages.

Select the Manual Selected Default Character Set/Collection option for the rare times when you
want to specify a certain character set to use rather than choosing a selection of them. You will
probably never use this option because it is too specific, but it is available if needed.

If you think you will be using multiple languages, I recommend the second option, Best Support
for Multilingualism, to ensure your applications will be able to expand, and also allow you to
experiment with different options later on.

The Windows Options page (see Figure 1.15) determines how MySQL is initialized. For example,
if you choose to run MySQL as a service it will start or stop automatically, controlled by the operat-
ing system. If you have installed a previous version of MySQL you will want to choose a different
service name. This is to ensure the existing service does not collide with this one.

Select the Launch the MySQL Server automatically option to ensure the database is available when
the system starts. This is not required, but it makes it so you don’t have to start the service manu-
ally each time you restart your machine. You can, of course, access the service application on your
system and modify this option at any time, as well as turn off the service until the next time the
machine starts up.

20

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 20

FIGURE 1.14

Selecting a default character set

The Include Bin Directory in Windows PATH option, when selected, includes MySQL support
from the command line by simply typing mysql. This means any command prompt will allow you
quick access to your MySQL database. You can refer to your operating system instructions for
modifying this PATH variable.

You can also add PHP and Apache to this same PATH variable, which would expose them to the
command prompt as well. In fact, when you install PHP some instructional material for performing
this modification is offered.

FIGURE 1.15

The Windows options determine how MySQL is started and accessed.

21

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 21

The final configuration is used to set a root password, as shown in Figure 1.16. The root user has
global permissions over your databases, so you can imagine how important securing this user is.
You do not have to choose a password, but by default, MySQL is installed with no root password,
which means anyone has access to your databases.

It is best to choose a difficult-to-guess password, retype it once more and be sure that the Enable
root access from remote machines option is not selected to disable the ability to administer the
databases remotely. It may seem this option would allow for better usability, but there are some
exceptions, one of which is overall security of a system.

Even though this setup is being performed on a development server, it is best to keep security in
the forefront of the installation process. Doing so will ensure you follow the necessary precautions
when you perform a similar installation on a remote setup.

If security is not a concern, you do have the option to create an Anonymous Account. However,
creating such an account is nearly identical to a root login with no password and will suffer from
the same overall security concerns.

FIGURE 1.16

Security options for MySQL

The last page, as shown in Figure 1.17, is for the processing of the configuration values set in the
previous pages. If for some reason an error is encountered, MySQL will notify you.

Most of the time you will see each bullet point with a check mark applied as it is completed.

22

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 22

When processing is complete, you are presented with a notice informing you the configuration has
been completed and MySQL is ready to use.

You have now successfully installed and configured MySQL to be used for the remainder of this
book. Click Finish to close the configuration page and begin testing the installation.

FIGURE 1.17

Display of configuration processing with proper notices as each task is completed.

Testing
After you install MySQL you can test it. You can view the service status using the MySQL monitor,
which determines if the database server is up and running. You can use the command line to log in
and investigate the MySQL database just like you would on a remote server.

To open a new command prompt, as shown in Figure 1.18, press Windows key+R. When the
prompt open, type the following command to log in:

$ mysql -uroot -p

If you get “command not found” you need to add MySQL to the path variable.

An Enter Password notice appears. Type the password you set in the configuration process.

When typing a password the prompt will not show any text updates.NOTENOTE

NOTENOTE

23

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 23

FIGURE 1.18

Command prompt with the command entered to log in to the MySQL database server

If the login is successful, a notice describing the MySQL server appears. The notice contains the
version of MySQL that you are currently running. The following is an example of the notice:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.0T.45-community-nt MySQL Community Edition

(GPL)

Once you log in to MySQL, your command prompt changes to mysql>. From this point on, until
you log out, all commands are directed to the database server.

For example, to see what databases are available, type the following command:

mysql> show databases;

To test the database installation, create a new database:

mysql> create database flashphp;

When the database is created, you can select it with the following command:

mysql> use flashphp;

You can even pass in the database name during the login phase, such as:

$ mysql -uroot -p flashphp

At this point, MySQL should be successfully installed on your Windows development server. The
next section covers how to install MySQL for UNIX and UNIX-like systems. The PHP installation
process is directly following the UNIX instructions. Feel free to jump ahead if you only want to
focus on a Windows system.

24

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 24

Installing MySQL for UNIX
You can install MySQL on your UNIX system using the provided source code on the book’s site,
or you can download the latest files from MySQL directly at http://dev.mysql.com/
downloads/mysql/5.0.html#linux.

The version to download depends on the environment on which you are installing.
Consult the following guide for further information:

http://dev.mysql.com/doc/refman/5.0/en/which-version.html.

After you download the necessary installation files, you can begin the preparation for the installa-
tion process. The first step is to add the user and group mysql for MySQL to run as. The following
command creates the mysql group and adds a mysql user to that new group:

$ groupadd mysql
$ useradd -g mysql mysql

Choose the directory in which you want to install MySQL. You can choose the same location where
you installed Apache to keep all of your development components in the same location.

$ cd /usr/local

You may need to perform the MySQL installation as root if the directory is protected.

Unpack the distribution package and create a symbolic link to that directory.

$ gunzip < /usr/local/mysql-5.0.45-linux-i686-glibc23.tar.gz | tar xvf -
$ ln -s /usr/local/ mysql-5.0.45-linux-i686-glibc23 mysql

When the unpacking command is complete, change to the installation directory.

$ cd mysql

Change the ownership of the files to MySQL by running a recursive ownership command. The first
command changes the ownership and the second changes the group attribute.

$ chown -R mysql
$ chgrp -R mysql

If you have not installed a previous version of MySQL on this machine, you must create the
MySQL data directory and grant tables.

scripts/mysql_install_db --user=mysql

If you want MySQL to run automatically when the machine starts, you can copy the
mysql.server file located in the support/ directory to the location where your system has its
other startup files. For more information regarding the location of that directory and other system
specific concerns, go to http://dev.mysql.com/doc/refman/5.0/en/UNIX-post-
installation.html#automatic-start.

NOTENOTE

NOTENOTE

25

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 25

When everything is properly unpacked and installed, you can begin testing.

To start the MySQL server, run the following command from the mysql installation directory:

$ bin/mysqld_safe -- user=mysql &

Use the following command to verify the server is actually running:

$ bin/mysqladmin version
$ bin/mysqladmin variables

The output from mysqladmin version will vary depending on the version installed. This is a
sample returned from that command:

mysqladmin Ver 14.12 Distrib 5.0.54, for pc-linux-gnu on i686
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult

AB
This software comes with ABSOLUTELY NO WARRANTY. This is free

software,
and you are welcome to modify and redistribute it under the GPL

license

Server version 5.0.54
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 0 days 2 hours 2 min 07 sec

Threads: 1 Questions: 323 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 7
Queries per second avg: 0.000

Protecting MySQL
It is important that you protect MySQL users from malicious activity. By default, MySQL installs
the root and anonymous users with no passwords, which is the same as using a global default. It is
a very good practice to immediately assign passwords and in some cases remove the anonymous
users altogether.

Setting a password on Windows
The password for the root account was given a password when you ran the installer. However, if
for some reason you want to change it, simply run the following command, substituting
NEW_PASSWORD with the actual password you want to use:

$ mysql -uroot
mysql> SET PASSWORD FOR ‘root’@’localhost’ =

PASSWORD(NEW_PASSWORD);
mysql> SET PASSWORD FOR ‘root’@’%’ = PASSWORD(NEW_PASSWORD);

26

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 26

Setting a password on UNIX
The installation of MySQL on UNIX leaves the root login with no password, unlike the Windows
installation. It is very important to assign a password immediately:

$ mysql -uroot
mysql> SET PASSWORD FOR ‘root’@’localhost’ =

PASSWORD(NEW_PASSWORD);
mysql> SET PASSWORD FOR ‘root’@’host_name’ =

PASSWORD(NEW_PASSWORD);

Replace host_name with the name of the server host. If you do not know the server host, run this
command while logged in to MySQL to determine that information:

SELECT Host, User FROM mysql.user;

To remove the anonymous account, log in to MySQL and issue the following command:

DROP USER ‘’;

Use caution when removing a user and double-check the spelling of the user’s name
before you issue that command.

Setting up PHP on the Web Server
PHP is the final component to install in order to complete the process of building the development
system. The process of installing PHP is straightforward, but it requires some customization.

When installing the support for the XML and GD libraries, your system may require
additional libraries and components.

Installing PHP for Windows
Installing PHP for Windows is actually fairly simple. A lot of the installation process consists of
moving files around and editing existing files. You can find the PHP installation files on the book’s
Web site or you can download the latest files directly from the php.org site
atwww.php.net/downloads.php.

Installation
To begin the process of installing PHP, run the installer application that you downloaded. The
Welcome page for the setup wizard appears, as shown in Figure 1.19.

The destination folder, as shown in Figure 1.20, is where you install PHP. By default, it chose a
directory path with Program Files within it. This can cause issues on some servers. A common
path is C:\php or C:\php5 if you intend to install multiple copies of PHP.

NOTENOTE

CAUTION CAUTION

27

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 27

FIGURE 1.19

The PHP installation Welcome page

FIGURE 1.20

Choose the Destination folder.

28

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 28

The PHP installer is built to configure both PHP and Apache to work together. This includes the
editing of the configuration files of Apache.

On the Web Server Setup page, as shown in Figure 1.21, select the version of Apache that you pre-
viously installed. If you are unsure which version is installed, you can run the following command
in the prompt:

/usr/local/apache2/bin/httpd –v

The following is a sample output from the previous command:

Server version: Apache/2.0.59
Server built: Aug 31 2007 01:58:43

FIGURE 1.21

The PHP Installer Web Server Setup page

The next page, see Figure 1.22, is where you inform the installer of the location of the Apache con-
figuration directory. For example, if you followed the Apache installation guide at the beginning of
this chapter, the path would be the following:

C:\Program Files\Apache Group\Apache2\conf\

On the next page you choose the extra extensions needed for this book (see Figure 1.23). Those
extensions are GD2, EXIF, MySQL, and PEAR. You can also choose to install any others that you
think may be useful.

29

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 29

FIGURE 1.22

Apache Configuration Directory page

FIGURE 1.23

Choose which extensions you want to install in addition to PHP.

30

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 30

The entire configuration is set up at this point, and you can click Install to begin the process of
installing PHP. When the installation is finished a Completed page appears.

You can open the directory in which PHP is installed and look at the various files. You can also edit
the php.ini file to meet your specific needs.

C:\php5\php.ini

The default configuration of the php.ini should work for a development setup with the excep-
tion that you should enable display_errors. Enabling the display of errors tells PHP to print
any errors to the screen. In a production setup this could be considered a security concern. A
development server is generally only seen by authorized viewers, which means enabling this option
is not a problem.

Open the php.ini file and search for the section referring to error_reporting.

display_errors = Off

Change the value to On.

display_errors = On

Changes to the php.ini file are not visible until you restart the server.

Make sure you restart the Apache web server before continuing because you made some modifica-
tions to the Apache configuration.

Testing
After you install PHP you can create a sample PHP file to test it out. A common sample file is the
phpinfo file, which allows you to see the configuration variables for the PHP installation on the
server.

You can use Notepad or any other text editor to create this sample file. If you install the full Web
Suite from Adobe, you can use Dreamweaver to write PHP files (see Figure 1.24).

Here is the syntax for the phpinfo file.

<?php

phpinfo();

?>

Save this file as info.php in the Document Root of the Apache installation. For example, if you
install Apache to the default location, the PHP file is saved to:

C:\Program Files\Apache Group\Apache2\htdocs\info.php

NOTENOTE

31

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 31

FIGURE 1.24

The sample PHP file as seen in Dreamweaver CS3

You can now open this file in your Web browser, as seen in Figure 1.25.

http://localhost/info.php

If you prefer, you can create a custom PHP file to test whether PHP is properly running, such as the
following:

<?php

print “Hello, World! This is PHP.”;

?>

When you run this file in the browser, you should see your message displayed.

32

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 32

FIGURE 1.25

PHP information displayed in a Web browser

Installing PHP for UNIX
Installing PHP for UNIX is more detailed and requires more configuration. This is true for most
command-line installation setups. You can download the installer files from the book’s Web site or
one the official PHP Web sites.

After you obtain the PHP installer files, you can begin the process of installation. Before you begin
the installation, it is a good idea to stop Apache to ensure none of the files becomes corrupted.

/usr/local/apache/bin/apachectl stop

To start the installation, create the directory where PHP will be installed.

mkdir /usr/local/php5

You can substitute php5 for simply php. However, adding the version number makes it easier to
have multiple installations and will be easier to manage in the future.

cd /usr/local/php5

33

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 33

Unpack the files and type the installation directory:

gunzip php-5.2.5.tar.gz
tar -xvf php-5.2.5.tar
cd php-5.2.5

Building configuration parameters
The next step is to build the config line. This will contain all the necessary extensions and fea-
tures you want to include in the installation. For example, you need to include database and image
support to complete some of the chapters in this book, among others. Each option is contained
within a set of single quotes (‘) and will include the path if necessary.

./configure’ ‘--prefix=/usr/local/php5’ ‘--with-
apxs=/usr/local/apache/bin/apxs’ ‘--with-gd’ ‘--enable-exif’
‘--with-mysql=shared,/usr/local/php5’ ‘--with-
mysqli=shared,/usr/local/php5/bin/mysql_config’ ‘--with-
libxml-dir=shared,/usr/local/php5’ ‘--with-
xsl=shared,/usr/local/php5’ ‘--with-jpeg-dir=/usr/local/php5’
‘--with-png-dir=/usr/local/php5’ ‘--enable-gd-native-ttf’ ‘--
with-freetype-dir=/usr/local/php5’ ‘--with-
gettext=shared,/usr/local/php5’

When the configuration process is complete (which can take a while depending on the system),
create and run the installer:

make
make install

After the make install command is completed, PHP should be installed.

Configuration
A few portions of PHP need to be configured to make sure it works seamlessly with Apache and
your overall development system. This process is fairly easy to complete, but incorrect modifica-
tion can result in a broken system. Also, when modifying configuration files, it is best to make a
backup first.

The first step is to move the php.ini file to a central location that PHP will use when it starts up.

cp php.ini.recommended /usr/local/lib/php.ini

In order for Apache to load PHP files, add the necessary module references:

LoadModule php5_module modules/libphp5.so
AddType application/x-httpd-php .php .phtml
AddType application/x-httpd-php-source .phps

34

Understanding the BasicsPart I

05_258248 ch01.qxp 3/28/08 1:36 PM Page 34

Restart Apache to have these changes take effect. Any time you edit the values in PHP or Apache,
you must restart the server.

/usr/local/apache/bin/apachectl start

With everything properly installed, you can test the setup by running a sample PHP file:

<?php

phpinfo();

?>

Summary
In this chapter, you went through the steps necessary to install the complete development system.
This process included the installation of Apache, PHP, and MySQL on a Windows or UNIX Web
server. The next chapter walks you through the process of making this development setup more
secure. This includes securing the files on the server as well as the overall server configuration
through the httpd.conf configuration file.

35

Getting Started with Flash and PHP 1

05_258248 ch01.qxp 3/28/08 1:36 PM Page 35

05_258248 ch01.qxp 3/28/08 1:36 PM Page 36

If you have installed all of the components on the server, you can config-
ure the setup to be more secure. After security is explained, the next step
is to set up the proper error handlers and look at ways to create a more

usable setup for the end user.

After security and configuration of the Web server are complete, you will
look at an overview of PHP to better understand how everything works.
MySQL usage and basic integration with PHP are explained using various
examples with descriptions and explanations.

The last section explores Flash, including class setup and overall IDE
explanation.

Introduction to the Web Server
In the Chapter 1, you learned how to set up a development server, which
included the installation of PHP, MySQL, and Apache. This section is an
overview of how the Web server is set up, as well as how to make the system
more secure.

Working with .htaccess files
The .htaccess file is used to modify how Apache functions for a specific
directory. This file is similar to the httpd.conf file found in the global
configuration of Apache, with the exception that it is not required and can
be globally disabled, provided the admin modifies the settings of the Web
server.

37

IN THIS CHAPTER
Introducing the Web server

Exploring PHP

Exploring the basics of MySQL

Exploring Flash

Exploring Flash and PHP

06_258248 ch02.qxp 3/28/08 1:37 PM Page 37

The syntax of this file is not very advanced. It is basically a text file that informs the Web server of
specific modifications.

For example, have you noticed a Web site that has specialized file extensions, such as the
MediaTemple Web host, which has the following format?

http://www.mediatemple.net/contact.mt

Notice how the url has a .mt extension. This extension is not a standard file extension. This
modification can be achieved using the .htaccess file:

use custom file extensions
AddType application/x-httpd-php .me

This modification can also be done using the httpd.conf file if you prefer to have the entire
Web server be able to use this custom file extension.

Apache handles many requests by default and can offer even more with additional modules
installed. One module in particular allows you to have custom URLs, also commonly referred to as
clean URLs.

The possibilities with .htaccess are varied and totally depend on your application. One more
common usage of .htaccess is to redirect www and non-www requests to the same location.
This not only limits redundant links but also provides better search engine optimization.

An example of this conversion, using the domain example.org, would look something similar to
the following:

Force www.domain.com to domain.com
RewriteCond %{HTTP_HOST} ^www.example.org [NC]
RewriteRule ^(.*)$ http://example.org/$1 [R=301,L]

Protecting your content
You can protect your content in a number of ways. You can build a custom authentication system
or use the basic authentication that is packaged with Apache.

The basic authentication is set up in two steps. The first step is to create the password and user.

You use the htpasswd file to create the password file. This password-creation command is located
in the bin/ directory where you installed Apache. For example, you will most likely find the file
at the following location, assuming you used the suggested installation path in Chapter 1.

$ /usr/local/apache/bin/htpasswd

The first time you create a user, you need to inform the password-creation application to create a
new password file. From that point on you omit the -c flag.

38

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 38

Failure to remove the -c flag after the first user setup will result in a new password file
and remove any existing users.

While not required, it is a good practice to periodically back up this and any other important files
in case your system encounters an unexpected crash or data corruption.

The command to create a password is simply a call to the password application with the username
appended to the end.

$ cd /usr/local/apache/bin/
$ htpasswd -c /usr/local/apache/passwd/passwords USERNAME

Be sure to replace USERNAME with the actual username you want to add.

The htpasswd application will ask you for the password you want to assign, and then ask you to
type the same password again to confirm it.

The generated password file is encrypted. However, you should still store it in a secure location.
Under no circumstances should this file be stored in the public directory because it could compro-
mise the integrity of your system.

This isn’t as important in a development system, but it is a good practice to follow all proper secu-
rity steps, even in a development setup, to become familiar with them. As you continue to work on
servers, security will become second nature. You should never put it off to save time.

After you create the password file, add the security check in a .htaccess in whatever location
you want to password protect. For example, let’s add the authentication to the entire server
because this a development server and you wouldn’t want anyone viewing it.

Add the following to a new .htaccess file in the root of the Web directory.

AuthType Basic
AuthName “Authorization Required”
AuthUserFile /usr/local/apache/passwd/passwords
Require valid-user

This informs Apache that any request to this directory and below requires authorization. The last
line allows any user in the password file to be able to log in.

Require valid-user

You can also add a specific username, but this is more difficult to maintain.

This is basic authentication so it does have various limitations. For example, you cannot modify
the dialog box that displays in the user’s browser. You can’t modify the label values next to the
input boxes and, most importantly, you cannot allow the user to log out.

If your application requires a more customized and integrated login system, it may be better to
build a custom PHP/MySQL setup, depending on your requirements.

CAUTION CAUTION

39

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 39

Gathering information about Apache
As you continue to work with Apache, there are some commands and tools that can result in more
time to develop an application instead of micromanaging the server.

Starting and stopping Apache
Sometimes Apache can act up just like any other piece of software or hardware on your system.
Oftentimes when this occurs, a simple restart will fix the issue. For instance, as more users request
files from Apache, it can start to fill up internal memory and temporary files.

To restart Apache you can simply call the following command in UNIX from the command line or
restart the service on Windows:

$ /usr/local/apache/bin/apachectl restart

The path to the apachectl application can vary depending on the installation of
Apache.

If you want to stop Apache and not have it restart, use the following command. This would most
likely be done when installing new modules or updating Apache itself.

$ /usr/local/apache/bin/apachectl stop

To start the server again after you complete the update, simply use the start option:

$ /usr/local/apache/bin/apachectl start

Determining the version of Apache
Occasionally, when installing new software, you need to know which version of Apache you are
currently running. For example, when installing PHP you need to know which version of Apache
you are using. This is found by running a simple command switch.

$ /usr/local/apache/bin/httpd -V

The result of that command would be something similar to Figure 2.1.

Determining which modules are installed in Apache
You can very easily determine which modules are currently installed in Apache by using the fol-
lowing command-line flags in UNIX.

$ /usr/local/apache/bin/apachectl -t -D DUMP_MODULES

To determine the modules in Windows, you would run the following command:

httpd -t -D DUMP_MODULES

NOTENOTE

40

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 40

FIGURE 2.1

Displaying the current version of Apache

An example response from this command is something similar to the following:

Loaded Modules:
core_module (static)
mpm_worker_module (static)
http_module (static)
so_module (static)
include_module (shared)
deflate_module (shared)
log_config_module (shared)
env_module (shared)
expires_module (shared)
headers_module (shared)
setenvif_module (shared)
ssl_module (shared)
mime_module (shared)
status_module (shared)
autoindex_module (shared)
info_module (shared)

41

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 41

vhost_alias_module (shared)
negotiation_module (shared)
dir_module (shared)
imagemap_module (shared)
actions_module (shared)
userdir_module (shared)
alias_module (shared)
rewrite_module (shared)
...
Syntax OK

If you omit the -D DUMP_MODULES flag you will only see the Syntax response. This informs you
if something is wrong or tells you everything is okay.

$ /usr/local/apache/bin/apachectl –t

For Windows the command would be

httpd -t

Using custom error documents
When you view a URL on a Web site, Apache serves a page to you based on your request. By
default, if Apache is asked to serve a file it can’t find, it returns an ugly 404 page that is not very
informative and actually causes a potential security concern.

As you can see in Figure 2.2, Apache has printed the server information for the world to see. Now
this isn’t a huge security concern, but every piece of information can add up to a major problem.

FIGURE 2.2

Default error page from Apache

A more important issue with using the standard error pages is the fact the user is presented with a
useless page. For example, the user now knows the file doesn’t exist, but has nowhere to go and no
idea what could be the problem. Oddly enough, if a user is shown a 404 page he or she will usu-
ally not stick around, and that means an abandoned user for your site.

42

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 42

Modifying Apache
Luckily, Apache allows you to modify this default error page. Some hosts allow you to modify the
file using the included control panel that they installed when you purchased the server. In this
case, however, the development server requires you to manually configure the majority of it.

Using custom error documents is as simple as adding the modification to a .htaccess file. This
file is usually stored in the Document Root to ensure all files will see the file.

The following code is the syntax required to modify the error document.

Customized Error Handler
ErrorDocument 204 /error.html
ErrorDocument 301 /error.html
ErrorDocument 302 /error.html
ErrorDocument 400 /error.html
ErrorDocument 401 /error.html
ErrorDocument 403 /error.html
ErrorDocument 404 /error.html
ErrorDocument 500 /error.html
ErrorDocument 501 /error.html
ErrorDocument 502 /error.html
ErrorDocument 503 /error.html

As you can see, the error documents will be replaced by one file. You can, of course, point to a sep-
arate file for each error encountered. If you do not assign a specific error page, Apache reverts to its
default. The previous list is a robust record of possible error codes, but it is not a complete one.

Dynamic error documents
Using PHP, you can create a dynamic error handling system. The idea is to call one page like you
did in the previous example, with the exception that a variable will be passed along to notify that
page of which error was encountered.

You start by modifying the error handler in the .htaccess file, such as:

Error Handler, request is sent to a php file
ErrorDocument 204 /errorHandler.php?e=204
ErrorDocument 301 /errorHandler.php?e=301
ErrorDocument 302 /errorHandler.php?e=302
ErrorDocument 400 /errorHandler.php?e=400
ErrorDocument 401 /errorHandler.php?e=401
ErrorDocument 403 /errorHandler.php?e=403
ErrorDocument 404 /errorHandler.php?e=404
ErrorDocument 500 /errorHandler.php?e=500
ErrorDocument 501 /errorHandler.php?e=501
ErrorDocument 502 /errorHandler.php?e=502
ErrorDocument 503 /errorHandler.php?e=503

43

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 43

That code tells Apache to redirect those errors to the errorHandler.php file, passing in the
error code. The next step is to build the PHP file that will handle the error codes. This PHP will
expect one argument and will be smart enough to return a valid response if no error is passed in.

The first part of the file captures the error code and initializes a variable to store the error string.

<?php

$errorCode = $_GET[‘e’];
$errorString = “”;

...

?>

When an error code is found, a check to make sure it is a valid number is made to keep the appli-
cation secure.

<?php

$errorCode = $_GET[‘e’];
$errorString = “”;

if(!is_numeric($errorCode))
{

$errorCode = -1;
}

...

?>

A basic switch is used to determine which error code was encountered. Switches are explained in
the section “Exploring the Basics of PHP” later in this chapter.

<?php

$errorCode = $_GET[‘e’];
$errorString = “”;

if(!is_numeric($errorCode))
{

$errorCode = -1;
}

44

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 44

switch($errorCode)
{
case 204: // No Content (Empty Document)

$errorString = “No Content (Empty Document)”;
break;

case 301: // Moved Permanently
$errorString = “Moved Permanently”;
break;

case 400: // Bad Request
$errorString = “Bad Request”;
break;

case 401: // Unauthorized User
$errorString = “Unauthorized User”;
break;

case 403: // Forbidden
$errorString = “Forbidden”;
break;

case 404: // Document Not Found
$errorString = “Document Not Found”;
break;

case 500: // Internal Server Error
$errorString = “Internal Server Error”;
break;

case 503: // Out of Resources
$errorString = “Out of Resources”;
break;

case -1: // No Error Code
$errorString = “Unknown Error”;

}

?>

The last step is to display the error string to the user, which completes the custom error handling
script. You will notice that some of the error codes were omitted from the switch to demonstrate
the fact that the script silently moves on if an invalid error code is displayed.

<?php

$errorCode = $_GET[‘e’];
$errorString = “”;

if(!is_numeric($errorCode))
{

$errorCode = -1;
}

45

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 45

switch($errorCode)
{
case 204: // No Content (Empty Document)

$errorString = “No Content (Empty Document)”;
break;

case 301: // Moved Permanently
$errorString = “Moved Permanently”;
break;

case 400: // Bad Request
$errorString = “Bad Request”;
break;

case 401: // Unauthorized User
$errorString = “Unauthorized User”;
break;

case 403: // Forbidden
$errorString = “Forbidden”;
break;

case 404: // Document Not Found
$errorString = “Document Not Found”;
break;

case 500: // Internal Server Error
$errorString = “Internal Server Error”;
break;

case 503: // Out of Resources
$errorString = “Out of Resources”;
break;

case -1: // No Error Code
$errorString = “Unknown Error”;

}

?>

<h2>An error occurred while processing your request</h2>
<h3><?=$errorString?></h3>

The $errorString variable is printed to the screen, informing the user that an error has
occurred.

This custom error handler presents a much better error to the user. Some Web sites include rele-
vant links of interest or use the query (if it was a search) to return relevant information. It is unfor-
tunate that a user would see an error page, but is more common as technology changes and
systems are updated.

It is a good idea to keep permanent links, because search engines will cache links. In the future, it
will be beneficial for your traffic if that link still worked.

As a bonus to the previous script, which is located on the Web site for this book, there is a com-
plete error-handling system that includes localized errors (can be tailored to a language setting) and
utilizes PHP templates and a custom CSS file to modify the style.

46

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 46

Exploring the Basics of PHP
PHP (Hypertext Pre-Processor) is a server-side scripting language that runs on Apache or other
similar Web server applications. PHP is one of the most popular server-side scripting languages
because it is fairly simple to get started in and can handle robust applications.

The coding structure is based on C and can be written in a procedural (step-by-step) or Class-
based structure (objects, properties, methods, and so on). Once you understand the basics of PHP,
you can really start to see the true power it has.

This book is based around PHP 5, but a lot of the following tips, techniques, and styles explained
in this section can be used for PHP 4 and PHP 5, as the versions are fairly similar.

Understanding variables
Variables, also commonly referred to as vars or properties (when working with classes), are prob-
ably the most-used item in programming. They are used to assign a value to a place that can be
called in another part of the code. The usage of variables is not only a timesaver, but also makes
the program more structured and easy to maintain.

Here is a very simple example of a variable definition in PHP:

$myVar = “hello world”;

The previous example assigned the string “hello world” to the variable $myVar.

There are a few things to keep in mind when working with variables.

n They must be preceded by a dollar ($) sign (unless in a Class).

n They must end with semicolon (;).

Variables can accept many types of data, including, but not limited to String, Boolean, and Array,
each of which is discussed in the following sections.

Strings
String variables contain text, such as:

“Hello, World!”

You can also build strings using concatenation techniques, such as:

$var = “Hello”;
$var .= “, World!”;
print $var; // Outputs: Hello, World!

47

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 47

Booleans
Booleans are special variables that can be one of two possible values: true or false. They are
used mostly in if statements and other forms of conditional checks, such as:

$loggedIn = false;
if($loggedIn == false)
{

print “Sorry, you are not logged in!”;
}

Arrays
Arrays are complex data structures consisting of a group of elements that are accessed by indexing.
In PHP, this index can either be a numeric value or a string.

Here is an example of an array and the two ways to access the data:

<?php

$fruit = array(
“Orange”,
“Apple”,
“Strawberry”,
“Grape”

);

print $fruit[1]; // Apple

$fruit = array(
“orange” => “Orange”,
“apple” => “Apple”,
“strawberry” => “Strawberry”,
“grape” => “Grape”

);

print $fruit[‘orange’]; // Orange

?>

Objects
Classes in PHP describe an object or are the definition of an object. They consist of self-defined
methods and properties, which allows you to create custom functionality.

48

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 48

Here is a very basic example of a class in PHP with a sample call at the bottom of the example:

<?php

class Animals
{

function Animal()
{

}
public function speak($word)
{

print $word;
}

}

class Dog extends Animals
{

function Dog($word)
{

Animals::speak($word);
}

}

// Create a new Dog
$dog = new Dog(“Hello.. Woof!”);

?>

Working with functions
When developing applications you tend to repeat various tasks. Constantly having to type those
steps can be a long process. More importantly, repeating code makes an application less efficient.

Functions allow you to place repetitive tasks in a nice little container that you can call at any time
as long as the function is accessible.

Here is an example function that adds two numbers and returns the sum:

function addNumbers($num1, $num2)
{

// return the sum of the two numbers
return ($num1 + $num2);

}

You call a function by referencing the function name and passing any arguments the function
requires. This example returns 10 as the sum.

49

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 49

An argument is a value that is passed into the function and later used within the function as a local
variable.

addNumbers(4, 6); // outputs 10

Functions in PHP can have a default argument assigned, which means they won’t require that argu-
ment to be passed in, such as:

function addNumbers($num1, $num2, $print=true)
{

if($print)
{

print “Sum is: “ . ($num1 + $num2);
}
else
{

return ($num1 + $num2);
}

}

This function will print the result directly to the screen or return the value if the $print variable
is false, which it is by default. You cannot exclude an argument in the middle of defining other
arguments. For example, the following function call would be invalid:

function say($upperCase=false, $string)
{

if($upperCase)
{

return strtoupper($string);
}
else
{

return $string;
}

}

say(“Hello, World!”);

This would assign the passed-in string to the $upperCase value and ignore the $string vari-
able. Because PHP does not worry about what type of value is passed in, this results in an error at
the line where it returns the string.

Classes also have functions, called methods. Methods can retain special features that standard func-
tions cannot.

50

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 50

Understanding control structures
Most programming languages have control structures that offer code fragments and overall provide
a more dynamic path for an application. The following is some of the more common control struc-
tures, including the ones used in the majority of this book.

if
The if construct is found in any popular programming language, PHP included. It allows for con-
ditional execution of code fragments. An example of an if statement would be:

$admin = getAdminStatus();
if($admin == true)
{

print “Admin logged in, show admin controls”;
}

You can nest if statements with other if statements an unlimited amount of times. A more realis-
tic use of nesting if statements is a login application that has varied levels of authentication.

$loggedIn = true;
$admin = true;
$editable = true;

if($loggedIn)
{

if($admin)
{

if($editable)
{

// allow the page to be
// edited because a valid
// administrator is logged in

}
}

}

else
Assume you want to display an error message to users not logged in and the proper control panel if
the user is logged in. This is done using an else statement, which is executed if the condition in
the if is not met.

$loggedIn = false;
if($loggedIn)
{

// display control panel
}
else
{

// display login form and error message
}

51

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 51

An else is not required and is placed after all other conditional checks, such as elseif, which is
in the next section.

elseif
The elseif is the combination of an if and an else. This statement is placed after an if and
allows the code to match another condition, which can be completely different than the if run
before.

An else or else..if will only be evaluated if the preceding conditional is not met.

$loggedIn = false;
$colorOfSky = “blue”;

if($loggedIn)
{

// user logged in
}
elseif($ColorOfSky == “blue”)
{

// color of sky is blue, log user in??
}

while
The while is a type of loop. The code within the curly braces {} runs “while” the condition is met.
Once the condition is no longer valid, the loop stops.

Loops in PHP can run forever if not programmed correctly. Use caution when working
with loops and always check for valid data first.

while($x < 50)
{

print “x=” . $x . “
”;
$x++;

}

for
A for loop is the most complex loop in PHP. Here is an example:

for($x=0; $x < 10; $x++)
{

print “x=” . $x . “
”;
}

The first expression ($x=0) is executed unconditionally once at the start of the loop. The second
expression ($x < 10;) is evaluated on each pass and the loop will continue until this condition is
met or the loop is stopped using a break. On each pass, the third expression ($x++) is executed.
In this example, it increments $x on each pass.

CAUTION CAUTION

NOTENOTE

52

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 52

You can nest for loops and even define multiple variables in the first expression. This can make
your code faster, but harder to read.

foreach
The foreach loop is used to iterate over an array. You assign the loop variable to the desired array,
and on each pass the value is stored in that loop variable.

$fruits = array(“Orange”, “Apple”, “Banana”, “Grapefruit”);
foreach($fruits as $fruit)
{

print “Fruit: “ . $fruit;
}

The variable $fruit will still exist once a foreach loop has been completed, so it is a
good idea to destroy the variable using unset(), such as unset($fruit).

break
The break control ends the execution of a loop, regardless if the condition is met or not. You can
place an optional numeric value informing PHP of how many levels it should break out. This is
useful when you have a nested loop that needs to tell the parent to exit if an error occurs.

for($i=0; $i < count($users); $i++)
{

for($j=0; $j < 5; $j++)
{

if($users[$i][$j][‘valid’] == false)
{

// found invalid user, group is compromised
// exit both loops
break 2;

}
}

}

continue
Unlike break, continue will exit the current iteration of a loop, but allow the remaining itera-
tions to continue on.

This is useful when you are looping through a bunch of data and only want to act on valid data.

for($i=0; $i < count($users); $i++)
{

if($users[$i][‘valid’] == false)
{

// invalid user, continue with remaining list
continue;

}
// more code logic here

}

NOTENOTE

53

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 53

Just like the break, continue will also accept a numeric argument telling it how many levels of
enclosing loops to skip over.

switch
A switch is similar to a series of if statements using the same expression (variable). You would
generally use a switch when you want to test a variable against a lot of conditions.

switch($userLevel)
{

case ‘ADMIN’:
print “User is an admin”;
break;

case ‘MODERATOR’:
print “User is a mod”;
break;

case ‘MEMBER’:
print “User is an member”;
break;

case ‘GUEST’:
print “User is an guest”;
break;

}

A break is used to ensure the remaining checks will not run; in fact, if you remove the breaks, every
condition will be checked, which can cause problems if you intend to do a multilevel validation.

require
The require() statement attempts to load a file and will exit the script with a Fatal Error if that
file is not found. This function checks for the file against the current included_path as well as
the directory the file is running in.

require(“importantFile.php”);

The error that is displayed (see Figure 2.3) can sometimes cause a potential security concern in
that it will display the path the file exited on. A better way to handle this is to create a check for
the file first and display a cleaner, less crucial message to the user.

if(!file_exists(“importantFile.php”))
{

$error = “Sorry, one of the core components could not be
loaded”;
exit($error); // display clean error and exit remaining script

}
require(“importantFile.php”); // never runs, if file doesn’t

exist

54

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 54

FIGURE 2.3

PHP require() error as seen in the browser

include
The include() statement is similar to the require with the exception it will display an error
but not stop the execution of the script.

include(“optionalFile.php”);

require_once
The require_once statement behaves similarly to require, with the exception that if the cur-
rent file is already loaded it will not attempt to load it again. This is more useful as you continue to
build large applications that sometimes share many files. This ensures that no redundant code is
loaded.

require_once(“requiredFile.php”);

// ... other code here

require_once(“requiredFile.php”);

The second require_once will not run because the file has already been loaded in the previous
portion of the code.

55

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 55

include_once
The include_once() statement is similar to the require_once with the exception that if the
file is not found, it only displays a simple error.

Using type checking in PHP
Unlike most programming languages, PHP doesn’t require strict typing of variables. This means
you don’t have to define what type of data a variable will hold.

This may seem like a good thing because variables can be shared. However the potential downside
to this approach is that a variable that you expect to be a string could potentially show up as an
array. This would most likely break your code or cause an exploitable portion of code. Imagine
code similar to the following:

$id = -1;

if(isset($id))
{

// sql call here, set id to a string, for some reason
$id = “user id”;

}

// more logic here
if($id == -1)
{

// user not logged in
}
else
{

// user logged in
}

This is an overly dramatic example because it is full of worst-case scenarios, but you can see how
untyped variables can cause headaches.

Type checking functions
PHP does offer some special functions that allow you to check the type of a variable, but this does
not stop other code from overwriting the variables.

An example of one of these functions would be is_string, which checks to see if the passed-in
variables contents are string.

$saying = “Hello, World!”;

if(is_string($saying))
{

print “$saying is a string”;
}

56

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 56

PHP offers the ability to test for arrays, numbers, strings, and empty values.

Future version support
It has been mentioned that future versions of PHP could include strict type checking, but for now,
these functions, when needed, will provide a higher level of integrity for your application.

Exploring the Basics of MySQL
MySQL is the storage application used with PHP to create a dynamic application. You can store
pretty much any type of data in a MySQL database and have the ability to share that information
with other applications and systems. Oftentimes a database is used when searching needs to be
done or if data is changing frequently and many people will be requesting this updated data.

The alternative to a database is a flat file (text file) that has many limitations, the most devastating
being the fact that only so many instances of the file can be used at once. Another limitation is the
ability to quickly index and search a text file.

Using statements
The contents in a MySQL database are stored in tables. These tables are stored in databases that
make up the MySQL system. The data stored in those tables is accessed using various statements
and conditions, which are called queries.

There are many statements that can be used in SQL queries.

SELECT
The SELECT statement is the most common statement, which tells MySQL what contents
(columns) you want returned from a table.

SELECT id,name,ip, bio FROM users WHERE id=3

You can select data from multiple tables using commas (,) to separate the column and table
names.

SELECT users.id, users.name, members.posts, members.subs FROM
users, members WHERE members.userID=users.id AND users.id=3

INSERT
The INSERT statement is used to add new rows to an existing table. There are multiple ways to
define an INSERT.

If you only want to update some columns you need to define those columns.

INSERT INTO members (name, bio, ip) VALUES ($name, $bio, $ip);

57

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 57

A shortcut is used to exclude the column definitions. However, this is only possible when all values
are being updated or you have assigned default values when you create the table.

INSERT INTO members ($name, $bio, $ip);

After an INSERT has completed, you can make a call to mysql_insert_id(), which will return
the ID of the last successful insert.

$result = mysql_query(“INSERT INTO members (“ .
$name . “, “ .
$bio . “, “ .
$ip . “)”);

$rowID = mysql_insert_id($result);

DELETE
The DELETE statement is used to remove one or more rows from a table. Like the other state-
ments, you can create a condition using WHERE, AND, OR, and so on.

DELETE FROM users WHERE id=3

You can also remove all rows in a database by omitting the condition:

DELETE FROM users

The DELETE statement is a very powerful one that should be used with extreme
caution.

Conditions
Conditions in MySQL are used to limit the amount of data that is returned. For example, an SQL
query such as the following would return all users in the database:

SELECT * FROM users

WHERE
This would be okay if that’s what you want to occur. You probably only would want to return cer-
tain users or even one specific user. This would be done using the WHERE condition.

SELECT * FROM users WHERE id=3

AND
The AND condition is used when you need to match more than one condition. An example would
be you want to return a database of members that have been registered and have a valid account.

SELECT * FROM users WHERE active=1 AND registered=”yes”

You can use any combination of the conditional statements, with the exception that there should
only be one WHERE statement.

CAUTION CAUTION

58

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 58

OR
The OR statement is used when you want only one condition to match. For example, you want
users that have a level of admin or mod. Think of this as an if..else for SQL.

SELECT * FROM users WHERE level=’admin’ OR level=’mod’

Conditions in MySQL can come in handy when trying to drill down data, especially when you start
combining them. It is not rare to create very complex SQL statements in a matter of minutes.

Exploring Flash
Flash is not only a technology, it is also the name of a development tool from Adobe, which is used
to create Flash-enabled content. This content can be anything from a simple banner advertisement
all the way to a complete database-driven Web site with video and user interaction.

Flash IDE
The Flash IDE (Integrated Development Environment), as shown in Figure 2.4, is a robust devel-
opment tool with many useful features.

FIGURE 2.4

Flash CS3 IDE with default layout

59

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 59

One of the updated tools is the code editor, also referred to as the ActionScript panel. This panel,
as seen in Figure 2.5, is where you write your ActionScript code for your Flash applications. The
latest version has robust code completion, advanced debugging, as well as syntax highlighting to
name a few of the new features.

FIGURE 2.5

ActionScript panel found in Flash CS3

This is where the majority of your development life will be spent. The panel is not the only
editor; you can create complete ActionScript files, as shown in Figure 2.6, and include them in
your application.

To create a custom AS file, choose File ➪ New. Choose ActionScript 3 File from the middle column.
Save the file as Sample.as to your desktop.

60

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 60

FIGURE 2.6

External ActionScript editor included with Flash CS3

Alternative editors
You will find many ActionScript editors on the market. My personal favorite is FDT from power-
flasher at http://fdt.powerflasher.com/. This editor offers the largest amount of cus-
tomization and is built into the Eclipse editor, which many other companies depend on.

Create a new FLA and save that to your desktop as well. Now open the code editor and add the
following code:

#include “Sample.as”

That line of code includes the contents of Sample.as in your application. This means you can
write all of your ActionScript in the external file and Flash will know to include it when you test or
build the application.

61

Exploring Flash and PHP 2

06_258248 ch02.qxp 3/28/08 1:37 PM Page 61

Flash-enabled devices
Flash is no longer a simple animation tool used to create flashy graphics for the Web. You can now
find Flash installed on an array of products such as cell phones, media players, and even in some
cameras. The cell phone technology is especially interesting because these devices tend to have
active Internet connections, which means you can develop Rich Internet Applications (RIA) for
mobile devices as well as the desktop.

Moving forward
You should now have a basic understanding of what Flash is and how it has advanced in the latest
version. This book will explain the various aspects of Flash and ActionScript in regards to working
with PHP and data management.

However, for a more detailed guide on Flash CS3, I highly recommend the Adobe Flash CS3
Professional Bible, published by John Wiley & Sons, Inc.

Summary
In this chapter, you learned about the Web server and how to modify the configuration files to set
up your custom development or live environment. This information included custom error pages,
application-specific modules, and best practices for protecting your content.

Once the basics of working with the Web server were understood, the next step was learning how
to work with PHP. This covered the basics of PHP as well as specifics for the chapters in this book.

The second half of the chapter included information about MySQL and how to work with the data
in your database.

The last part was an overview of Flash and how to work with the development environment. For a
more detailed overview a few references were given.

62

Understanding the BasicsPart I

06_258248 ch02.qxp 3/28/08 1:37 PM Page 62

Getting connected is a phrase used to describe the process of connecting
to various data sources. In this chapter, it is the process of connect-
ing ActionScript (Flash), PHP, and MySQL in various ways. This data

can be a simple Web site or a database-driven content management system
for which Flash becomes the front-end display.

If these three components are not already installed, refer to Chapter 1 before
continuing with this chapter.

The first part of each section focuses on what each connection type has to offer
and moves on to examples to provide a complete picture of the end result.

Understanding Communications
in Flash
Developing self-standing applications lacks certain functionality, primarily
the ability to work with dynamic data. In smaller applications you can use
flat files, such as XML files, but those would pose a problem as a project
continues to grow.

Simple text file-based applications also suffer from file locking, which can
occur if too many people are accessing the file. When this occurs, Apache and/
or PHP can throw an error that results in users not being able to use the site.

63

IN THIS CHAPTER
Understanding communications
in Flash

Connecting Flash to PHP

Connecting PHP to MySQL

Getting Connected

07_258248 ch03.qxp 3/28/08 1:37 PM Page 63

Determining the status of PHP
The first step to setting up a connection to PHP in Flash is to determine if PHP is properly installed
and running. This is done by creating a simple PHP file that outputs the current configuration set-
tings for the version of PHP installed.

The PHP function phpinfo() outputs the configuration information by building a custom HTML
page, as shown in Figure 3.1.

Leaving the phpinfo file on your server can be a security risk. It is best to only upload
it when you need to look at it, and then delete it.

The following is a sample info file that makes a call to the phpinfo() function.

<?php

// output php configuration settings
phpinfo();

?>

FIGURE 3.1

Here is the output of the phpinfo function, which shows the current PHP configuration settings.

WARNING WARNING

64

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 64

If you are presented with the phpinfo file, which generally is in purple and starts with the ver-
sion of PHP installed, then everything is installed properly.

However, if you see a dialog box to download your PHP file, it means Apache is improperly config-
ured or has not been enabled for PHP support. This level of setup is covered in Chapter 1 and in
the help files that ship with Apache. In rare cases you may be presented with a Server not found
page, which could mean Apache is not installed or running.

Assuming that PHP and Apache are both properly running, you can move on with the process of
connecting Flash to PHP.

Working with various connection types
Flash offers many different types of communication options. Determining which communication to
use in your project is accomplished by the intended feature set of that specific application.

One-way communication
One-way communication in Flash is the process of sending data to a Web server and not looking
or caring if a response comes back. This is mostly used to open a URL, but could also be used to
update a file with no intention of handling the result. This type of communication is often used for
simply firing off an event or running some sort of cleaning system.

For example, if your site needs periodic file cleaning (deleting, renaming, moving), it is a good idea
to attach this to the front-end system because your server resources will only be in use when they
are already providing content for that user. This would be started by a one-way communication
behind the scenes.

The update by viewing concept should not be used for backup solutions because a slow
viewing could result in missing backups.

Here is an example of one-way communication in Flash:

var serverFile:String = “http://localhost/callLink.php”;

var urlRequest:URLRequest = new URLRequest(serverFile);

navigateToURL(urlRequest);

The navigateToURL function accepts two parameters. The first parameter is the URLRequest
instance, and the second parameter is the window or target. By default, the window is _self,
which means the new page will load into the current browser if one exists.

However, in some cases, you may want to open a new browser window, which you can do by
adding the second parameter.

var serverFile:String = “http://localhost/callLink.php”;

NOTENOTE

65

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 65

var urlRequest:URLRequest = new URLRequest(serverFile);

navigateToURL(urlRequest, “_blank”);

The window parameter can accept one of the following strings, as shown in Table 3.1.

TABLE 3.1

Window Targets for Links
“_self” Current frame in the current window

“_blank” New window

“_parent” Parent of the current frame

“_top” Top-level frame in the current window

The window parameter can also accept a custom name, such as the name of a frame or specific
window. For example, assuming you want to send a link to the window named
“childWindowBox”, the code would look like the following block:

var serverFile:String = “http://localhost/callLink.php”;

var urlRequest:URLRequest = new URLRequest(serverFile);

navigateToURL(urlRequest, “childWindowBox”);

You substitute the prebuilt window names and add your custom name. Although this is a small
change, it offers some great added functionality.

Opening a new or existing window is just one of the possibilities for connecting with other data.

Another type of one-way communication in Flash can be performed by using sendToURL().

The sendToURL() is used to silently communicate with a script. Silent communication is a form
of one-way communication which does not load a separate Web page. This form of communication
offers the ability to send data to a server without interfering with the user’s browsing experience.

Here is the previous example, with the new function added, along with some basic error handling
to manage invalid and unavailable requests.

var serverFile:String = “http://localhost/callLink.php”;

var urlRequest:URLRequest = new URLRequest(serverFile);

try
{

sendToURL(urlRequest);
}

66

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 66

catch (e:Error)
{

// handle error here
}

Sending data to the server
There may be times when you want to not only silently request a URL, but also send data along
with it. This is done using the URLVariables class, which allows you to create an object of
name/value pairs. These would be the same as those found in a standard HTML request.

var serverFile:String = “http://localhost/callLink.php”;

var variables:URLVariables = new URLVariables();
variables.id = 1004;
variables.user = “James”;

var urlRequest:URLRequest = new URLRequest(serverFile);
urlRequest.data = variables;

try
{

sendToURL(urlRequest);
}
catch (e:Error)
{

// handle error here
}

Another example of one-way communication is blindly sending POST data to a server. This adds a
little bit more security to your application by removing the parameters from the url, and is done
by including the parameters within the request.

The code for the POST data request is simply assigning a value to the method property of the
URLRequest instance. ActionScript has a static variable on the URLRequestMethod Class that
will be assigned to the method variable.

var serverFile:String = “http://localhost/callLink.php”;

var variables:URLVariables = new URLVariables();
variables.id = 1004;
variables.user = “James”;

var urlRequest:URLRequest = new URLRequest(serverFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

try
{

sendToURL(urlRequest);
}

67

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 67

catch (e:Error)
{

// handle error here
}

Here is a sample request that would be sent to the server. As you can see, the Content and POST
elements have the information that was sent. The remaining parts of the request are standard data
attributes and are not specific to this example.

POST /callLink.php HTTP/1.1
Accept-Language: en
Accept-Encoding: gzip, deflate
Cookie: login=usernames;session-id=120670l
Referer: http://www.example.org/
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en)

AppleWebKit/522.11.1 (KHTML, like Gecko) Version/3.0.3
Safari/522.12.1

Content: id=1004%2Fuser=James
Content-Type: application/x-www-form-urlencoded
Accept: text/xml, text/html;q=0.9,text/plain;q=0.8,image/png
Pragma: no-cache
Content-Length: 327
Connection: keep-alive
Host: www.example.org

Two-way communication
In some cases, you will want to receive a response when you send data. One would be when
attempting to load a specific user’s data from a database. You would pass a user id and expect to
receive some data type containing that user’s information.

The response of a two-way communication is handled by assigning an event listener and attaching
a handler function.

var serverFile:String = “http://localhost/callLink.php”;

var variables:URLVariables = new URLVariables();
variables.id = 1004;
variables.user = “James”;

var urlRequest:URLRequest = new URLRequest(serverFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, userResponseHandler);

try {
urlLoader.load(urlRequest);

} catch (e:Error) {
//handle error here

68

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 68

}

// handler function
function userResponseHandler(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var args:URLVariables = new URLVariables(urlLoader.data);

trace(“User Data: “ + args.response);
}

The response function is passed a reference to the Event. The URLLoader and URLVariables
instances handle the process of pulling apart the response and returning just the data that was sent
back. The response comes back with other values and parameters, but most of the time you will
only be interested in the data property of the URLLoader instance.

More complete applications often return XML format, which is covered in Chapter 3 with other
various data-loading examples.

Now that you understand how to work with one-way and two-way communication, the next sec-
tion expands on these practices by connecting to PHP.

Connecting Flash to PHP
The process of connecting Flash to PHP is done using the prebuilt classes that were introduced in
the previous section. If you haven’t installed PHP at this time, refer to Chapter 1 to fully under-
stand and install PHP.

To start this example, open the starting file that is included in the book source files. The source files
can be found on the book’s Web site. The starting file for this example has the design and components
already added, as shown in Figure 3.2, allowing you to focus on the code that makes it all work.

The first part of this example is to define the variable of where the PHP file is located on your local
or remote server.

var phpFile:String =
“http://localhost/connecting/exampleConn.php”;

Once the location of the PHP script is defined, the next step is to create the function that is called
when the button is clicked.

function callServer(e:MouseEvent):void
{

var urlRequest:URLRequest = new URLRequest(phpFile);

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, serverResponse);
loader.load(urlRequest);

}

69

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 69

FIGURE 3.2

Here is the completed design of the sample application you will be working with.

This function creates URLLoader and URLRequest instances. The phpFile is passed in to the
URLRequest to create the object. Finally, the event listener is attached to the loader variable mak-
ing reference to the serverResponse, which is the function that is called when the data is loaded.

function serverResponse(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);
timeTxt.text = variables.returnValue;

}

The server handler function serverResponse() is responsible for capturing the data passed
back from the PHP file. After that data is properly loaded, it is passed into the URLVariables
class to generate a dynamic object.

This dynamic object holds the response data passed from the server, so a simple object call is all
that is required to load the sample data. In this example, that sample data will be the UNIX time-
stamp captured and returned by PHP.

The last part is a simple button handler that calls the callServer function when a user clicks the
button.

70

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 70

callBtn.addEventListener(MouseEvent.CLICK, callServer);

The PHP code for this example is a very a simple print statement. The time() function is used to
grab the current UNIX timestamp. The returnValue variable located in the string is a custom
variable definition so Flash knows what to call once the data is loaded.

This variable can be named any number of things and can even be a series of these:

<?php

print “returnValue=Hello from PHP, time is: “ . time();

?>

Concatenating data
The .= is used to concatenate or join multiple variables used into one long string. In this case, it is
building on the previous line to create the user data string that will be returned to Flash.

<?php

$userData = “username=James”;
$userData .= “&id=1004”;
$userData .= “&level=Reader”;

print $userData;

?>

The result that will be passed back to Flash will look something similar to the following:

username=James&id=1004&level=Reader

You may notice that the name/value relationship is very similar to the format in which POST data
is sent. However all you need to know to work with this data in Flash are the variable names.

Multiple pieces of data
Take the existing serverResponse() function and modify it to include these new variables
being sent from the modified PHP code. The following example is returning hard-coded values;
however, in a real-world application, that data would most likely be coming from a dynamic data
source.

As you learned in the previous section, the data format of Flash becomes a very simple and easy-
to-use set of objects.

function serverResponse(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

71

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 71

userTxt.text = “Welcome back, “ + variables.username;
levelTxt.text = “Your current level is: “ + variables.level;

}

One limitation of the previous function is the variables var is only accessible within that func-
tion. To ensure the data returned is accessible by the entire application, it is a good idea to store
that data in an external variable.

For example, this example will build on the previous code by adding the new variable assignment
and definition. The first change is to create an Object variable that will store the data.

var phpFile:String =
“http://localhost/connecting/exampleConn.php”;

var storedResult:Object;

function callServer(e:MouseEvent):void
{

...
}

function serverResponse(e:Event):void
{

...
}

callBtn.addEventListener(MouseEvent.CLICK, callServer);

After the new Object variable is defined, the next step is to modify the serverResponse func-
tion to store the loaded data into the newly created variable.

function serverResponse(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

// check for valid data
if(uint(variables.itemLength) > 0)
{

storedResult = variables;
}

userTxt.text = “Welcome back, “ + variables.username;
levelTxt.text = “Your current level is: “ + variables.level;

}

The loaded object data is stored within the storedResult Object, but only if a valid
itemLength is found. The itemLength variable is also returned by the PHP and validated
using a simple if statement.

With this new addition to the code you can share the loaded data to other variables and sections
within this same application.

72

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 72

The stored data is not accessible until the loading process is complete.

The last step is to modify the PHP to return the newly created itemLength variable, which is
done with another addition to the $userData string.

<?php

$userData = “username=James”;
$userData .= “&id=1004”;
$userData .= “&level=Reader”;
$userData .= “&itemLength=3”;

print $userData;

?>

Now that you have an understanding of how to load static data from PHP into Flash, the next sec-
tion expands on this static data format and introduces a MySQL database.

Connecting PHP to MySQL
Loading data in Flash from a static PHP file is a great way to learn the process. However, a real-
world application is probably not going to use that format. Data is always changing and no one
wants to update PHP files by hand.

Determining the status of MySQL
Before the connection to MySQL is established, ensure that MySQL is installed and properly running.

The default installation of MySQL leaves the password blank. This is okay for a testing
site, but the password should never be left blank on a live server.

The most common installation of MySQL for use in PHP is by including the MySQL library during
the PHP installation process. This means the MySQL information will be displayed on the
phphinfo, which was explained in the previous section.

Checking for MySQL is done simply by creating a phpinfo test file and running it in your
browser, as shown in Figure 3.3.

<?php

phpinfo();

?>

This result is a massive HTML page that displays all of the information regarding the current instal-
lation of PHP. To determine the status of MySQL, search for “MySQL”. Keep in mind there could
be more than one.

NOTENOTE

NOTENOTE

73

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 73

FIGURE 3.3

Here is the portion of the phpinfo file that explains the MySQL installation available.

The MySQL section in the phpinfo file will not be visible at all if not installed.

Assuming that MySQL is properly installed and running, you can move on to the next section,
which explains how to connect PHP to a MySQL database.

Connecting to MySQL
The process of connecting to MySQL from PHP is fairly simple. The first step is to obtain the con-
nection information from your server admin or, if you just installed, the login details would be the
defaults.

Here is the very basic, no frills code to connect to a MySQL database.

<?php

$host = “localhost”;
$user = “”;
$pass = “”;

NOTENOTE

74

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 74

$link = mysql_connect($host, $user, $pass);

?>

The mysql_connect function accepts three arguments. The hostname is the first argument,
which is almost always set to “localhost”. The second is the username that was chosen when
you installed MySQL, and finally, the password of your MySQL database, which is blank for a
default setup.

The mysql_connect function returns a resource id, which is a reference to the current MySQL
connection. This id can be used in future SQL calls, such as mysql_query, and many other
functions. If you happen to print this $link variable you will see a resource code. The following
code sample returns that resource ID:

<?php

$link = mysql_connect(“localhost”, “root”, “”);
print “Response: “ . $link;

?>

The previous block of code produces a response, such as:

Response: Resource id #32

Persistent connection
The standard mysql_connect function will close the connection once the script finishes execut-
ing. However, there are some cases where you will want to maintain a connection that doesn’t close
once the script is finished.

The function mysql_pconnect is exactly what accomplishes this. This function maintains a con-
nection after the script executes. The advantage to mysql_pconnect is it removes the necessity
for a new connection. However, the disadvantage is that the persistent connections are stored in a
pool and you aren’t guaranteed the same connection each time, which can produce unexpected
results.

Here is an example of a persistent connection, where the only change is a p in front of the word
“connect” on the connection function.

<?php

$link = mysql_pconnect(“localhost”, “root”, “”);
print “Persistent Resource ID: “ . $link;

?>

Closing the connection
After the SQL finishes executing, a best practice is to remove the connection to free up resources and
memory. This is done by simply making a call to mysql_close(), which closes the connection.

75

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 75

Closing the connection isn’t always required because it will automatically close when the script stops
executing. That being said, in a larger application it is best to free up resources as soon as possible to
maintain a responsible usage.

Here is the previous mysql_connect() example with the close addition.

<?php

$link = mysql_connect(“localhost”, “root”, “”);
print “Response: “ . $link;

// close connection
mysql_close($link);

?>

The mysql_close function can accept a resource id reference, which comes in handy when you
have multiple connections. This argument is not required; by default the last connection will be
closed.

A persistent connection created by mysql_pconnect() cannot be closed using
mysql_close().

Selecting the database
After you establish the MySQL connection you can select a database. You will not be able to query
the database until a proper connection and database are chosen. The mysql_select_db func-
tion allows you to select the database to query. You can also use this function to switch databases.

An active connection can only have one database connected at a time.

The mysql_select_db function accepts two parameters. The first parameter is the database name.
The second (optional) parameter is a link to the active connection resource. This is important to use
when you have a few different connections or you want to properly track the active connection.

Here is an example using the previous code for connecting and selecting a database:

<?php

$link = mysql_connect(“localhost”, “root”, “”);

mysql_select_db(“db_name”, $link);

// close connection
mysql_close($link);

?>

NOTENOTE

NOTENOTE

76

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 76

Bringing it all together
You can use your understanding of how to connect to MySQL from PHP to expand on this concept
and build a complete application.

The first part of the development process is to create the database and tables, and fill it with data.
This example will be the start of a CD listing site where the user requests a genre category and the
specified albums are returned.

Start by creating the two MySQL tables for this example. The first table is for the genres and the
second table is the list of albums.

CREATE TABLE genre (
id int(11) NOT NULL auto_increment,
name varchar(100) default ‘’,
dateAdded int(11) default ‘0’,
PRIMARY KEY (id)

) ENGINE=MyISAM;

CREATE TABLE albums (
id int(11) NOT NULL auto_increment,
genreID int(11) NOT NULL default ‘0’,
artist varchar(200) NOT NULL default ‘’,
albumName varchar(200) NOT NULL default ‘’,
PRIMARY KEY (id)

) ENGINE=MyISAM;

Using whichever browser or editor you want, create a music database and add those two tables to
get started. After creating the tables, you can fill them with predefined data for this example, which
is done by executing a series of MySQL INSERT statements.

INSERT INTO genre (name, dateAdded) VALUES (‘Blues’, 1197090235);
INSERT INTO genre (name, dateAdded) VALUES (‘Country’,

1197090146);
INSERT INTO genre (name, dateAdded) VALUES (‘Jazz’, 1197090525);
INSERT INTO genre (name, dateAdded) VALUES (‘Rock’, 1197090230);

INSERT INTO albums (genreID, artist, albumName) VALUES (4, ‘Rob
Thermo’, ‘Rob\’s Rock Mix’);

INSERT INTO albums (genreID, artist, albumName) VALUES (4, ‘Bill
Dato’, ‘Rock Out Live’);

INSERT INTO albums (genreID, artist, albumName) VALUES (4, ‘Jim
Limb’, ‘Woodward 37th’);

INSERT INTO albums (genreID, artist, albumName) VALUES (4, ‘Jason
Alex’, ‘Guitar Mashup’);

INSERT INTO albums (genreID, artist, albumName) VALUES (4, ‘Sam
Riley’, ‘The Live Ones’);

With the database created and the tables assigned and filled with sample data, you can continue
with the PHP portion of the application.

77

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 77

Connecting the PHP
The PHP code starts by connecting to the newly created database using the techniques learned in
the previous section.

<?php

$link = mysql_connect(“localhost”, “username”, “password”);
mysql_select_db(“music”, $link);

When a connection is established, you can create the query that handles the loading of the album
data. First, create the genre to look for by setting a static variable. In a more complete application,
this variable would most likely be passed via URL or some other form of a call.

$genreID = 4;

$query = “SELECT g.name, a.artist, a.albumName”;
$query .= “ FROM albums a, genre g”;
$query .= “ WHERE a.genreID=g.id”;
$query .= “ AND g.id=” . $genreID;

A call to mysql_query() is made, which is responsible for executing the previous SQL query.
This function will return a resource id to be used in the remainder of the SQL calls.

$result = mysql_query($query);

This loaded album data will be stored in a name/value string for simplicity but a more real-world
example would most likely use XML or another form of structured data.

$response = “resp=loaded\n”;

XML data usage is explained in Chapter 3. This includes the loading and saving of XML
while working with PHP/MySQL data objects.

At this point, the connection to MySQL and the call should be created, but you still can’t test the
code because nothing is outputted. The next section explains the outputting of the data using a
common while loop to traverse the data returned from the tables in the music database.

The data will be returned in a basic list format, but there needs to be a way to differentiate the data.
This is done by creating a unique id on each instance of the result and assigning it to the value
name.

$index = 0;

The next part is the meat of the application, which is the while loop.

while($row = mysql_fetch_array($result))
{

...

}

CROSS-REFCROSS-REF

78

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 78

The contents of the while loop build the string response.

while($row = mysql_fetch_array($result))
{

$response .= “&artist” . $index . “=” . $row[‘artist’];
$response .= “&album” . $index . “=” . $row[‘albumName’];
$response .= “&genre” . $index . “=” . $row[‘name’]. “\n”;

$index++;
}

You will notice the $response variable is assigned a name and value for each individual piece of
data returned from the database. The data returned from the mysql_fetch_array function
comes in as a multidimensional array. The $row variable stores each row of data, and you use the
column name to access the specific piece of data, such as:

$response .= “&artist” . $index . “=” . $row[‘artist’];

This process is repeated for each piece of data you want to capture. The data that is available to this
while loop is determined in the SQL query that was defined in the previous section.

You might have noticed that the SQL query was forced to only include the columns needed. This is
done to limit the amount of data and use less memory, which adds up as a system continues to grow.

If you need all columns from the tables you can use an asterisk (*), which modifies the previous
SQL call to look something like:

$query = “SELECT g.*, a.*”;
$query .= “ FROM albums a, genre g”;
$query .= “ WHERE a.genreID=g.id”;
$query .= “ AND g.id=” . $genreID;

Two letters are assigned stars because those are references to the two tables needed for this exam-
ple. Using multiple tables in one SQL call is very common to keep the data relationship known,
and doing so allows the data to be stored in smaller, more manageable chunks.

The last portion of PHP creates a “total” value that tells Flash how much data is being returned.
This is needed because the data is in string format. When using a data type of XML or Arrays, you
won’t need this extra variable.

The index created for each row of data becomes the count because it was only incremented when a
new row of data was found, meaning it is in sync with the amount of data in the string.

$response .= “&total=” . $index;

The last part is the print statement, which exposes this data for Flash or a Web application to load.

print $response;

79

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 79

Here is a sample response:

resp=loaded
&artist0=Rob Thermo&album0=Rob’s Rock Mix&genre0=Rock
&artist1=Bill Dato&album1=Rock Out Live&genre1=Rock
&artist2=Jim Limb&album2=Woodward 37th&genre2=Rock
&artist3=Jason Alex&album3=Guitar Mashup&genre3=Rock
&artist4=Sam Riley&album4=The Live Ones&genre4=Rock
&total=5

That is the complete application, which loads in a block of album data using the genre as the key.

Here is all of the PHP code in one listing for copying/pasting or to closely examine and better
understand how it is all working together.

<?php

$link = mysql_connect(“localhost”, “username”, “password”);
mysql_select_db(“music”, $link);

$genreID = 4;

$query = “SELECT g.name, a.artist, a.albumName”;
$query .= “ FROM albums a, genre g”;
$query .= “ WHERE a.genreID=g.id”;
$query .= “ AND g.id=” . $genreID;

$result = mysql_query($query);

$response = “resp=loaded\n”;

$index = 0;

while($row = mysql_fetch_array($result))
{

$response .= “&artist” . $index . “=” . $row[‘artist’];
$response .= “&album” . $index . “=” . $row[‘albumName’];
$response .= “&genre” . $index . “=” . $row[‘name’]. “\n”;

$index++;
}

$response .= “&total=” . $index;

print $response;

?>

80

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 80

Building the Flash
The Flash portion of this application is responsible for loading the data and looping through it to
print each album. For simplicity, this application is all ActionScript, which means the display of
the data is done in the Output panel.

A more complete application would take this loaded data and display it in a list or another custom
data component.

The first step is to define the PHP file that will be called, which would look similar to this, depend-
ing on how your system is set up:

var phpFile:String = “http://localhost/getAlbums.php”;

When the PHP variable is defined, the next step is to build the function that calls the server.

function loadHandler():void
{

...
}

This function first sets up the URLRequest instance, passing the PHP variable as an argument.

var urlRequest:URLRequest = new URLRequest(phpFile);

The URLLoader is used to create an event listener and to start the loading process at the comple-
tion of this function. The urlRequest variable is passed in to the load function of the
URLLoader class instance, which is required for any type of data loading.

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, callServerHandler);
urlLoader.load(urlRequest);

The next function to define is the callServerHandler, which is called once the data is sent
back from the PHP file written in the previous section. This function is passed an Event reference
that contains the loaded data.

function callServerHandler(e:Event):void
{

...
}

The first step in this function is to create the URLLoader instance, which is used to capture the
loaded data. The event instance contains a target property, which is used here by passing it into
a new URLLoader.

The result is stored in the local loader variable, which will be used in the remainder of this function.

var loader:URLLoader = URLLoader(e.target);

81

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 81

You may remember from the PHP section of this example that the data is returned in name/value
object pairs. That data is stored in the data property of the newly created loader instance.

This data is passed into an instance of the URLVariables class, which creates an ActionScript
Object so other portions of the script can handle the data.

var dataObj:URLVariables = new URLVariables(loader.data);

Now that the data is loaded, you can test it using a simple trace statement that should display
the total entries returned.

trace(“Total Albums: “ + dataObj.total);

That trace call should display the following in the Output panel:

//Output: Total Albums: 5

This means the PHP file is being called and the data is being loaded properly from the database
using PHP as the data handler in the middle.

You could end the script here, because it all works, but continue using a for.. loop to display the
information from each album using a series of trace calls for simplicity.

The for.. loop is set up using the total property of the dataObj to determine how many
times the loop should run.

for(var i:uint = 0; i < dataObj.total; i++)
{

...
}

The first trace within the for.. loop displays the current album being displayed. The current
album number is created using the i variable of the loop with 1 added to it. The reason for this is
because the i variable starts at zero, and for display purposes the first album should be 1.

trace(“Album “ + (i + 1));

The next trace statement is set up to display the current artist. The value is captured from the
dataObj Object instance using a dynamic object reference. The “artist” name is appended to
the i variable, which creates an instance name.

trace(“ Artist: “ + dataObj[‘artist’ + i]);

The remaining trace statements are duplicates of the previous one, with the instance name and
description slightly modified.

trace(“ Album: “ + dataObj[‘album’ + i]);
trace(“ Genre: “ + dataObj[‘genre’ + i]);

At this point, the loop is completed and so is the entire sample application. You can now test the
example and should see the trace statements displayed in the Output panel, as shown in Figure 3.4.

82

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 82

FIGURE 3.4

Here is an example of the album data displayed in the Output panel.

The complete ActionScript portion of this application follows:

var phpFile:String = “http://localhost/getAlbums.php”;

function loadHandler():void
{

var urlRequest:URLRequest = new URLRequest(phpFile);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, callServerHandler);
urlLoader.load(urlRequest);

}

function callServerHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);

var dataObj:URLVariables = new URLVariables(loader.data);

// Simple trace for example

83

Getting Connected 3

07_258248 ch03.qxp 3/28/08 1:37 PM Page 83

for(var i:uint = 0; i < dataObj.total; i++)
{

trace(“Album “ + (i + 1));

trace(“ Artist: “ + dataObj[‘artist’ + i]);
trace(“ Album: “ + dataObj[‘album’ + i]);
trace(“ Genre: “ + dataObj[‘genre’ + i]);

}

}
loadHandler();

loadHandler();

Summary
The previous example should have given you a pretty good understanding of working with a
MySQL database in Flash using PHP as the script in the middle. You can expand on this example
to create a more robust application since this sample application was used to illustrate the concept
and did not focus on display or the application itself.

MySQL data is only one example of data that can be displayed in Flash.

The next chapter expands on this example and introduces more advanced data objects, such as
XML, along with other forms of data such as image and text files.

84

Understanding the BasicsPart I

07_258248 ch03.qxp 3/28/08 1:37 PM Page 84

Working with data is the process of sending and loading informa-
tion for ActionScript to interpret. There are two types of data that
can be used in ActionScript. These would be static and dynamic.

In most common cases, the dynamic process is preferred over static. Mainly
because dynamic data oftentimes includes a database component.

This chapter is about working with dynamic data in both Flash and PHP. You
start by loading simple text files, then move on to XML and more advanced
loading. The chapter concludes with a complete demo application that loads
image data to display a thumbnail and normal size image.

Loading Data in Flash
Loading data in Flash is a very common practice. In almost every project,
you want to have some dynamic (updatable) portion. The purpose of
dynamic data is to limit the amount of updating necessary. For instance, if
you look at a news site, you will see that most of the outer content doesn’t
change (logos, navigation, etc.). This is also true for a Flash application
where you will most likely only have a certain portion that actually needs to
be updated. This section walks you through the process of loading data from
XML all the way to images and sound.

The process of loading data in Flash becomes familiar fairly quickly as most
types of data you will be loading have similar requirements.

Start by looking at a simple example that would load a text file. This example
will look for the text file in a couple of different locations depending on
where the application is being run. If you execute this code within the Flash

85

IN THIS CHAPTER
How to load data

Sending data

Loading XML

Loading images using PHP

Working with Data

08_258248 ch04.qxp 3/28/08 1:37 PM Page 85

IDE it will look in the same place the FLA is saved or in the user’s temp directory if the file has not
been saved. If the code is in a compiled SWF, the text file will be loaded from the same directory
the SWF is stored in.

var txtFile:String = “sample.txt”;
var urlRequest:URLRequst = new URLRequest(txtFile);
var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, loadHandler);
loader.load(urlRequest);

function loadHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
trace(“Loaded Data: “ + loader.data);

}

The previous example loads a “sample.txt” file and traces all of its contents to the Flash
Output panel, which opens automatically. Another way to open or close the Output panel is by
choosing Window ➪ Output.

Understanding the classes used to load data
ActionScript in Flash has a series of prebuilt classes that are used to load data. The following sec-
tion will explain the function of each of those classes.

URLRequest
This class is used to set up the file that is loaded. You can either assign this directly to a variable, or
to keep your overall code more compact, assign it directly within the load() of the URLLoader.
In fact, you can apply this process to many of the classes. This has no impact on the functionality
of the class and is not a required step.

...
loader.load(new URLRequest(txtFile));

URLLoader
As stated in the Adobe Live Docs, “The URLLoader class downloads data from a URL as text,
binary data, or URL-encoded variables. It is useful for downloading text files, XML, or other infor-
mation to be used in a dynamic, data-driven application.”

The URLLoader serves two purposes when sending and loading data in ActionScript. The first
purpose of the URLLoader is to set up the complete handler. The other purpose is to capture the
loaded data within the complete handler. One noticeable difference of the second purpose is the
fact the URLLoader does not have a new keyword before it.

86

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 86

Set up the callback
The final step in setting up a data loader is the callback. The callback is another name for the “han-
dler” function that is called when the data is completely loaded. This function is assigned to the
Event.COMPLETE event on the URLLoader class.

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, loadHandler);

This callback function requires one argument of the type Event, which is automatically passed in
when the ActionScript is called. This argument is where the contents of the loaded data will be stored.

If you forget to include the argument in the event Handler you will get an argument
count mismatch error.

ArgumentError: Error #1063: Argument count mismatch on
sendtophp_fla::MainTimeline/serverResponse(). Expected 0,
got 1.
at flash.events::EventDispatcher/dispatchEventFunction()
at flash.events::EventDispatcher/dispatchEvent()
at flash.net::URLLoader/onComplete()

Putting it all together
Now that you have an understanding of how the code to load data using ActionScript works you can
move on to more specific examples of sending and loading. In this example, you can experiment and
build from the URLLoader class because it has a lot more Events than just the simple COMPLETE
you used. For example, there is an IOError event that is called when the load or send fails. The
code for various Events is pretty much the same; for your IOError example it would look like this:

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, ioHandler);
function ioHandler(e:Event):void
{

trace(“File loading was terminated”);
}

You will quickly notice the only thing that changed is the Event string and the handler func-
tion. Multiple events can also be assigned, and it is often a good idea to maintain a high level of
compatibility. You also are able to quickly debug code if you set up the proper events.

Assigning multiple events
Assume that you want to handle the IOError and Complete event for the loader instance. You
could enter each event handler; however, this may become a long process when working with mul-
tiple loaders. One way to achieve the intended result is to use a function to assign the handlers.
You basically pass in the target as an argument and dynamically assign your event handlers.

var txtFile:String = “sample.txt”;
var urlRequest:URLRequest = new URLRequest(txtFile);

NOTENOTE

87

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 87

var loader:URLLoader = new URLLoader();
assignHandlers(loader);
loader.load(urlRequest);

function assignHandlers(target:*):void
{

target[“addEventListener”](Event.COMPLETE, completeHandler);
target[“addEventListener”](IOErrorEvent.IO_ERROR,
ioErrorHandler);

}

function completeHandler(e:Event):void
{

...
}
function ioErrorHandler(e:Event):void
{

...
}

A new concept introduced in this function is the dynamic way of assigning event listeners. The [] are
used to define a string within them as a variable. In this case, the string “addEventListener” is
actually the method to invoke and the values with the () are the arguments to pass to the method.
Using this example for just one event listener is kind of overkill, but if you are working with multiple
events it quickly becomes beneficial.

Handling Loaded Data
After using the previous steps to load the data, you will want to use this data in some way.
However, before you dive into working with loaded data you need an understanding of what is
passed back and how to work with it. In the next sections you will learn how to handle the data
that has been loaded. Once you have completed this section you will fully understand how to load
data and how to work with that loaded data.

One-way loading
Loading a text file or image is considered one-way loading, mostly because you don’t pass along
any rules or steps to the loaded file. A call to load an image would expect an image to be returned
and nothing more. This type of loading process is most commonly understood if you look at a Web
site. The logo on that site is requested and is loaded; no extra data is managed to accomplish this.

Two-way loading
Two-way loading is the process of loading data by passing along arguments that the requested
process will handle. For instance, a call to an ad server would pass along the account id and most
likely some other information to determine which ad should be displayed.

88

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 88

When working with PHP applications or other dynamic scripting you will most likely pass along
parameters to work with. Even more important is the fact you may get different data types back.
For example, you may expect an Object but get an error code instead. The purpose of this section
is to develop a way in which to handle this case.

var phpFile:String = “sample.php”;
var urlRequest:URLRequest = new URLRequest(phpFile);
var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, serverHandler);
loader.load(urlRequest);

function serverHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var vars:URLVariables = new URLVariables(loader.data);

if(vars.response == ‘ERROR’)
{

trace(“An Error occurred, response not loaded”);
}
else
{

trace(“Server Response: “ + vars.response);
}

}

This handler is very similar to previous examples, with the exception that the response variable has
been given an untyped definition. This allows various data types to be stored in it, such as a string
for an error and an object for the expected response.

Be careful when setting a variable as untyped. This removes error checking and makes it
hard to know what a variable contains.

Loading XML in Flash
More than likely you will find yourself working with lots of data. Ideally this data will be passed back
in XML format. XML is an industry standard; after you start working with it you quickly understand
why. It is based on tags to define the data objects, similar to a multidimensional array. The developer
is allowed to define custom tags, so easily building a usable XML style is very painless.

Using E4X with XML
A major update to ActionScript 3 is the ability to parse XML using E4X. This allows us to quickly
get data hidden deep within an XML file and with a lot less code than needed in previous versions.

NOTENOTE

89

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 89

For example, you can start with an XML file such as this:

<store>
<item>

<name>Book</name>
<section>Learning</section>
<price>19.95</price>
<inStock>yes</inStock>

</item>
<item>

<name>Football</name>
<section>Sports</section>
<price>4.99</price>
<inStock>no</inStock>

</item>
<item>

<name>Bike</name>
<section>Sports</section>
<price>89.95</price>
<inStock>yes</inStock>

</item>
<item>

<name>Basketball</name>
<section>Sports</section>
<price>8.95</price>
<inStock>no</inStock>

</item>
<item>

<name>Magazine</name>
<section>Periodicals</section>
<price>5.95</price>
<inStock>yes</inStock>

</item>
</store>

Now you want to load this file and display only the items that are in stock. Using E4X this will be a
very simple task.

You can start off with the standard loading sequence that has been seen in previous examples. The
path to the XML file we want to load in this example is “storeItems.xml”.

var xmlFile:String = “storeItems.xml”;
loadXML();

function loadXML():void
{

var urlRequest:URLRequest = new URLRequest(xmlFile);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, xmlHandler);
urlLoader.load(urlRequest);

}

90

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 90

After the XML file is completely loaded the xmlHandler function is called. This function is where
the XML file is read and the point where E4X is used.

This function is a little more advanced than we have seen in previous code examples, so the func-
tion will be broken down into more manageable pieces.

function xmlHandler(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

// Loop through all items, ONLY show items in stock
for each(var item in xml..item)
{

if(String(item..inStock) == ‘yes’)
{

trace(“Product: “ + item.name);
trace(“\tSection: “ + item.section);
trace(“\tPrice: “ + item.price);

}
}

}

The first step in this function is to grab the loaded data and pass it to the XML class, which ensures
that you will be working with valid XML objects in the next sections.

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

A for..each loop is used to walk through the XML file and look for items that are in stock. This
loop also has a special operator .. “descendant accessor” which is looking for each item in the XML
object. The “descendant accessor” was introduced in ActionScript 3 for accessing descendants or
children and children within children. This is done using two dot operators in succession (..) fol-
lowed by the name of the descendant element.

for each(var item in xml..item) { ... }

This is a huge advancement from ActionScript 2 where you would set up nested loops and traverse
the entire XML document. However one thing to note is that the descendant accessor is case sensi-
tive so it is best to use a consistent naming convention.

<items>
<item>

<objectName>Example</objectName>
</item>

</items>

The most common naming convention for the node names when working with XML is camel-case.
Camel-case is starting the first word with a lowercase character and then the first letter of every
word after that is uppercase.

91

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 91

firstSecondThird

Now that the overall for..each loop is defined the next step is to add in the actual check for in-
stock items. This is achieved by creating a conditional statement to go inside the loop.

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

for each(var item in xml..item)
{

if(String(item..inStock) == ‘yes’)
{

trace(“Product: “ + item.name);
trace(“\tSection: “ + item.section);
trace(“\tPrice: “ + item.price);

}
}

This portion looks at each item in the loop, and using the descendant accessor, it looks for the
inStock variable. The inStock variable will either be set to yes or no; if the variable is set to yes then
we simply print out the item data. In a more advanced example this data would most likely be
passed to a display function or possibly a DataGrid component.

That is all there is to quickly looking through an XML file and checking for specific node values.
You can expand this example to look for multiple types and use the results to build a mini-store
which should only show items that are in stock.

When working with XML it is a good idea to maintain a consistent format. This allows
you to work with various files without having to rebuild the overall program logic. It

also is a good idea so you can work with other developers on the same project.

Working with XML in PHP
In the next section you will learn how to load and manage XML data using PHP. This will allow
you to develop more dynamic applications.

Loading XML
The process of loading XML in PHP can be achieved in a couple of different ways. You can quickly take
a look at using PHP to load XML because this process is fairly straightforward. You then look at how to
dynamically build and send XML data. This process can be achieved in a couple of different ways.

Old-fashioned Dom XML
Dom XML is the old way of working with XML. In a way it is very similar to working with XML in
older versions of ActionScript. You need to use a series of loops to find nodes, and this simply
requires a lot more code than needed.

NOTENOTE

92

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 92

<?php

$doc = domxml_open_file(‘sample.xml’);
$node = $doc->document_element()->first_child();
while($node)
{

if(($node->node_name() == ‘sampleNode’) &&
($node->node_type() == XML_ELEMENT_NODE))
{

$content = $node->first_child();
print $content->node_value();
break;

}
$node = $node->next_sibling();

}

?>

The domxml code requires PHP 4.3, or you must have PECL installed separately. You can
find more information on the PHP Web site (http://us.php.net/manual/en/ref.domxml.php).

The previous example loads in the XML file and using Dom XML parses through it to find the
sampleNode. Working within the loop, you are looking for the chosen node and when that node
is found you print the contents to the screen. Not a very elaborate example, but it shows the over-
all process that would be found in a more advanced example.

Simple XML
Working with Simple XML quickly shows how easy loading XML can be. This block of code is
achieving the same result as before, but with a lot fewer lines of code. Two lines of code instead of
13 is a considerable improvement.

<?php
$xml = simplexml_load_file(‘sample.xml’);
print $xml->sampleNode;?>

Sending XML
The process of sending XML from PHP into Flash is explained in the following section. Overall, the
code for this is very similar to loading XML.

Printing dynamic XML
Oftentimes you will want to work with dynamic XML. Usually when a database is involved this
becomes a lot more common practice. The process of building dynamic XML is very simple: You
set the correct file header type and print the raw XML. The following block of code is an example
of how to achieve this.

NOTENOTE

93

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 93

<?php

header(“content-type: text/xml”);

$xmlData = “”;
$xmlData .= “<store>\n”;

$xmlData .= “ <item>\n”;
$xmlData .= “ <name>Book</name>\n”;
$xmlData .= “ <section>Learning</section>\n”;
$xmlData .= “ <price>19.95</price>\n”;
$xmlData .= “ <inStock>yes</inStock>\n”;
$xmlData .= “ </item>\n”;

$xmlData .= “ <item>\n”;
$xmlData .= “ <name>Football</name>\n”;
$xmlData .= “ <section>Sports</section>\n”;
$xmlData .= “ <price>4.99</price>\n”;
$xmlData .= “ <inStock>no</inStock>\n”;
$xmlData .= “ </item>\n”;

$xmlData .= “ <item>\n”;
$xmlData .= “ <name>Bike</name>\n”;
$xmlData .= “ <section>Sports</section>\n”;
$xmlData .= “ <price>89.95</price>\n”;
$xmlData .= “ <inStock>yes</inStock>\n”;
$xmlData .= “ </item>\n”;

// add more ‘item’s here

$xmlData .= “</store>\n”;

print “response=” . $xmlData;

?>

The magic line in that example would be the print function that sends the XML to the output
buffer and ultimately passes it along to Flash. As you can see, this is a fairly simple example.

Dynamic XML from the database
Say you want to build the XML from a MySQL database call. A database is a more common
approach when developing an application because the data is often dynamic. Static prints in the
case would not be very easy to maintain. Here is the code, which will be broken down and gone
through.

<?php

header(“content-type: text/xml”);

94

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 94

$query = “SELECT * FROM store WHERE inStock=yes”;

$link = mysql_connect(“localhost”, “user”, “pass”);
$result = mysql_query($query, $link);

$xmlData = “”;
$xmlData .= “<store>\n”;

while($row = mysql_fetch_array($result))
{

$xmlData .= “ <item>\n”;
$xmlData .= “ <name>” . $row[‘name’] . “</name>\n”;
$xmlData .= “ <section>” . $row[‘section’] . “</section>\n”;
$xmlData .= “ <price>” . $row[‘price’] . “</price>\n”;
$xmlData .= “ <inStock>” . $row[‘inStock’] . “</inStock>\n”;
$xmlData .= “ </item>\n”;

}

$xmlData .= “</store>\n”;

print “response=” . $xmlData;

?>

You looked at loading the contents of a database in Chapter 2, and for the most part it’s the same
process. Actually, the only difference is found inside the while loop. This is the point at which
you build the XML tree structure and finally print that response back to Flash.

There you have it, multiple ways to send and load XML data in both PHP and Flash. You can take
these simple examples and build full applications. In fact, you will be building on this example in
Chapter 11 for the Mini Shopping cart exercise.

Loading Images Using PHP
ActionScript can load much more than simple text and XML files. One more advanced concept is
to load images, but you will take that a step further and load images determined by a PHP file.

Load the starter file which can be found on the books Web site. This file has a UILoader and ver-
tical TileList to hold the images, as shown in Figure 4.1. The contents of this file are not partic-
ularly important for this example, but you can experiment with other components to build more
advanced applications.

95

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 95

FIGURE 4.1

Showing the completed application with loaded images

Setting up the image loader
The first step to building the image loader is to construct the ActionScript portion of the applica-
tion, which is shown here. The following code assumes the thumbSP ScrollPane is already located
on the stage.

var xmlFile:String = “http://localhost/ch03/loadImages.php”;
var imageDir:String = “images/”;

function callServer(e:MouseEvent):void
{

var urlRequest:URLRequest = new URLRequest(xmlFile);
var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, xmlLoaded);
loader.load(urlRequest);

}

function xmlLoaded(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

var thumbContainer:TileList = thumbSP;

96

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 96

thumbContainer.removeAll();
thumbContainer.sourceFunction = sourceHandler;
thumbContainer.addEventListener(Event.CHANGE, loadMainImage);

for each(var item:XML in xml..product)
{

var smImage:String = item.smImage.toString();
var lgImage:String = item.lgImage.toString();
thumbContainer.addItem({source:{sm:smImage, lg:lgImage}});

}
}

function sourceHandler(item:Object):String
{

return imageDir + item.source.sm;
}

function loadMainImage(e:Event):void
{

imageUI.source = imageDir + e.target.selectedItem.source.lg;
}

callBtn.addEventListener(MouseEvent.CLICK, callServer);

This example has some code purely for working with the components, which you don’t need to
understand at this point. However, the loader xmlLoaded function is the focus. The first one,
xmlLoaded, is used to walk through the loaded XML file and place the thumbnail images in the
TileList component.

You will notice the XML is using E4X to find the image nodes. This example assumes the nodes to
be called product, which is where the small and large image sources can be found.

You use the addItem method to pass in an object containing the small and large image sources. This
saves time when you write the logic for clicking on a thumbnail. The TileList fires off a CHANGE
event when an item is clicked. This is used to attach the handler, which loads the big image.

thumbContainer.addEventListener(Event.CHANGE, loadMainImage);
function loadMainImage(e:Event):void
{

imageUI.source = imageDir + e.target.selectedItem.source.lg;
}

The sourceFunction handler is used to add in the path to the images. This function is called
each time an item is added to the TileList.

thumbContainer.sourceFunction = sourceHandler;
function sourceHandler(item:Object):String
{

return imageDir + item.source.sm;
}

97

Working with Data 4

08_258248 ch04.qxp 3/28/08 1:38 PM Page 97

Summary
In this chapter you learned how to send and load data using PHP and Flash You then expanded
upon this by sending and loading XML data, which allowed you to develop a more dynamic
application.

You should now have a pretty good understanding of how to work with data in Flash and PHP. You
also learned a few different reasons why you should use a specific form of data in your application.

98

Understanding the BasicsPart I

08_258248 ch04.qxp 3/28/08 1:38 PM Page 98

An application will often times have some level of interaction with the
end user to enrich the overall application experience. This is most
commonly a contact or some other type of form, which allows the

site owner to allow communication without providing an e-mail address or
requiring the user to have an e-mail client. Another form that you would
find in an application is a login form, which allows you to limit access to cer-
tain aspects or sections of your application.

This chapter will explain the process of building forms in Flash and how to
make them interactive using PHP. You will also obtain an overview of send-
ing data using Flash; however, I recommend you look at Chapter 4 to com-
pletely understand the process of sending and loading data.

Form Development Using Flash
Forms generally consist of input boxes, buttons, list boxes, and radio but-
tons, as shown in Figure 5.1. Each of these elements is available as a com-
ponent within Flash. You can access the Components pane by choosing
Window ➪ Components. Using one of these prebuilt components is as
simple as clicking and dragging it to a layer in your Flash document.

99

IN THIS CHAPTER
Form development

Developing a contact form

Creating a login module

Interacting with the User

09_258248 ch05.qxp 3/28/08 1:38 PM Page 99

FIGURE 5.1

Sample form built using the default components that ship with Flash

If the component doesn’t appear on the Stage, ensure the layer is not displaying a
locked icon in the Layer list.

If you ran this Flash movie, you would see some cool components on the Stage but they would be
nonfunctional. The process of using them is very straightforward. You assign an instance name to
the component and reference the name in your ActionScript.

For example, if you had a TextInput and wanted to prefill it, you would add the following code:

textInstance.text = “please enter your name”;

As useful as that code is, you should also capture user input. This is achieved by adding a Submit
button component to the stage.

userName.text = “please enter your name”;
submitBtn.addEventListener(MouseEvent.CLICK, submitHandler);

function submitHandler(e:MouseEvent):void
{

trace(“User input: “ + userName.text);
}

You can expand this example to add error checking and enforcing required fields:

function submitHandler(e:MouseEvent):void
{

if(userName.text.length == 0)
{

trace(“Please enter a name!”);
}

}

Very often you will want to get feedback from a viewer of your site. This is accomplished by adding
a contact form, which generally consists of a Flash form that talks to a PHP file.

NOTENOTE

100

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 100

Creating a Contact Form
For this section, you will be using the starting file that is included on the book’s Web site. This file
has all of the components located in the contactMC MovieClip already on the Stage and has
been assigned instance names that you will use in the ActionScript.

Here is the complete contact form ActionScript:

var phpFile:String = “http://localhost/ch04/contact.php”;
var form:MovieClip = contactMC;

function sendMessage(e:MouseEvent):void
{

// first check the fields

var nameStr:String = form.nameTxt.text;
var subjectStr:String = form.subjectTxt.text;
var messageStr:String = form.msgTxt.text;

var allFields:Boolean = true;

// check name
if(nameStr.length < 2)
{

allFields = false;
}

// check subject
if(subjectStr.length < 2)
{

allFields = false;
}

// check message
if(messageStr.length < 2)
{

allFields = false;
}

if(!allFields)
{

trace(“All required fields not filled in!”);

form.statusTxt.htmlText = “”+
“All required fields not filled in!”;

return;
}
var variables:URLVariables = new URLVariables();
variables.name = nameStr;

101

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 101

variables.subject = subjectStr;
variables.msg = messageStr;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, sendHandler);
loader.load(urlRequest);

}

function sendHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

if(variables.resultCode == “SENT”)
{

// message sent
form.statusTxt.htmlText = “Email”+
“ sent, thank you.”;
}
else if(variables.resultCode == “ERROR”)
{

// message not sent
form.statusTxt.htmlText = “Email”+
“ not sent, please try again.”;
}
else
{

// unknown response
form.statusTxt.htmlText = “Unknown”
+ “ ERROR”;
}

}
form.sendBtn.addEventListener(MouseEvent.CLICK, sendMessage);

The focus of this section will be on the sendMessage and sendHandler functions. The
sendMessage function assigns the variables that are passed to the PHP, instantiates the necessary
Classes, and sets up the event listeners.

function sendMessage(e:MouseEvent):void
{

...

var variables:URLVariables = new URLVariables();
variables.name = nameStr;
variables.subject = subjectStr;
variables.msg = messageStr;

102

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 102

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, sendHandler);
loader.load(urlRequest);

}

Some of the code in the previous section is explained in greater detail in Chapter 4.

Calling the PHP
The call to the PHP is broken up into three classes: the URLVariables, URLRequest, and
URLLoader classes, the jobs of which are to set up a container for the contact form data, make a
request object, and finally call the PHP file.

The URLVariables class stores the contact form data in an object format name.value, which is
then attached to the data property of the URLRequest.

The URLRequest sets up a request method using the static POST property of the
URLRequestMethod class, which tells Flash whether to send the data in GET or POST format.
GET sends the data out attached to the end of the URL:

file.php?var1=value1&var2=value2

POST sends the data in the request, which in most cases is more secure.

The last class used in this contact form is URLLoader. This class adds the event listener that is
called when the PHP is fully loaded and any expected response has been returned. This class also
makes a call to the load() method, passing along a reference to the URLRequest. This ulti-
mately makes the call to the PHP and passes along the contact form variables you have assigned.
That is all that’s required to set up and make the call to the PHP.

Contact form event handlers
The next step in the process is to set up the event handler that is called when the PHP sends a
response.

function sendHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

if(variables.resultCode == “SENT”)
{

form.statusTxt.htmlText = “Email”+
“ sent, thank you.”;
}

CROSS-REFCROSS-REF

103

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 103

else if(variables.resultCode == “ERROR”)
{

form.statusTxt.htmlText = “Email”+
“ not sent, please try again.”;
}
else
{

form.statusTxt.htmlText = “Unknown”
+” ERROR”;
}

}

You will quickly notice that the URLLoader class is used again, but this time to retrieve the PHP
response. This is then placed into the URLVariables class to pull out the result from the overall
response. The PHP is set up to simply respond with a SENT or ERROR response; however, you also
use an else statement to catch any unknown responses, some of which could include network
errors or simple parse errors in the PHP code.

A Label component is located in the contact form MovieClip, which is where the response is sent
for the user to see. In a more advanced script you would most likely return a result number and
leave the text response in the Flash, which would allow the ability to tailor the responses to specific
languages, also called localization.

With the ActionScript set up, you can move on to the PHP code:

<?php

error_reporting(0); // disable all error reporting
set_time_limit(120); // let script run for no more than 2 minutes

$emailTo = “you@yourdomain.com”;

$name = $_POST[‘name’];
$from = $_POST[‘fromEmail’];
$subject = $_POST[‘subject’];
$msg = $_POST[‘msg’];

if(!empty($_POST))
{

$headers = “”;
$headers .= “”;

$date = date(“F j, Y”, time()); // Grab todays date
$email_info .= “Below is the visitors contact info and
message.\n\n”;
$email_info .= “Visitor’s Info:\n”;
$email_info .= “---\n”;
$email_info .= “Name: “ . $from . “\n”;
$email_info .= “Date Sent: “ . $date . “\n\n”;

104

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 104

$email_info .= “Message\n”;
$email_info .= “---\n”;
$email_info .= “” . $msg . “\n”;

// Mail headers, do not alter
$mailheaders = “From: “ . $from . “ <” . $name . “> \n”;
$mailheaders .= “Reply-To: “ . $from . “\n\n”;

if(mail($emailTo, $subject, $email_info, $mailheaders))
{

print “resultCode=SENT”;
}
else
{

print “resultCode=ERROR”;
}

}

?>

Mailing in PHP
Most of this PHP is similar to what you have been working with in previous sections, with some
exceptions, of course. The most notable exception is the introduction of the mail() function,
which takes a series of arguments:

mail($to, $subject, $emailBodyInfo, $emailHeaders);

The first two are e-mail to send to and subject of the e-mail, which is pretty standard. The last two are
the most important: $emailBodyInfo contains the contents of your e-mail, and $emailHeaders
defines the file as an e-mail. This variable holds the routing info, reply-to, and all the other e-mail-
specific variables that a mail server looks for.

Globals
You assign variables to hold the data passed in from Flash, which is done by using the global
$_POST data array. Globals in PHP handle overall site information and values that any script has
access to. You go over reasons why globals can be the wrong approach in the security chapter.

Getting back to your e-mail script, use the global $_POST data variable to access the variables
passed in from Flash.

$emailTo = “you@yourdomain.com”;
$name = $_POST[‘name’];
$from = $_POST[‘fromEmail’];
$subject = $_POST[‘subject’];
$msg = $_POST[‘msg’];

105

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 105

That is all the code that is needed to develop a fully functional contact form using Flash and PHP.
You can expand on this example and give the contact form a lot more functionality. A few things to
think about adding would be a more robust validation process, more form fields, and possibly
more informative responses to the user.

Keep security in mind
One very important element to note about this contact form example is the code does not honor
security procedures and actually lets the user pass any data to PHP. A more robust and live example
would require a much stronger level of security; however, for demonstration purposes overall secu-
rity has been left out.

Login Module in Flash
More often than not you will want to have a secure portion to a Web site. A very popular example of
this would be a review section for a photographer where a client can log in and look at the photos.

The form portion of this application is almost identical to the contact form. You need a Username
and Password box and a Submit button to fire off the login handler routine.

Here is a sample layout that can be found in the starting file, or you can create it from scratch.

The instance names for this example are displayed in Table 5.1.

TABLE 5.1

Form Components for Login Module
usernameTxt Username to be logged in

passwordTxt Password to be attempted

resetBtn Reset button, clears the fields

loginBtn Login button, fire the loginHandler

Now that you have the form visually complete you can move on to the ActionScript, which makes
the form functional.

Code skeleton
In previous examples, you looked at all of the code in one long section, but sometimes that can be
overwhelming. Looking at the skeleton of code offers a quick way to evaluate the program vari-
ables, functions, and other elements.

106

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 106

Here is the code skeleton for the login module:

stop(); // stop the playhead

var phpFile:String = “http://localhost/ch04/login.php”;
var form:MovieClip = loginMC;
var loggedIn:Boolean = false;

function loginHandler(e:MouseEvent):void {...}
function resetHandler(e:MouseEvent):void {...}
function clearIndicators():void {...}
function sendHandler(e:Event):void {...}

form.usernameTxt.tabIndex = 1;
form.passwordTxt.tabIndex = 2;
form.resetBtn.tabIndex = 3;
form.loginBtn.tabIndex = 4;

form.passwordTxt.displayAsPassword = true;
form.resetBtn.addEventListener(MouseEvent.CLICK, resetHandler);
form.loginBtn.addEventListener(MouseEvent.CLICK, loginHandler);

Login event handlers
Similar to the contact form example, you need to assign event handlers that handle the login, clear-
ing, and UI changes for the login module.

The first event handler is the loginHandler, which is responsible for calling the server and
ensuring valid data is passed to the server. Its last task is to assign the handler for the result event.

function loginHandler(e:MouseEvent):void
{

clearIndicators();

var user:String = form.usernameTxt.text;
var pass:String = form.passwordTxt.text;
var allFields:Boolean = true;

if(user.length < 2)
{

allFields = false;
form.userRequiredIndicator.alpha = 1.0;

}

if(pass.length < 2)
{

allFields = false;
form.passRequiredIndicator.alpha = 1.0;

}

107

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 107

if(!allFields)
{

form.statusTxt.htmlText= “Username”
+ “ and Password required!”;
return;

}

var variables:URLVariables = new URLVariables();
variables.user = user;
variables.pass = pass;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, sendHandler);
loader.load(urlRequest);

}

This handler starts off by assigning the username and password fields to internal variables. Those
new variables are then checked for valid length, which if correct sets the allFields variable.
This allFields variable is used to determine if the error message should be displayed and the
function should be exited. If allFields is not set you can continue setting up the call to the
server. This portion is identical to the contact form example. In fact, you will quickly notice that
ActionScript has a very similar format for all types of loading and sending of data.

The next handler you will focus on is the clearHandler, which is assigned to the resetBtn.
Its job is to clear all of the form fields and make a call to the clearIndicators function, which
you look at in a moment.

function resetHandler(e:MouseEvent):void
{

form.usernameTxt.text = “”;
form.passwordTxt.text = “”;
form.statusTxt.htmlText = “”;

clearIndicators();
}

The clearIndicators function changes the alpha opacity of the icons that can be found to the
right of the username and password TextInput components in the starter file. If you are creating
this module from scratch you would most likely omit this function and the call to it in the
resetHandler.

108

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 108

function clearIndicators():void
{

form.userRequiredIndicator.alpha = 0;
form.passRequiredIndicator.alpha = 0;

}

The last handler needed for this module is the sendHandler, which is called when the PHP code
sends back a response.

function sendHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

if(variables.resultCode == “LOGGED_IN”)
{

loggedIn = true;
gotoAndStop(2);

}
else if(variables.resultCode == “NOT_LOGGED_IN”)
{

form.statusTxt.htmlText = “”+
“Username/Password not correct.”;

}
}

The response passed from PHP is evaluated to determine if the user is valid and whether or not the
secure page should be displayed.

if(variables.resultCode == “LOGGED_IN”)
{

loggedIn = true; // user logged in,
gotoAndStop(2); // sample has secure page on frame 2

}
else if(variables.resultCode == “NOT_LOGGED_IN”)
{

form.statusTxt.htmlText = “”+
“Username/Password not correct.”;

}

Assuming the user is logged in, you set a loggedIn variable and move to the second frame,
which in the example is a top-secret section, as shown in Figure 5.2. Your example will most likely
have a more important reason to be logged in, but maybe not.

109

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 109

FIGURE 5.2

Example secure page that is only visible if the user is logged in

Server integration for login module
The PHP code for the login module is the next part in the process.

<?php

error_reporting(0); // disable all error reporting

$user = $_POST[‘user’];
$pass = $_POST[‘pass’];

// sample password response, normally
// would be sent from database
$storedPassword = “83e4a96aed96436c621b9809e258b309”;

if(!empty($_POST))
{

if($user == “guest” && md5($pass) == $storedPassword)
{

print “resultCode=LOGGED_IN”;
}
else
{

print “resultCode=NOT_LOGGED_IN”;
}

}

?>

110

Understanding the BasicsPart I

09_258248 ch05.qxp 3/28/08 1:38 PM Page 110

Your focus in this section is on the $_POST data and conditional check to determine if the pass-
word is correct or not. This result is then sent back to Flash where it is used to set logged-in status
and whatever else a valid user would see.

A more robust example would have the PHP be evaluated against a database instead of a static
string. The $storedPassword variable has an md5() hashed string. MD5 is a hashing algorithm
that is available in many programming languages, one of which is PHP and is most frequently used
when storing passwords in a database. You will look at MD5 a little more in depth in the security
chapter, but for now the most important thing to note is that hashed string is your password.

You now have a complete login module using Flash and PHP. You could easily expand this example
to include database integration and more importantly, an added level of security.

Summary
In this chapter you learned how to build forms in Flash and how to make them interactive using
PHP. As a more advanced project you then created a login component utilizing the previous infor-
mation you learned about form development overall.

111

Interacting with the User 5

09_258248 ch05.qxp 3/28/08 1:38 PM Page 111

09_258248 ch05.qxp 3/28/08 1:38 PM Page 112

Cookies are very common in Web browsing. In fact, you would find it
very hard to navigate the Internet in the way we are accustomed to if
cookies stopped working. This chapter is how to work with cookies

in both Flash and PHP. It covers loading and sending of cookies and investi-
gates how a cookie is deleted.

The second half of the chapter is about shared objects, which are cookies in
Flash. They act almost the same as standard browser cookies with some dif-
ferences, which you will investigate.

Once you have completed this chapter you will fully understand how to
work with cookies and why they are important for a successful application
and user experience.

Loading Cookies
A cookie is a small file placed on the user’s computer by a Web server. This
file is then sent back to the server unchanged each time the user accesses the
server. Most often a cookie will contain the username for a Web site. A
cookie can also be used to save user settings and any other small pieces of
information.

The process of loading cookies is explained in multiple pieces to better
understand how they work. You will notice that the process of loading cook-
ies is very similar to loading other forms of data.

113

IN THIS CHAPTER
Using cookies in PHP

Using cookies in Flash

Understanding shared objects

Working with Cookies

10_258248 ch06.qxp 3/28/08 1:38 PM Page 113

Using cookies with PHP
Using cookies with PHP is necessary in order to develop a usable Web application. You will find
many opportunities to implement cookie support from user login to styles and many other uses.

As you begin to work with dynamic data more often you will want to save portions to the user’s
machine. Doing this allows the program to log a user in automatically or modify a style based on
the user’s settings.

Cookies are saved per domain and directory. This means that any page within the same domain or
path can read that cookie. This is very useful when building multiple examples and also means
another Web site cannot read cookies from a different site.

The common workaround for sharing cookies across a domain is to create a subdomain.
A cookie is only specific to the overall domain and simply ignores paths, parameters,

and subdomains.

Loading a cookie
Now that you have an understanding of what a cookie is, take a look at how to load and work with
one in PHP: The following code attempts to load a cookie and display the response as shown in
Figure 6.1.

<?php

$username = “Jimmy”;

if (!isset($_COOKIE[‘user’])) {

setcookie(“user”, $username);

print “Welcome “ . $username;

}
else
{

Print “Welcome back, “ . $_COOKIE[‘user’];
}

?>

The previous code checks for the existence of the cookie “user” in the global array of cookies. If
the cookie is found, the user is welcomed back. If the cookie is not found, the cookie is set and the
user is welcomed for the first time.

The $_COOKIE variable is a multidimensional array that can contain many different cookies. This
variable is automatically filled by PHP and doesn’t require you to add to it.

NOTENOTE

114

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 114

FIGURE 6.1

The print statement as displayed in the browser window

Saving a cookie
Setting or saving a cookie in PHP is very simple: you make a call to the setcookie function. The
first argument is the cookie name; the second argument is the cookie value. For example, say you
want to set a time_logged_in cookie.

setcookie(“time_logged_in”, time());

Anytime you want to save a cookie you can call the setcookie function. If the cookie exists, it is
updated, and if it doesn’t exist it is created.

A cookie’s ability to be saved depends on whether or not a user allows cookies.

The setcookie function accepts more than two arguments, but actually only requires the first
argument, which is the name.

NOTENOTE

115

Working with Cookies 6

10_258248 ch06.qxp 3/28/08 1:38 PM Page 115

Cookie expiration
By default, a cookie expires when the session ends or the user closes the browser. The way a ses-
sion ends is by a predefined amount of time on the server. By default, this amount is 0 seconds
because the session ends when the browser closes. Normally, you as the developer do not need to
know how long a session lasts. You would, of course, be more interested in whether or not the
cookie exists.

Occasionally, you will want to ensure a cookie is deleted after a certain amount of time. This is the
case when working with secure data or a content management system. Assume you want the
cookie to expire soon after the cookie is created.

setcookie(“username”, “adminDave”, (time() + 7200));

This tells the user’s browser to delete the cookie 2 hours after the cookie is created. The expiration
time of a cookie is in seconds, so for this example 7200 is 2 hours. Another way to look at it is (60
* 60 * 2).

Have you ever opened your browser, visited a site, and were introduced to custom content that you
had applied in a previous session? This data was determined by a cookie saved on your machine
that was not deleted when the session ended.

Look at an example of a cookie that doesn’t expire for three months.

<?php

$secondsInDay = 86400;
$daysBeforeExpiration = 90;
setcookie(“userStylePref”, “blueTheme”, (time() + ($secondsInDay

* $daysBeforeExpiration));

?>

You start by setting the number of seconds in a day — 86400. Then you set our
$daysBeforeExpiration variable that is holding how many days you want the cookie to live.
The last step is to set the cookie. Multiply the seconds by the days, add to the time() function,
and this becomes your expiration date.

Three months is only an example; you can set a cookie to expire years later. However, users have a
tendency to clean up their browser storage. So, you should never allow an application to rely on
the existence of a cookie.

Deleting a cookie
At some point in your application you will probably want to delete a cookie. However, the local
Web browser that your user is on does not allow a Web server to directly delete a cookie. Instead,
set the expiration date behind the current date and basically make the cookie expire. This tells the
Web browser to delete the cookie because it is no longer in use.

setcookie(“time_logged_in”, “”, (time() - 300));
116

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 116

Assigning multiple cookies
The process of assigning multiple cookies is fairly straightforward. You basically make multiple
calls to the setcookie function ensuring that each cookie has a unique name.

<?php

$username = “jimmy”;
$userID = 5;
$loggedInTime = time();

setcookie(“username”, $username);
setcookie(“userid”, $userID);
setcookie(“logged_in_since”, $loggedInTime);

?>

The previous code sets three cookies by making three unique calls to the setcookie function.
You could also place the setcookie call into a custom function if the passed-in code requires
more security. For example, you can create a saveCookie function that ensures the data is clean.

<?php

function saveCookie($name, $value, $expires=0)
{

if($name == “”)
{

print “Name not provided, cookie not saved”;
}
if($value == “”)
{

print “Value not provided, cookie not saved”;
}

setcookie($name , $value, $expires);
}

$username = “jimmy”;
$userID = 5;
$loggedInTime = time();

saveCookie(“username”, $username);
saveCookie(“userid”, $userID);
saveCookie(“logged_in_since”, $loggedInTime);

?>

Your saveCookie function is used as a proxy to the prebuilt setcookie function. This allows
you to check the passed in data and ensure that it is filled in properly. In the previous example,
you print an error if either the name or value is empty. You could take this simple security check a
step further by ensuring the data is, in fact, a string and doesn’t contain any potentially malicious

117

Working with Cookies 6

10_258248 ch06.qxp 3/28/08 1:38 PM Page 117

code. As you begin to develop Web applications you will learn to follow rigid guidelines as far as
security is concerned.

Now that you have looked at how to use cookies in PHP, you can look at using cookies in Flash. The
process of using cookies in Flash is very similar, but offers some advantages that you will look at.

Using cookies in Flash
Cookies in Flash are actually called shared objects and share similar attributes to cookies in PHP.
Some of these attributes include the ability to store small amounts of data locally and retrieve them
by any file in the same basic domain. Just like cookies in PHP, the user is able to disable them per
site or globally. However, they have some distinct differences. One major advantage to shared
objects is the ability to bind to them. This means multiple movies have the ability to watch the file
and be alerted when it is updated. For example, say you have a multiplayer game and want each
client to track the score in sync. With shared objects you can allow each of the clients to have
read/write access and the others will update the score as it changes.

Loading shared objects
The following code attempts to load a shared object and creates one if it doesn’t exist. As you can
see, loading a shared object is fairly simple and only requires one line of code. Cookies in PHP
don’t offer the ability to natively create one if it doesn’t exist; you have to check for the cookie and
manually create it.

var so:SharedObject = SharedObject.getLocal(“sample”);
trace(“Object is “ + so.size + “ bytes in size”);

Saving shared objects
The process of saving a shared object is also straightforward. Start by creating a new instance of the
SharedObject class.

var so:SharedObject = SharedObject.getLocal(“sample”);

After the object is created, you can attach data to the shared object by adding elements to the data
object, such as:

var so:SharedObject = SharedObject.getLocal(“sample”);
so.data.user = “guest”;

You can call and recall that above block of code and the value won’t be saved just yet. The reason is
because you need to alert the object to write it to the local filesystem by calling the flush method.

var so:SharedObject = SharedObject.getLocal(“sample”);
so.data.user = “guest”;
so.flush();

118

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 118

When using flush(), check whether the user has disabled local storage using the
Settings Manager (www.macromedia.com/support/documentation/en/

flashplayer/help/settings_manager07.html).

If the object doesn’t exist, one is created. In some cases, you will want to know if the shared object
exists. The way to achieve that is by checking the size property.

var so:SharedObject = SharedObject.getLocal(“sample”);
if(so.size == 0)
{

// Shared object doesn’t exist.
trace(“Shared Object doesn’t exist.”);

}

Assuming the size test came back equal to zero, you would know the shared object doesn’t exist.
You can then take this result and replace the simple trace with the code to create the object.

var so:SharedObject = SharedObject.getLocal(“sample”);
if(so.size == 0)
{

// Shared object doesn’t exist.
so.data.user = “guest”;

}

Deleting a shared object
Unlike PHP, shared objects can explicitly be deleted from the local storage system. Making a call to
the clear() method removes the shared object and its data, but the reference to the object will
remain.

var so:SharedObject = SharedObject.getLocal(“sample”);
so.data.user = “guest”;

trace(“Username is: “ + so.data.user); // guest

so.clear();

trace(“Username is: “ + so.data.user); // undefined

The second trace returns undefined because the previous call to clear() has removed the value.
You can now reassign the value. However, you do not need to delete an object to reassign it. You
can simply rewrite to it.

Bringing it all together
Now that you have looked at each individual concept, bring it all into one final example. This
example will create, save, edit, and delete a shared object.

Start by opening the starting file which can be found on the book’s Web site, which has been pre-
built for this example.

NOTENOTE

119

Working with Cookies 6

10_258248 ch06.qxp 3/28/08 1:38 PM Page 119

After opening the file in Flash, open the Action pane (press F9 or Alt+F9) and add the
ActionScript.

var soDomain:String = “sample”;
var so:SharedObject = null;
function loadObject():void
{

so = SharedObject.getLocal(soDomain);
trace(“Shared Object Loaded”);

}

function addDataToObject(name:String, value:String):void
{

if(so == null)
{

trace(“You must first load the Shared Object”);
}

so.data[name] = value;
so.flush();

trace(“Value added: “ + so.data[name]);
}

function deleteObject():void
{

if(so == null)
{

trace(“You must first load the Shared Object”);
}

so.clear();

trace(“Shared Object deleted”);
}

function readObject(name:String):void
{

if(so == null)
{

trace(“You must first load the Shared Object”);
}
else
{

trace(“Shared Object Value : “ + so.data[name]);
}

}

function loadHandler(e:MouseEvent):void

120

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 120

{
loadObject();

}
function saveHandler(e:MouseEvent):void
{

addDataToObject(‘test’, valueTxt.text);
}
function deleteHandler(e:MouseEvent):void
{

deleteObject();
}
function readHandler(e:MouseEvent):void
{

readObject(‘test’);
}

loadBtn.addEventListener(MouseEvent.CLICK, loadHandler);
saveBtn.addEventListener(MouseEvent.CLICK, saveHandler);
deleteBtn.addEventListener(MouseEvent.CLICK, deleteHandler);
readBtn.addEventListener(MouseEvent.CLICK, readHandler);

The most important parts of this code are the addDataToObject function and two variables that
are references to the shared object: property name and the value to store.

var soDomain:String = “sample”;
var so:SharedObject = null;

function addDataToObject(name:String, value:String):void
{

...
}

The addDataToObject function checks to make sure the shared object is properly loaded and
attempts to assign the value using a dynamic object.

function addDataToObject(name:String, value:String):void
{

if(so == undefined)
{

trace(“You must first load the Shared Object”);
}

so.data[name] = value;
so.flush();

}

After the addDataToObject function is called, you can read in the shared object by simply mak-
ing a call to the data object.

trace(“Shared Object Data: “ + so.data.test);

121

Working with Cookies 6

10_258248 ch06.qxp 3/28/08 1:38 PM Page 121

That is all there is to working with shared objects in Flash. You now know how to load, save, and
delete shared objects and cookies in Flash.

Shared objects can also be used in a remote setting, but require a more advanced system.

Discovering the benefits of using PHP cookies
Now that you have looked at using cookies in both PHP and Flash, look at some reasons why
using cookies in PHP is a better option. When working in Flash it would seem that shared objects
are the best option, but they aren’t always.

Cookies in PHP offer the ability to share them between both HTML and Flash sites. Shared objects
only are accessible from within Flash, which can be both good and bad. The good side is that no
other application can change the cookies. On the bad side, it also means you can’t share them and
add a level of consistency between your applications.

There is a pretty common workaround to this problem, however, and that is to use regular cookies
in Flash by passing them through a PHP middleman.

First, look at the PHP code that will pass the cookie data back to Flash.

<?php

if(isset($_POST[‘act’]) && $_POST[‘act’] == ‘getcookie’)
{

if(isset($_COOKIE[$_POST[‘cookieName’]]))
{

print “resp=” . $_COOKIE[$_POST[‘cookieName’]];
}
else
{

print “resp=” . “cookie_not_found”;
}

}

?>

This code ensures the proper POST data is sent before it continues. Assuming valid data is passed,
the next step is to determine if the cookie does, in fact, exist. Use a conditional test to determine if
cookie data or an error message will be sent to Flash.

if(isset($_COOKIE[$_POST[‘cookieName’]]))
{

print “resp=” . $_COOKIE[$_POST[‘cookieName’]];
}
else
{

print “resp=” . “cookie_not_found”;
}

NOTENOTE

122

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 122

Either way, the variable passed in to Flash is “resp”. This way you can easily program the
ActionScript to handle the response accordingly.

The reason that you use isset() in the first if statement is so PHP can’t accidentally send a
notice to Flash alerting the variable is not sent. This sort of application is a very good candidate for
XML, which is explained in depth in Chapter 3. XML would make it so only the value you are
interested in would be returned. For this simple example, you will continue with a standard print-
based return.

Now that you have the PHP in place you can move on to the ActionScript. The ActionScript makes
a call to the PHP and expects a cookie or error to be returned.

var phpFile:String =
“http://localhost/ch05/cookies/loadCookie.php”;

var variables:URLVariables = new URLVariables();
variables.act = ‘getcookie’;
variables.cookieName = ‘sample’;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var loader:URLLoader = new URLLoader();
loader.addEventListener(Event.COMPLETE, serverHandler);
loader.load(urlRequest);

function serverHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

if(variables.resp == ‘cookie_not_found’)
{

trace(“Requested Cookie Not Found”);
}
else
{

trace(“Cookie Data: “ + variables.resp);
}

}

The overall call to the server is similar to other calls in this book. The focus on this call is the vari-
ables passed to the PHP and the response. You use the URLVariables class to assign the act and
cookieName variables. The act variable tells PHP that your request is valid, and the
cookieName variable contains the name of the cookie you are looking for.

var variables:URLVariables = new URLVariables();
variables.act = ‘getcookie’;
variables.cookieName = ‘sample’;

123

Working with Cookies 6

10_258248 ch06.qxp 3/28/08 1:38 PM Page 123

Just like the other loader examples, you need to assign a function to handle the server response.
This is the function that is called after the PHP passes back either your cookie or an error message.
Start by using the URLLoader class to get the data contained in the response. You then make a
call to the URLVariables class, which returns an object of the response variables. In this case,
you are looking for the “resp” property. First, check to see if the response is
“cookie_not_found”, which is self-explanatory. More than likely, the cookie will be set and the
second trace statement would get called, but it is never good programming to assume this. That is
why that conditional statement is added.

function serverHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

if(variables.resp == ‘cookie_not_found’)
{

trace(“Requested Cookie Not Found”);
}
else
{

trace(“Cookie Data: “ + variables.resp);
}

}

You can take this example to the next step by setting the cookie if one is not found, or even pass
along an array or object of cookie names to quickly load all the cookies for a site. AMFPHP, which
you will look at in Chapter 8, would be a great way to load in multiple cookies.

As you can now see, there are multiple ways to work with cookies in both PHP and Flash. You
even developed a common way in which both PHP and Flash can share the same cookie data.

Sharing cookie data still has the limitation that the PHP needs to be on the domain you
are loading the cookies from. One thing to be aware of with this script is the fact that

this simple example is not checking the input passed to the PHP. You would certainly want to add that
to a real-world application.

Summary
In this chapter you learned how to load and work with cookies in Flash and PHP. To start you
learned how to load an existing cookie from the user’s machine and then learned how to modify
and update that cookie.

You should now understand how to work with cookies in Flash and PHP and understand why they
are important when you develop an application.

NOTENOTE

124

Understanding the BasicsPart I

10_258248 ch06.qxp 3/28/08 1:38 PM Page 124

Developing
Interactive Content

IN THIS PART
Chapter 7
Maintaining Security while
Working with User Input

Chapter 8
Using Sockets

11_258248 pp02.qxp 3/28/08 1:38 PM Page 125

11_258248 pp02.qxp 3/28/08 1:38 PM Page 126

Working with user input focuses on the best practices of
storing and returning data while maintaining a high level of
security.

This chapter is broken into sections that focus on a specific aspect of han-
dling user data. This is not a step-based guide on working with user data,
which can be found in Chapter 4. Instead, this chapter focuses on the
specifics of security when handling that data.

The subtopic covered in this chapter is working with and understanding the
sandbox in Flash. Basically, the sandbox is a container that each application
runs in, but the section goes into greater detail and provides visual examples
to better explain the sandbox and how it affects your applications.

The practices provided in this chapter can be adapted to future applications
you develop. Maintaining a secure application is about as important as lock-
ing your home before you leave. An application will technically still work if
it is not secure. However, the lifespan of that application is not certain. There
are many aspects to security in an application: sanitized data, secure logins,
file storage, and exploitability, to name a few. In this chapter, the focus is the
security of user input. User input is any piece of data the user can modify.
This list of data includes cookies, logins, sessions, and file uploads.

Using Caution with User Input
User data expands far beyond a simple text box on a contact form. Now that
you know what data is considered user input, you’re probably wondering
how something as harmless as a file upload system poses a security risk.

As with most security, it isn’t the technology or feature that is flawed, but
how it is implemented.

127

IN THIS CHAPTER
Using caution with user input

Cleaning user data

Storing data

Returning data

Understanding the Flash security
sandbox

Maintaining Security while
Working with User Input

12_258248 ch07.qxp 3/28/08 1:39 PM Page 127

Safely handling file uploads
For example, assume there is a basic PHP file that accepts file uploads and stores the uploaded file
information in a database.

The first question to ask is what parts of this simple application are potential security concerns?

n The form itself?

n The database component?

n The file being uploaded?

Checking for valid file extensions
The uploaded file would be the least obvious point of a security breach, but look at some sample
code that explains how it can very easily become an issue. A very common, but misleading attempt
to secure the file uploading process is to check for a valid extension, such as:

<?php

$file = $_FILES[0];

if(strpos($file[‘name’], ‘.jpg’) !== false)
{

if(!move_uploaded_file($file[‘tmp_name’], ‘storage/’))
{

print “File uploaded”;
}

}

?>

As you can see, the code is set up to look for the .jpg file extension. The strpos function is
used to return the index or placement of the checked value, which in this example is .jpg. At first
glance this seems pretty secure and should stop malicious uploading, but it doesn’t. This code
doesn’t care where the file extension is, so you could have imagename.jpg.php as the filename
and it will pass. Even worse, if this is for a publicly accessible photo gallery, that file can execute
PHP freely because it is already on the server. The ability to execute arbitrary code becomes a great
concern when the malicious user is able to place code directly on an unsuspecting server.

Imagine an image being uploaded that is actually a PHP file with code such as the following:

<?php
error_reporting(E_ALL);

phpinfo();

mysql_connect(‘localhost’, ‘anyuser’, ‘anypass’);

?>

128

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 128

Error reporting can be forced off by disabling the display_errors directive in the
php.ini file. This ensures error reporting can’t accidentally be turned back on.

When accessed through the browser, this code would allow all errors to be visible, display vital
server information, force a failed attempt to the database exposing the true path of file, as you can
see in Figure 7.1, and determine if a database exists.

Using a better way to check for file extensions
Going back to the simple upload example, let’s add more robust security measures. The major
change to the code is the if statement that checks for a valid file extension. Instead of looking
for the existence of a file type, it looks at the end of the filename and retrieves the actual correct
extension.

if(strrpos($file[‘name’], ‘.jpg’) !== false)
{

...
}

FIGURE 7.1

Error message returned when database is intentionally set to fail on connection

NOTENOTE

129

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 129

At first glance it seems nothing has changed, but in fact it has. The strpos function has been
replaced with the less common strrpos, which looks for the file type starting at the end of the
string and moving toward the front. This ensures the final file extension is found and not one
buried within the name.

As with code in general, security can be expanded, and this example allows a great deal of expan-
sion. Here is a more dynamic method of looking for valid file types that can easily be placed in an
existing project or a brand-new project.

<?php

function checkForFileType($file, $type)
{

$fileTypePos = strrpos($file,’.’);

if($fileTypePos === false)
{

return “File not valid.”;
}

if(substr($file, ($fileTypePos+1), strlen($file)) == $type)
{

return “Valid file type”;
}
else
{

return “Invalid or malicious file type detected.”;
}

}

checkForFileType(“sample.jpg”, “jpg”);

?>

The above code is a custom function that accepts two arguments. The first argument addresses the
file to validate, and the second is the extension to recognize. This expandable solution returns a
string determining whether the file type is found or not. Less common is the third possibility, an
invalid match. An invalid match means the passed-in file does not have a valid filename at all.

Now that the upload portion of the code is secure, the next point of security is the actual form
itself. This part would most likely consist of the file upload box and input boxes for extra data.
Generally, an automated attack (computer set up to exploit Web sites) is the security issue develop-
ers are most concerned with, but an input form in Flash can also pose a security risk.

130

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 130

Checking for valid input
Checking the validity of the input boxes is a good start. An example of an input check in
ActionScript is something such as the following:

if(length(fileNameTxt.text) > 0)
{

// file name is valid
}

This is simply checking the fileNameTxt variable for a length that is greater than 0, meaning the
input box has some amount of text in it. Now that the input box is known to be valid, a call to the
server is made and this results in the PHP being called. The PHP for a simple unsecure example
could look something like this.

<?php

$name = $_POST[‘fileName’];

// database info goes here...

mysql_query(“INSERT INTO uploads (name) VALUES (“ . $name .
“)”);

?>

This is basically taking the filename and directly inserting it into the database. You might be won-
dering at this point how if the filename is validated in Flash this could be a security concern. The
problem isn’t in the data passed in from Flash, but more importantly, the fact that the PHP could
potentially be called by another method. This is one of the most important reasons to properly
secure all points of an application.

A more secure alternative to the previous code would be

<?php

$name = $_POST[‘fileName’];

// database info goes here ...

if(!empty($name) && strlen($name) > 0)
{

mysql_query(“INSERT INTO uploads (name) VALUES (“ . $name .
“)”);

}

?>

131

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 131

This code is not only checking for a valid value but also ensuring that value is of a valid length.

if(!empty($name) && strlen($name) > 0)

In a real-world application you would probably check for a value of at least two to three characters,
but that all depends on the intended use. This small update to the code ensures that a call from
Flash or any other method will be secured.

Validating ZIP codes
Of course, securing data is not limited to basic form fields. Assume there is a portion to the appli-
cation that accepts a five-digit ZIP code when the user submits an image. The way to ensure a valid
ZIP code is by testing for a numeric value and a valid length.

<?php

$zipCode = $_POST[‘zip’];

if(is_numeric($zipCode) && strlen($zipCode) == 5)
{

// valid zip code found
}

?>

The is_numeric() function accepts a variable as an argument that is tested to determine
whether or not that value is a number. This function will return a true/false response so it can
easily be used within an if statement or you could assign the result to a variable.

Looking for valid types
If you want to perform this same basic validation within Flash, you would use the typeof and
length functions. The typeof function returns a string value defining what the type is for the
passed-in item. This function can be used for more than just number validation, but it works per-
fectly for this example:

if(typeof(zipCode) == “number” && zipCode.toString().length == 5)
{

// valid zip code found
}

Cleaning User Data
Now that you have a better understanding of security in your application, the next step is to sani-
tize or clean more advanced data before it is stored.

132

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 132

The process of storing data covers both database usage and a more simple approach of using stan-
dard text files. The advantage to standard text files is the fact you don’t need database access. The
disadvantage to this approach is it is a less robust solution that results in much slower searching
possibilities. Most often you would use a database, unless it was a fairly small application that
didn’t need the potential to scale in to a larger application.

Sanitizing the data
The first step to sanitizing data is covered in the previous section, which is to ensure that at least
the data is valid. This process is necessary as various functions that interact with a database or file
system will create pretty substantial errors if empty data sets are used.

The process of sanitizing data should be done in the PHP because it is always a good practice to
assume any passed-in data is dirty. This means that even though the data was sent from your Flash
app it could have been tampered with in the submission process.

Sent data from Flash is easily viewed using Charles, which is discussed in Chapter 13.
Charles can be used to be 100 percent sure what data is being sent from Flash.

There are a couple of very useful functions in PHP that can assist in the process of sanitizing data
before it is stored. The first function is addslashes(), which will escape characters such as
quotes and slashes in the data passed to it. The following snippet of code shows how addslashes
properly sanitizes the data.

<?php

$quote = “I hope to finish the “coolest” Flash application ever.
Which will use Flash and PHP”;

?>

Creating safe SQL queries
If you ran the preceding code, it would generate an error because the PHP processor does not
allow quotes within quotes. With multiple quotes, it would not be able to determine where one
string starts and another ends. Assume the $quote variable is filled dynamically by a call from
Flash. The variable will properly be filled at runtime because the compiler does not validate con-
tent on the fly; however, entering that data in SQL will cause an error. Even worse, in some cases
the string could be partially entered. Here is a real-world SQL query where you can easily see the
issue with unescaped quotes.

$sql = ‘UPDATE users SET business=Tom’s Diner WHERE id=’ . $ID;

Once again, running the code with it previously entered into the PHP causes an error, but assume
this string is built from a $_GET request. At first, the request seems safe, but notice the SQL query
begins with a single quote (‘) and there is an apostrophe in Tom’s Diner. The actual SQL call
will become:

$sql = ‘UPDATE users SET business=Tom

CROSS-REFCROSS-REF

133

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 133

This basically sets every business name in the application to Tom, which is probably not the
intended result. It would also be very hard to revert unless the application took proper backups.
That example is fairly extreme, because a double quote is more common for an SQL call, but you
can definitely see how unsanitized data could cause a very bad day for the system administrator.

Now that you know how bad unsanitized data can be, go back to that addslashes() function
and see what the SQL call turns into:

$business = addslashes($_GET[‘name’]);
$sql = ‘UPDATE users SET business=’ . $business . ‘ WHERE id=’ . $ID;

The properly sanitized SQL call looks something like this:

$sql = ‘UPDATE users SET business=Tom\’s Diner WHERE id=’ . $ID;

Look at another malformed SQL call that has drastic results. This one deals with logging into a
secure portion of a Web page. An SQL call for authorization would look something like this:

<?php
$user = “admin”;
$pass = “password here”;
$query = “SELECT * FROM staff WHERE user=’” . $user . “‘ AND

pass=’” . $pass . “‘“;
?>

Notice how once again the SQL blindly accepts the values. This really becomes a problem when a
user enters a password such as

$pass = “‘ OR ‘’=’”;

The resulting SQL call is an empty password because the quotes force the SQL to end and the OR
allows it to equal itself. It creates an empty password, which means only the username is stopping
someone from logging in, but nine times out of ten, admin is a valid username.

SELECT * FROM staff WHERE user=’admin’ AND pass=’’ OR ‘’=’’

That simple \ means the difference between an effective SQL call and a very dangerous one. This
function is only one possible way to sanitize data.

The next function, when working with a database, is mysql_real_escape_string, which
sanitizes data before entering it into the database. When using this function you must first make a
proper connection to the database; otherwise you will receive an error.

The syntax for mysql_real_escape_string is pretty much the same as addslashes(). You
pass in the value you want cleaned and an optional mysql link. If a link is not passed, the last
SQL link is used.

134

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 134

<?php

// connect to database, generate $link

$business = mysql_real_escape_string($_GET[‘name’], $link);
$sql = ‘UPDATE users SET business=’ . $business . ‘ WHERE id=’ .

$ID;

?>

The advantage to using this function is that it takes care of all the various escaping, which goes
beyond single and double quotes. The obvious problem is it requires a MySQL link, so it cannot be
used unless the data will be stored in a database. Or, at the very least, you need to have access to a
database. An incorrect usage of this function will result in an error, as seen in Figure 7.2.

FIGURE 7.2

Error message displayed when a MySQL database link is not available

135

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 135

Properly cleaning HTML data
The final function to look at is htmlentities(). Basically, this function takes HTML characters
and converts them to numeric values. These are better because things like “” become " and
this pretty much eliminates the need for advanced sanitizing of data.

<?php

$str = “The ‘red’ fox jumped”;

// The 'red' fox jumped
echo htmlentities($str, ENT_QUOTES);

?>

The second argument in the htmlentities() function determines if both single and double
quotes should be converted, The possible values for this second argument are shown in Table 7.1.

TABLE 7.1

Available Quote Styles

Constant Name Description

ENT_COMPAT Converts double quotes; leaves single quotes alone

ENT_QUOTES Converts both double and single quotes

ENT_NOQUOTES Leaves both double and single quotes unconverted

It is a good idea to run all three of these functions to ensure your data is as clean as possible. It
only takes a little bit more processing power, but can make the difference between a secure and an
insecure application.

More importantly, as you continue to practice these good security concepts you will spend less
time patching and debugging in the future.

Storing Data
The database is not the only storage method, as explained in the beginning of this section. You can
also use simple text files to store information, and the majority of the sanitizing steps would work
here as well. The one exception is mysql_real_escape_string, which, as stated earlier,
requires an SQL link.

136

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 136

Securely writing to a file
A simple example of securely writing to a file would go something like this. First, validate the data
before opening the file. Doing this ensures the file can’t accidentally be written to.

<?php

if($fileContents != “”)
{

$handle = fopen(“sample.txt” , “w+”);
fwrite($handle, $fileContents);

}
else
{

print “File content not written, invalid data”;
}

?>

Working with data in a logical order
It is important to keep a logical order when working with data. For example, if the addslashes()
was run before the if statement, the length of the content could be thrown off and produce a false
result. At the same time, if the file is opened prior to the data being validated, a malicious exploit
could potentially inject content into the opened file. Think of it as the same precautions you take
when logging on to a secure Web site in a public location.

Creating a class to handle sanitization
At this point you should fully understand how to sanitize data that can be saved in a database or a
simple text file. You can expand on these best practices to create a more reusable set of tools. For
example, you could create a sanitization class that automatically takes care of the process. A basic
class would be something similar to the following:

<?php

class Sanitization
{

function cleanSQL($str)
{

return mysql_real_escape_string($str);
}

function cleanHTML($str)
{

return htmlentities($str, ENT_QUOTES);
}

137

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 137

function cleanText($str)
{

$s = $str;

if(!ini_get(‘magic_quotes_gpc’))
{

$s = addslashes($s);
}

return $s;
}

function checkLength($str, $acceptableLength)
{

if(strlen($str) >= $acceptableLength)
{

return true;
}
else
{

return false;
}

}

}

?>

The class defines three methods, each one being a replacement for a technique learned in the pre-
vious section. This approach offers the ability to be reusable as you continue to work on more
applications. The class also contains more logic than previously used because addslashes adds
slashes to existing slashes. The result will be three slashes escaping each quote.

A double slash will render a slash in front of the quote because it tells the compiler to
escape the slash and not think of it as code.

The \\\’red\\\’ fox jumped.

Working with magic_quotes options
There is a setting in PHP called magic_quotes_gpc, which is responsible for escaping data
automatically, as shown in Figure 7.3.

NOTENOTE

138

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 138

FIGURE 7.3

A sample value from the magic_quotes_gpc property as seen in the phpinfo() listing

Disabling magic_quotes
In less common server configurations this feature cannot be turned off. A quick test to determine if
that setting is enabled ensures extra slashes will not be added.

if(!ini_get(‘magic_quotes_gpc’))
{

$s = addslashes($s);
}

The other two functions in the sanitization class simply clean the passed-in data and return it.

Using shared objects
As you begin to build more complete applications you will come to a point where storing some
small amounts of data on the user’s machine becomes necessary. These small pieces of information
generally hold a user id or session that maps to a database entry on the live server. A Shared
Object Flash cookie is used in this case because it is a small piece of data stored on the user’s
machine but isn’t required for the application to run.

139

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 139

When the application that makes use of the Shared Object reopens, it would be configured to look
for this small piece of data and make a call to a server based on the result. However, just like nor-
mal cookies that your browser uses, a Shared Object can be edited by the end user, which can have
harmful results.

As stated in the previous section, it is best to not trust data that a user submitted. This common
guideline ensures a more secure application and overall makes it easier to work with.

The majority of holes in an application are exploited by user-submitted data.

Imagine an example application, which would be used to work with a shared object. This applica-
tion could be set up to open a shared object and pass that data to a remote server.

Once the shared object has been loaded, a call to the remote server could be made passing along
the small piece of information from the shared object. In this example, the small piece of informa-
tion could be a user ID that would have been saved in a previous usage.

Using PHP to handle data from shared objects
The PHP code is responsible for loading this piece of information and querying the database.
However, before a call to the database is made, the user id is validated ensuring it is a valid num-
ber and within range.

<?php

$userID = $_GET[‘user_id’];
$idRange = 500;
if(is_numeric($userID) && $userID > 0 && $userID < $idRange)
{

// connect to database at this point
mysql_connect(“localhost”, “user”, “pass”);
mysql_select_db(“db_name”);
$r = mysql_query(“SELECT * FROM user WHERE userID=” . $userID);

while($row = mysql_fetch_array($r))
{

print “resp=success&username=” . $row[‘username’]
. “&userlevel=” . $row[‘user_level’]
. “&userstyle=” . $row[‘user_style’];

}

}
else
{

print “resp=” . “User ID not found or is invalid”;
}
?>

NOTENOTE

140

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 140

Assuming the user id is valid, a block of information is passed back in simple text format. This
data is then loaded into an array and used in the rest of the application. If the user id is not
valid, a string is returned informing the user that something happened and the existing session
cannot be loaded. In most cases, if the existing session cannot be loaded, the Flash application
knows to start over rather than attempting to use incomplete or erroneous data.

ActionScript 3 corelib from Adobe (external library) has an MD5 class that can be
used in place of PHP.

Creating and storing a safe password using PHP
The process of modifying a password that can be stored is fairly simple. You first create a connection
to the PHP file passing along the clear text password. However, this process is not the most secure
and it would be better to return an md5 response of the password when a login attempt is made.

To explain the process, here is an example of the simple (less secure) option:

var phpFile:String = “http://localhost/md5creator.php”;

var query:String = “?pass=” . “password”;
var urlRequest:URLRequest = new URLRequest(phpFile + query);
var urlLoader:URLLoader = new URLLoader();

urlLoader.addEventListener(Event.COMPLETE, response);
urlLoader.load(urlRequest);

function response(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var param:URLVariables = new URLVariables(loader.data);

trace(“User Information Loaded”);
trace(“\tUser: “ + param.username);
trace(“\tLevel: “ + param. userlevel);
trace(“\tStyle: “ + param.userstyle);

}

A call to the PHP on the server is made using a basic URLRequest, which should be familiar to you
from previous examples and chapters. Once the URLRequest is established, a callback function is
assigned to handle the server response. This example will either contain an md5 string or an error.

The PHP simply checks for a valid string and returns an md5 hash (encrypted string). If an incom-
plete or empty string is sent from the Flash, the PHP returns an error message.

<?php

$string = $_GET[‘string’];

if(strlen($string) == 0)

NOTENOTE

141

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 141

{
print “response=” . “String not provided.”;

}
else
{

$md5 = md5($string);
print “response=” . $md5;

}

?>

This would be a fairly simple example for creating an md5 hash. In real-world usage you would
want to seed the md5 encryption to make the response more unique and harder to break open.

A seed is a known value that is used in the md5 process. If you want to create a truly random seed,
using the time() is a good idea because nearly every call produces a different result.

The hash for this example needs to be verifiable when the user attempts to log in. For this exam-
ple, the name of the application used will be “securepass”.

cfcd208495d565ef66e7dff9f98764da

The seed is appended to the existing string that will be encrypted, either at the beginning or
the end.

$md5 = md5($string + “securepass”);

The position of the seed needs to be consistent because it will be re-created when the user attempts
to log in the next time.

The PHP code with the unique seed applied would look something like this:

<?php

$string = $_GET[‘string’];

if(strlen($string) == 0)
{

print “response=” . “String not provided.”;
}
else
{

$md5 = md5($string + “securepass”);
print “response=” . $md5;

}

?>

At this point in the application the seed is created, and you can continue on with the process of
storing that value into a shared object.

142

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 142

Returning Data
It is safe to assume that you will want to be returning data back to Flash at some point in your
application. The overall security concern in this process is similar to sending data, with the excep-
tion that more exploits would be attempted on the returning of data.

Securely returning data
The idea of securely passing data back to Flash is a much less talked about topic. This is mostly due
to the fact that Flash doesn’t need to be secure; however, it is still a good practice to ensure it is.

If you fail to validate data coming back into Flash you can open a security hole that could, for
example, allow a user to access a private section of an application. Even worse, it can have negative
effects on the user experience, and your users can lose faith in your application.

The data coming back into Flash can be altered in the same way the data going out can. For the
previous example, a string of data is returned, but is never checked to make sure the data is valid.
Let’s expand upon the previous example to add this extra security. The response function is the
only section of code that needs to be modified because the request will be the same.

function response(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var param:URLVariables = URLVariables(loader.data);

var username:String;
var userLevel:uint;
var userStyle:String;
var validData:Boolean = true;

if(param.username != “”)
{

username = param.username;
}
else
{

validData = false;
}

if(param.userlevel!= “”)
{

userLevel = param.userlevel;
}
else
{

validData = false;
}

if(param.userstyle != “”)

143

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 143

{
userStyle = param.userstyle;

}
else
{

validData = false;
}

if(!validData)
{

trace(“User data was not properly loaded”);
}
else
{

trace(“User Information Loaded”);
trace(“\tUser: “ + param.username);
trace(“\tLevel: “ + param. userlevel);
trace(“\tStyle: “ + param.userstyle);

}

}

Basically, this code first initializes variables to store the user data and then checks each passed-in
value for a valid entry. The validation variable is assigned to true from the start because if any of
the if statements fail it will be changed to false. This process is considered reverse logic, but
works quite well for validation routines.

Using a more secure approach for returning data
In the previous example you learned how to securely work with returned data. The problem with
this simplified approach is that other ways exist to intercept information passed between Flash and
the server.

Using unique responses
There are a few options to creating an even more secure application, which all depend on develop-
ment time and cost. It is a common thought to ignore cost for the ultimate security, but this is sim-
ply not possible all of the time. Oftentimes you will work on a project that gets to a “good enough”
point and the app will ship with issues; this is a downside to application development, but very
common.

The best way to keep cost realistic is to look at all your options. One option is to use md5 to create
unique response codes and ensure the data is valid, which will work, but nothing stops the
“hacker” from decompiling your SWF and looking directly at the code.

Securing your files
In previous versions of ActionScript you were able to create obfuscated SWFs, which meant that
most applications couldn’t decompile them. However, at the time of this writing no tool exists for
AS3 applications.

144

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 144

Understanding the Flash Security Sandbox
The sandbox in Flash determines which files can be accessed depending on where the SWF file is
located. An SWF file functions differently when it runs locally on the user’s machine than it does
on a server.

For example, an SWF in the local sandbox cannot access both local and remote objects. This
enforces a level of security on the application to ensure sources can’t cross each other.

Local files can be placed in one of three sandboxes:

n local-with-filesystem: This ensures the user that local content cannot acciden-
tally be sent to a network or shared.

n local-with-networking-sandbox: Allows local SWFs to access remote objects, if
a valid policy file is found.

n local-trusted: An SWF in this sandbox can access data from anywhere, both local
and remote. Only users and administrators can move an SWF to this sandbox.

The local-trusted sandbox cannot accidentally be set by a stand-alone SWF. This is done to
ensure the level of security a user would expect.

In order to allow access to a remote domain you must first add it to the Security class by mak-
ing a call to allowDomain().

Security.allowDomain(“www.example.org”);

You can also use a cross-domain policy file that allows access from specific domains or all domains
using a wildcard (“*”).

<allow-access-from-domain=”*” />

Setting the sandbox type
When publishing an SWF, you can choose the specified sandbox type depending on the resources
required in that use. To set the sandbox type, follow these steps:

1. Choose File ➪ Publish Settings.

2. Click the Flash tab.

3. In the drop-down list, click Playback Security.

4. Click OK.

Using the sandboxType property
An SWF file can use the read-only static Security.sandboxType property to determine which
sandbox the Flash player has assigned the current SWF.

145

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 145

In some cases, you will want to use the current value of the sandboxType property in program-
ming to determine how an application should interact. Using a simple switch statement, you can
construct a custom function that will trace out the current sandbox type, as shown in Figure 7.4.

FIGURE 7.4

Output window displaying an example result from the whichSandbox function

function whichSandbox():String
{

var str:String = “”;
switch(Security.sandboxType)
{

case Security.REMOTE:
str = “This SWF is from an Internet URL. “
+ “It cannot access local files”;
break;

case Security.LOCAL_WITH_FILE:
str = “This SWF is local, but not trusted by “
+ “the user. It does not have access to “
+ “remote files.”;
break;

case Security.LOCAL_WITH_NETWORK:
str = “This SWF can communicate with remote “

146

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 146

+ “files, but can with local files.”;
break;

case Security.LOCAL_TRUSTED:
str = “This SWF has been trusted by the user. “
+ “It can read both local and remote files.”;
break;

}

return str;

}

trace(“Checking for current sandbox type.”);
trace(whichSandbox());

Determining the active sandbox
Determining the current sandbox type is not limited to a simple trace response. You can present the
user with a warning screen notifying him or her that the current SWF cannot access remote resources
because it is running locally. You can also forcefully stop a movie from running if a local sandbox is
found, which means the movie is no longer running from your Web site. For example, a movie running
locally could have been stolen from your site, so it is a good idea to check for this and act accordingly.

Running applications in the local sandbox
This example shown in Figure 7.5 checks the sandbox type and displays a countdown if the movie
is running locally.

FIGURE 7.5

Example of the completed application showing an active countdown

147

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 147

To get started, open the starting file that can be found on this book’s Web site.

The assets for this example have already been completed so you can focus on the programming.
The first step is to create the necessary variables.

var timer:Timer;
var sandbox:String;
var startingTime:uint = 5;

After the variables are assigned, you can build the initial function init, which is called as soon as
the movie begins.

function init():void
{

timerMC.alpha = 0;
sandbox = Security.sandboxType;

if(sandbox.indexOf(‘local’) == -1)
{

startTimer();
}

}

The main portion of this function is the if statement, which checks for the presence of the string
“local” in the sandbox type. This covers any of the local versions and determines the movie is
not running on the remote sandbox. If a local sandbox is detected, a call to startTimer is made,
which initializes and starts the countdown timer.

if(sandbox.indexOf(‘local’) != -1)
{

startTimer();
}

The startTimer function first initializes a new timer instance and then adds an event listener,
which is called every millisecond. The last action in this function is to display the timer text, by
setting the alpha property to 1.0 which makes it fully visible.

Using a timer update of 1 millisecond for a long period of time can create an unrespon-
sive movie. For an immediate check, such as in this example, it is not a great concern.

function startTimer():void
{

startingTime *= 1000;

CAUTION CAUTION

148

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 148

timer = new Timer(1, 0);
timer.addEventListener(TimerEvent.TIMER, tickHandler);
timer.start();
timerMC.alpha = 1.0;

}

The event handler in the previous section assigns a function for each call to the timer. This function
is that handler. The argument passed in is a reference to the timer object. You can also reference the
global Event; however, this is more understandable if you return to this code in the future.

function tickHandler(e:TimerEvent):void
{

var time:Timer = e.target as Timer;

var milli:uint = (startingTime - getTimer());
var sec:uint = Math.round(milli / 1000);

timerMC.timerTxt.text = String(sec)
+ ((sec == 1) ? “ second” : “ seconds”);

if(sec == 0)
{

timer.stop();
stage.removeChildAt(0);

}
}

The target of the event object is cast as Timer. Once again, this step is not required, but makes it
easier to work with the code.

The idea is to display the seconds remaining, which is determined using the remaining millisec-
onds. The remaining milliseconds are obtained using the getTimer() function, which returns
the milliseconds the current movie has been running. The startingTime is subtracted by this
value and the result is total milliseconds.

var milli:uint = (startingTime - getTimer());

The getTimer() function always returns the total time the current movie has been
running. This means if this test is done later in the playback process the value would not

be correctly displayed.

The remaining milliseconds are then converted to seconds using some basic math. The current
value of the milli variable divided by 1000 equals the seconds remaining.

var sec:uint = Math.round(milli / 1000);

Once the seconds are determined, that value is sent to the timerTxt textfield on the Stage. For
correct grammatical display, the sec variable is used to determine if second or seconds should be

NOTENOTE

149

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 149

displayed. That sec variable is tested on each running of this function to determine when the
timer should be stopped and to unload the entire application.

if(sec == 0)
{

timer.stop();
stage.removeChildAt(0);

}

Unloading an application
The action of unloading the entire application is done by making a call to removeChildAt on
the Stage instance. In this case, the whole movie should be removed, so 0 is passed meaning from
index 0 and down.

if(sec == 0)
{

timer.stop();
stage.removeChildAt(0);

}

The last step of the code is to make a call to init, which starts the entire process.

init();

That is the complete application, which will run if the current sandbox is local. You can adapt
the overall logic in this application and add it into your own to ensure your movie is not
improperly run.

Here is the completed code:

var timer:Timer;
var sandbox:String;
var startingTime:uint = 5;

function init():void
{

timerMC.alpha = 0;
sandbox = Security.sandboxType;

if(sandbox.indexOf(‘local’) == -1)
{

startTimer();
}

}

function startTimer():void

150

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 150

{
startingTime *= 1000;
timer = new Timer(1, 0);
timer.addEventListener(TimerEvent.TIMER, tickHandler);
timer.start();
timerMC.alpha = 1.0;

}

function tickHandler(e:TimerEvent):void
{

var time:Timer = e.target as Timer;

var milli:uint = (startingTime - getTimer());
var sec:uint = Math.round(milli / 1000);

timerMC.timerTxt.text = String(sec)
+ ((sec == 1) ? “ second” : “ seconds”);

if(sec == 0)
{

timer.stop();
stage.removeChildAt(0);

}
}

init();

At this point you should have a good understanding of how the Flash security sandbox works and
what it is. As you can see, the sandbox can prove to be a problem in some cases, but overall its
purpose is to protect the user. In the last example, the code was expanded and now the sandbox is
able to protect the owner of the content as well as the user.

You can take the practices and techniques learned in this section and begin to adapt them into
your own applications.

Ensuring an application cannot be shared
As a bonus to this section, the last example will be to create a similar sandbox style check, but this
time using the objective that a movie should not be viewable on any other Web site except the one
it was built for.

This is achieved by using the url property on the loaderInfo object. This property is accessible
on any loaded object. For this example, the loaded object would be the stage, because it is the root
Display Object. The code to determine the current location a movie is running is:

stage.loaderInfo.url

151

Maintaining Security while Working with User Input 7

12_258248 ch07.qxp 3/28/08 1:39 PM Page 151

This code returns a string displaying where a movie is running. An example response from a movie
running locally would be:

file:///MacPro%20HD/Library/Server/Documents/DomainCheck.swf

Using this property you could display a warning message as was done in the sandbox test. For
demonstration purposes, an invalid domain is provided to cause the movie to be immediately
removed.

if(String(stage.loaderInfo.url).indexOf(‘example.org’) != -1)
{

stage.removeChildAt(0);
}

Assuming the previous code is run in a movie that is not located on the example.org domain,
the movie removes itself and the application is no longer accessible. For a more complete applica-
tion you would check for the www and non-www version of the Web site. You could also expand
on this code and check for a list of valid sites, which could be achieved using a simple for loop
and an array of allowed domains.

This check is not 100 percent secure due to limitations in how a url can be accessed.

Now you should have an understanding of how to secure your application, and add a level of pro-
tection to stop other sites and locations from benefiting from your content without permission.

Summary
In this chapter you learned how to properly sanitize user data while being aware of how it can
affect your application functionality. You then learned how to properly load and clean user data to
ensure the storage process will not be harmed. Storing the secure data was introduced next with
examples of how simple SQL calls can cause headaches in your applications.

The next step that was introduced was the process of returning data to Flash and analyzing this
data to ensure it was properly handled.

The last section was an introduction and overview of the Flash sandbox and how it can affect your
applications. As a bonus you learned how to create an application that will remove itself if it is not
running on the correct domain.

NOTENOTE

152

Developing Interactive ContentPart II

12_258248 ch07.qxp 3/28/08 1:39 PM Page 152

When working with multiuser applications, there are different ways
to send and receive data. You can use an XML-based delivery
method. Another alternative to the standard delivery is to build a

“pull” application that checks for updates using a timer.

Sockets allow a “push” method that leaves out the timers and only updates
when new data is sent across. The use of sockets is not limited to simple
data; you could actually build a multiuser drawing application that would
pass the coordinates across the various logged-in clients.

This chapter is broken into two parts. The first part explains sockets. The
second part is a simple Flash-based chat application using sockets as the
delivery of the messages.

Understanding Sockets
A socket is a communication endpoint or computer part of a network con-
nected to another computer on the same protocol. The difference between a
traditional connection (Internet) and a socket is the ability to make a distinc-
tion between which machines you are talking to.

When you request a Web site from the Internet, you get the page you
requested, but the Internet cannot push new data directly to you (the client)
without requesting it once again.

A socket provides this direct communication by allowing the master connec-
tion to send new data to you (the client). This is most commonly used in
direct connection applications, such as instant messengers, video applica-
tions, and team collaboration environments.

153

IN THIS CHAPTER
Understanding sockets

Working with sockets in PHP

Working with sockets in Flash

Building a chat client with
sockets using Flash and PHP

Using Sockets

13_258248 ch08.qxp 3/28/08 1:40 PM Page 153

Security in sockets
The use of sockets does require a more direct connection, which means security is a larger concern.
Generally, whatever tool you are using to implement the socket client or server allows a level of
security directly within its own library. For example, Flash requires a trust to be set up in a differ-
ent domain that allows both parties to authorize the connection. In contrast, a simple connection
made by the command line does not have any implied security beyond standard protocol limits.

Sockets can be a poor choice when implemented into certain systems or setups due to
their direct connection nature.

Implementing a socket server
The socket server master can be implemented using many common programming languages.

For a persistent or production-level socket, you would most likely run it from a live server to
ensure other users can connect to it and limit the risk of an open connection on your local system.

Understanding the socket connection
The socket connection in the following example will be responsible for communicating with the
user. The following sections explain that process.

Parts of a socket
A socket connection is made of two pieces. The first part is the master connection or server, and
the second part is the clients that connect to the master. The clients can talk directly to the master
but cannot generally talk to other clients. If you want the clients to talk with each other you would
implement a talkback system within the master.

Binding
The master socket is bound to a specific IP address and port. This means the master connection is
made to this specific point to ensure the connection is unique. Clients that want to communicate
with that socket server must connect to the same IP address and port as the master.

Listening
This is similar to the standard Web server. Once the socket server starts, it listens for active clients
and new ones that want to connect. These clients are then added to the queue and begin to receive
communications from the group.

Working with Sockets in PHP
Building a socket server in PHP requires some prior configuration. A socket server within PHP can-
not be run from the standard graphic version due to its persistent connection. A standard Web
browser-based connection would timeout or possibly crash the host machine.

NOTENOTE

154

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 154

A socket connection would be run using the nongraphic command-line version of PHP (CLI). The
first step to working with sockets in PHP is to determine if you have this CLI version of PHP
installed, as it is not normally included in a Web server package.

Looking for command-line version of PHP
The command-line version (CLI), if installed, is usually accessible directly from the Terminal on a
Mac or the command prompt on a PC (see Figure 8.1).

To determine if you have this version, simply open the command line. In Windows, click Start and
then Run. Type cmd in the Run dialog box and click OK. If you’re using a Mac, open the Finder,
navigate to Applications/Utilities, and open the Terminal.

FIGURE 8.1

Example of a command prompt in Windows XP

With the command line open, type the following:

$ php -v

That command tells PHP to report the version information and exit. The results should look some-
thing similar to the following:

PHP 5.2.5 (cli) (built: Dec 20 2007 02:55:52)
Copyright (c) 1997-2007 The PHP Group
Zend Engine v2.2.0, Copyright (c) 1998-2007 Zend Technologies

If you get a response similar to the following, it means the PHP version may be installed but not
globally accessible from any command line and will require configuration.

-bash: php: command not found

You will need to locate the command-line version or install it to continue with this chapter.

155

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 155

See Chapter 1 for information on how to install the command-line version of PHP.

Building a socket server
To build a simple socket server using PHP, start by creating a file and saving it to a commonly
accessible location. This file does not need to be in your Web directory and will probably only be
harder to work with if it is.

You want to ensure the socket file is not visible to the Web because it could cause your
PHP to not work properly if a malicious user attempted to run the file.

To better understand how sockets work, start with a very simple socket server example.

Simple PHP-based socket server
The first part of the socket server is to determine the server IP address and port number. If you are
running the server locally you don’t need to determine your physical IP address. Instead, you can
use the local address.

<?php

$host = “127.0.0.1”;
$port = “8888”;

The port number is not specific, but it needs to be unique on the same machine to ensure it won’t
collide with any other application on your system or network (if used remotely).

This script will need to inform PHP to continue running because it needs to check for and manage
connections indefinitely. This is achieved by passing the set_time_limit function a value of 0,
meaning this script should never stop until properly exited.

set_time_limit(0);

With the configuration out of the way, you can create the master socket connection.

$sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

The three arguments passed into the socket_create function define which type of connection
it is and are PHP constants. For this example they are not important, but they will be explained
later in the chapter.

The $sock variable now contains an active socket resource id. The next step is to bind the socket
to the port defined in the first part of the code.

socket_bind($sock, $host, $port);

After the socket is bound to the port, you can start listening for connections. The first argument is
the $socket variable, which holds the socket resource id. The second argument is a backlog vari-
able that tells PHP how many messages to queue up before an error is passed to the client. This

NOTENOTE

CROSS-REFCROSS-REF

156

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 156

variable is a suggestion because some systems will define or override this value. For example,
Windows sets this based on the underlying service provider and basically ignores any user-
submitted value.

socket_listen($sock, 4);

At this point, you have built a socket server that doesn’t do anything. This basically means the
server starts and waits for incoming connections but does not handle them in any way. The next
step is to set up the portion of the socket server that handles the incoming connections.

You need to create another socket that handles the incoming connections by making a call to
socket_accept passing in the $socket resource id.

$childSocket = socket_accept($sock);

From this point the $childSocket variable is used to handle all client communications. The
data sent from a connection is read using the socket_read function.

$incomingData = socket_read($childSocket, 2048);

This function takes two arguments. The first argument is the client socket handler, and the second
argument is the number of bytes to read from the client. This can be useful when trying to run a
more efficient socket server. It is also a good idea to limit the output on the client side (if possible).

The socket_read function continues to load information into the $incomingData variable
until the data limit is hit or one of the following characters is found: carriage return (\n), tab (\t),
or \0. PHP treats those as end-of-input characters and moves to the next line in the script when
one is found.

Responding to the client connection
After the data is loaded, the next step is to act on that data and in most cases respond to the client.
For example, the following is a simple question/answer demo that has PHP responding to one
question:

if(substr($incomingData, 0, -2) == “are you hungry?”)
{

$response = “Server Response > I could eat!\n”;
socket_write($childSocket, $response, strlen($response));

}

The socket_write function takes three arguments. The first is the child socket resource id; the
second argument is the response being sent to the client. The third argument, which is optional, is
the length of the $response. This example only sends a response back to the client when you ask
PHP if it is hungry. As you can see, this is not a very practical application, but does clearly explain
how sockets are set up and how to interact with them.

The last step to the sample application, before testing it, is closing the two socket connections to
free up the resources and allow new connections to be made.

157

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 157

If you want to still receive connections you would only want to remove the $childSocket
variable.

socket_close($childSocket);
socket_close($sock);

The sockets can be closed in any order, but it is a good practice to close the master last in case you
have to loop through multiple client connections first.

Testing the socket server
Testing of the socket server can be done using a simple prompt or terminal, as shown in Figure 8.2.
With the command line open, start the command-line version of PHP, passing in the sample file
using the -f option.

$ /path/to/php -f /path/to/socket/sample/simpleSocket.php

FIGURE 8.2

Simple socket server running in the command prompt

You will notice that the prompt indicator disappears and the PHP file reports no updates. This may
not be a very desirable result because nothing is letting you know the server is currently running.
You can add a very simple print statement to the top of the file, such as:

<?php

$host = “127.0.0.1”;
$port = “8888”;

set_time_limit(0);

print “Starting Socket Server...\n”;

...

NOTENOTE

158

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 158

If you stop and start the socket server you should see the message printed, similar to the following:

$ /usr/bin/php -f /path/to/simpleSocket.php
Starting Socket Server...

If you restart the socket server often you may see a warning stating the port is in use.
You can either try again or choose another port to continue testing.

When the socket server is properly running you can open a new prompt and attempt to connect
the client with the socket server.

$ telnet 127.0.0.1 8888

Upon a successful connection a message similar to the following should appear:

$ telnet 127.0.0.1 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.

This application only accepts one message to be sent before being terminated. If you type anything
other than “are you hungry?” you will not see a response, unless you modified the question that is
asked in the socket application.

Here is the complete code for this example:

<?php

$host = “127.0.0.1”;
$port = “8888”;

set_time_limit(0);

print “Starting Socket Server...\n”;

$sock = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

socket_bind($sock, $host, $port);
socket_listen($sock, 4);

$childSocket = socket_accept($sock);
$incomingData = socket_read($childSocket, 2048);

if(substr($incomingData, 0, -2) == “are you hungry?”)
{

$response = “Server Response > I could eat!\n”;
socket_write($childSocket, $response, strlen($response));

NOTENOTE

159

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 159

}

socket_close($childSocket);
socket_close($sock);

?>

The connection is automatically terminated when the message is returned because there is no sys-
tem in place to look for additional messages. A more realistic application would assume some sort
of loop is in place to look for more than one message.

Creating a persistent socket server
The persistent socket server would be very similar to the previous example, with the exception of a
looping check for new messages.

Recursive loops
PHP does not offer an asynchronous system (event based) like you would find in ActionScript, but
you can create a loop to achieve the same result.

For example, here is a very simple while loop similar to the one that will be used in the persistent
connection example:

x = 0;
while(x < 50)
{

x++;
}

Managing multiple communications
The key to allowing a user to send more than one message per connection is to wrap the
socket_read calls that are responsible for checking for new messages in a loop.

do
{

// look for new messages

$incomingData = socket_read($childSocket, 2048);

if(trim($incomingData) == “are you hungry?”)
{

$response = “Server Response > I could eat!\n”;
socket_write($childSocket, $response, strlen($response));

}
else if(trim($incomingData) == “exit”)
{

$response = “Goodbye!\n”;
socket_write($childSocket, $response, strlen($response));

160

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 160

socket_close($childSocket);
break;

}
else
{

$response = strtoupper(trim($incomingData)) . “\n”;
socket_write($childSocket, $response, strlen($response));

}

}
while(true);

If you test the example, the connection stays active until you either close the prompt or you type
“exit” when connected to the application, which informs the socket server to close your connec-
tion. You can also type anything besides “exit” or the previous question and the response will be
your input in uppercase.

This simple example does not have support for multiple clients, so once the client is closed, the
server ends as well. In the second part of this chapter you build a complete socket-based multiuser
chat application that by definition will allow more than one connection at a time.

You should now understand how sockets work in PHP as well as how to implement them in differ-
ent ways, depending on the application. The next part explains how sockets work in Flash. Then
in the final chapter, you combine Flash and PHP to send/receive information using sockets.

Working with Sockets in Flash
Flash is considered the client side of a socket connection. This means you can’t deploy a socket server
directly from Flash, because Flash is a client-side application. Being able to use Flash as a socket
server, if it was possible, wouldn’t be very beneficial due to the fact that Flash is a graphical applica-
tion. It would essentially be a waste of resources to use Flash in a command-line environment.

That being said, Flash makes an excellent socket server client. Telnet was used in the previous
section, which is one way to initialize a client connection to a socket server. Flash allows the TCP
connections, which require more code and more setup in the beginning.

The majority of the connection code in the next section could be built into a common class or
library to minimize the amount of code required to create a socket connection.

Initializing a socket connection
The first part to initializing a socket connection is to define the host and port to connect on.

var host:String = “127.0.0.1”;
var port:uint = 8888;

161

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 161

These two variables will need to be the same as the PHP code you wrote in the previous section.
Or, if you are using the supplied code, you can keep the sample values just shown.

Once the variables are defined, create an instance of the Socket class. The constructor of this class
accepts two parameters. The first is the host, and the second is the port to connect on.

var socket:Socket = new Socket(host, port);

As you continue to work with dynamic data sources, you quickly find that proper event handlers
make it easier to understand how something is working. This means that adding event listeners to
the socket process is a good idea. Start by building the calls, and then create the event handlers
later on.

socket.addEventListener(Event.CLOSE, closeHandler);
socket.addEventListener(Event.CONNECT, connectHandler);
socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
socket.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

securityErrorHandler);
socket.addEventListener(ProgressEvent.SOCKET_DATA,

socketDataHandler);

Event handlers
The event handler functions used in this sample application trace the errors to the Output window.
A more realistic application would require some logic to handle these errors and respond to the
user accordingly.

function closeHandler(event:Event):void
{

trace(“Connection to [“ + host + “] closed”);
}

function ioErrorHandler(event:IOErrorEvent):void
{

trace(event.text);
}

function securityErrorHandler(event:SecurityErrorEvent):void
{

trace(event.toString());
}

Special handlers
This example has two special event handlers. The first special event handler is called when a con-
nection is successful, informing you that messages can be sent to the socket server. Messages sent
before a proper connection is made could result in errors or missed messages.

162

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 162

function connectHandler(event:Event):void
{

trace(“Connected to [“ + host + “]”);
}

The connectHandler function is the place any calls to the server should be made. It would be a
good place to add the sample message call, such as:

function connectHandler(event:Event):void
{

trace(“Connected to [“ + host + “]”);

try
{

socket.writeUTFBytes((“are you hungry?\n”);
}
catch(e:IOError)
{

trace(e);
}

}

The second special event handler is called when a response is fully gathered from the socket server.
This is used to ensure partial messages are not evaluated, as they could potentially cause program-
ming errors that would be hard to track.

function socketDataHandler(event:ProgressEvent):void
{

trace(“Socket Server Response Loaded”);
}

This is the function in which all response code should be placed, similar to the following:

function socketDataHandler(event:ProgressEvent):void
{

var str:String = socket.readUTFBytes(socket.bytesAvailable);
trace(“Socket Server Response: “ + str);

}

As you can see, working with sockets in Flash is not that different from any other data object. The
consistency of the code across different packages is one very great aspect of ActionScript.

Remote socket connections
The previous example was connecting to a local socket (on the same machine), but it is more real-
istic that your application would be connecting to a remote socket. This means you must set up a
trust between the client and server running the socket server application.

163

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 163

Security trust
A trust uses the crossdomain.xml file with the ports that are allowed, such as:

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM

“http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>

<allow-access-from domain=”*” to-ports=”8888” />
</cross-domain-policy>

This access file is allowing any client to connect on port 8888 and no other. You can also define a
domain if this socket application will be accessible only from another Web site, such as.

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM

“http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>

<allow-access-from domain=”anothersite.com” to-ports=”8888” />
</cross-domain-policy>

The second part of the security trust is a call to allowDomain in the Flash file. This method of
the Security class is responsible for defining a domain that is allowed to connect to this client. This
connection will only occur if the remote site has a proper crossdomain file.

Security.allowDomain(“example.com”);

Loading the policy file
In rare cases, the cross-domain policy file is not in the default location, so a call to
loadPolicyFile can be made to inform Flash where to find the crossdomain.xml file.

Security.loadPolicyFile(“http://example.com/newloc/crossdomain
.xml”);

You should now know how to set up a client-based socket connection in Flash. As you can see, the
majority of the code used in a socket connection is handled by Flash.

As stated in the beginning of this section, the code used to build a socket connection can be reused
throughout your projects.

Using a class for socket connections
To better understand socket connections in Flash, let’s start off by building a basic socket example.
Then once the basics are in place, the next section will cover building a complete socket-based
chat application using Flash and PHP.

164

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 164

Basic socket class
Here is a basic socket class that easily defines the customizable elements. Simply save this code in
an ActionScript file with the name SimpleSocket in the same directory as your sample Flash
document.

package
{

import flash.errors.*;
import flash.events.*;
import flash.net.Socket;

public class SimpleSocket extends Socket
{

public var host:String;
public var port:uint;
private var socket:Socket;

public static var SOCK_CONNECTED:String = “onSockConnect”;
public static var SOCK_IOERROR:String = “onSockIOError”;

function SimpleSocket(h:String, p:uint)
{

host = h;
port = p;
socket = this;
super(host, port);
initListeners();

}
public function sendMessage(str:String):void
{

if(connected)
{

socket.writeUTFBytes(str + “\n”);
}
else
{

trace(“Not connected, message not sent!”);
}

}

public function readMessage():void
{

if(connected)
{

var str:String =
socket.readUTFBytes(socket.bytesAvailable);
trace(“Socket Server Response: “ + str);

}

165

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 165

else
{

trace(“No message read, not connected!”);
}

}

private function initListeners():void
{

socket.addEventListener(Event.CLOSE, closeHandler);
socket.addEventListener(Event.CONNECT, connectHandler);
socket.addEventListener(IOErrorEvent.IO_ERROR,
ioErrorHandler);
}

private function closeHandler(event:Event):void
{

trace(“Connection to [“ + host + “] closed”);
}

private function ioErrorHandler(event:IOErrorEvent):void
{

dispatchEvent(new Event(SOCK_IOERROR));
}

private function connectHandler(event:Event):void
{

trace(“Connected to [“ + host + “]”);
dispatchEvent(new Event(SOCK_CONNECTED));

}

private function socketDataHandler(event:ProgressEvent):void
{

readMessage();
}

}
} // last two braces are lined up for printing purposes

Using the SimpleSocket class
The process of using the SimpleSocket class is fairly simple. Start by setting up a new Flash
movie. This movie makes an import call, which is responsible for loading the custom class.

import SimpleSocket;

var sock:SimpleSocket;

To create a socket connection, start by making a new instance of the SimpleSocket class, pass-
ing in the host and port information for the socket server you want to connect to.

sock = new SimpleSocket(‘127.0.0.1’, 8888);

166

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 166

When the socket connection call is finished, you will want to assign listeners to the custom events.
This simple class only has events for a successful connection and another for any connection error.
You can expand the class and add more event handlers as needed.

sock.addEventListener(SimpleSocket.SOCK_CONNECTED, connected);
sock.addEventListener(SimpleSocket.SOCK_IOERROR, ioError);

The final step is to define the event handler functions, such as:

function ioError(e:Event):void
{

trace(“Can’t connect to “ + sock.host + “ on port “ +
sock.port);

}
function connected(e:Event):void
{

sock.sendMessage(“are you hungry?”);
}

You can now run the movie and should see the following output if you built or loaded the socket
server code and the server is currently running.

“Connected to [127.0.0.1] Socket Server Response: ARE YOU THERE?”

This class can be expanded upon to allow for more specific requirements, but you should have a
basic understanding of how the socket system works in Flash. At this point you should also know
how to construct a custom class to handle the majority of the socket connecting and communicat-
ing process.

The final section focuses on building a custom multiuser chat client using the information learned
in the previous sections.

Building a Chat Client with Sockets
Using Flash and PHP
In the previous sections, you learned how to construct a simple PHP socket server. You then built a
basic Flash client to communicate with the PHP socket server. In this section, you combine the
steps into one real-world application. The application you will be building is a multiuser chat
client running in Flash with a PHP socket server to handle the connections.

This multiuser chat application will allow multiple client connections to talk to each other with the
admin being able to send specific messages about status and connection details.

PHP socket server for the chat client
The PHP portion of the application will be two files: the actual socket server class and the calling
page to start the socket server.

167

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 167

The socket server class skeleton looks like the following block of code. As you can see, the socket
class has many methods. Breaking them up into easy-to-maintain portions will create a better
product in the end.

class ChatServer
{

...

function ChatServer($ip=’192.168.1.110’, $port=8888) {}

public function startServer() {}

public function stopServer() {}

private function initLoop() {}

private function createMasterClient() {}

private function notifyClient($sockID, $buffer) {}

private function notifyClients($clients, $sock, $buffer,
$admin) {}

private function handleError($str, $err) {}

private function endSocket($sockID=null) {}

private function serverMessage($str) {}

}

Chat properties
The first part to focus on in the class is the properties, which are responsible for storing the various
error messages, as well as connection details.

private $ipAddress = null;
private $port = null;

private $masterClient = null;
private $clients;

// Server Messages
private static $SOCKET_CREATE_FAIL = “socket_create() failed”;
private static $SOCKET_BIND_FAIL = “socket_bind() failed”;
private static $SOCKET_LISTEN_FAIL = “socket_listen() failed”;
private static $SOCKET_ACCEPT_FAIL = “”;

private $LINE_ENDING = “\n”;
private static $SHOW_ERRORS = 1; // display errors (0=off, 1=on)

168

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 168

These methods are all set as private to ensure they are not accidentally accessible to other scripts.
You can set up getters and setters if you decide that you want to share these or any properties in
a class.

Use caution when allowing methods and properties to be globally accessible. Failure to
properly lock down these elements can result in major security flaws.

The constructor method is responsible for storing the host and port information. This method also
creates a new array that will store the connected client’s information. You will notice the most com-
mon values in the constructor are predefined. This means that if no host or port is defined by the
calling script these default values are used:

function ChatServer($ip=’127.0.0.1’, $port=8888)
{

$this->ipAddress = $ip;
$this->port = $port;

$this->clients = array();
}

The next function is called by the second PHP file and is where the master server function as well
as the listening system function are called from. The stopServer function is left empty because
the socket server is turned off when the connection ends. You could add more logic that could
allow remote turnoff or possibly even shutdown at a certain time.

public function startServer()
{

$this->createMasterClient();
$this->initLoop();

}

public function stopServer() { /* empty */ }

The initLoop function, which is called when the server starts, is the core of the socket server.
This function is responsible for initializing new connections and listening for messages sent from
the existing connections. This function covers the majority of this application. You will look at it
in parts.

The first step of this function is to reset the $socketsChanged variable that holds the modified
list of active socket connections.

private function initLoop()
{

$socketsChanged = null;

while(true)
{

// connection and message loop
}

}

CAUTION CAUTION

169

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 169

The contents of the while loop is where the majority of client and message checking occurs. The
socket_select function is responsible for changing the read status of a socket if new data is
found, which marks it and adds the socket to the array of changed sockets to be looped through.
This is used to limit the data checking in the foreach loops.

The socket_select function modifies the array. It is a good idea to make a copy first.

...
while
{

$socketsChanged = $this->clients;

$write = NULL;
$except = NULL;

socket_select($socketsChanged, $write, $except, NULL);

foreach($socketsChanged as $socket)
{

...
}

}

You could expand this functionality to multiple methods in the class, but it is a good idea to keep
all relevant code together.

The foreach loop runs through each active socket connection. It is verified against the master
server and then checked to make sure an active client exists. If no active client exists the script
exits because something has gone wrong and the code will not be able to continue.

foreach($socketsChanged as $socket)
{

if($socket == $this->masterClient)
{

if (($client = socket_accept($this->masterClient)) < 0)
{

$this->handleError(ChatServer::SOCKET_ACCEPT_FAIL,
‘’);

continue;
}
else
{

array_push($this->clients, $client);
}

}
else
{

...
}

}

NOTENOTE

170

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 170

If the client has been added and the master server instance exists, the else portion of the code is
run. This part checks the message buffer for a valid message. If no valid buffer is found, the client’s
connection ends. This cleanup routine ensures that the resources are not being wasted.

Excluding the master server from communication
Assuming a valid message is found, the value is stored in a new string variable and the master
server is removed from the array. This is done to ensure any messages or maintenance will not
occur on the master connection. For example, a broadcast message informing clients of the service
is not something the master server needs to receive.

The array_shift function removes the first element and rekeys the array, basically shifting all of
the elements down by one.

if($socket == $this->masterClient)
{

...
}
else
{

$buffer = ‘’; // filled by socket_recv (undocumented)
$bytes = socket_recv($socket, $buffer, 2048, 0);
if($bytes == 0)
{

$this->endSocket($socket);
}
else
{

$allclients = $this->clients;
array_shift($allclients); // remove master
$specialString = $buffer;

}
...

}

Special chat parameters
When a valid message is found, it is checked for special parameters. This could be a simple
“exit” request or a more advanced admin flag that is used to notify clients with service messages.
The special message types are just a use case example. You can easily change, add, or remove the
special messages, depending on how you set up your chat client.

// look for admin beacon
if(substr($specialString, 0, 7) == “[admin]”)
{

$this->notifyClients($allclients,
$socket, substr($buffer, 7), true);

}

171

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 171

The “exit” message is called by a client that wants to exit chat. If the user simply closes the Flash
movie, the socket server removes the user from the list on the next loop pass. This gives the user a
way to cleanly leave the system and see a “Goodbye” message as he or she is exiting.

else if(substr($specialString, 0, 4) == “exit”)
{
$this->serverMessage(“Closing Connection: “ . $socket);
$this->notifyClient($socket, “Goodbye”);
$this->endSocket($socket);

}

A more advanced chat application would probably have documentation on the Web site. This
“help” command shows you another way to deliver the more commonly used commands
directly to your connected clients. You will notice this command is very similar to the “man”
command that is found in UNIX terminals.

else if(substr($specialString, 0, 4) == “help”)
{

$this->notifyClient($socket, “Chat Help:\n”
. “Type exit to leave chat”);

}

If no special message is found, then simply broadcast the unedited message to all of the other
clients. This system will even display your comment back to you. A more complete application
would need to be set up to exclude the author of the comment from being updated.

else
{

$this->notifyClients($allclients, $socket, $buffer);
}

As you can see, the initLoop method has a lot of responsibilities and handles a good portion of
the entire socket server.

Master client connection
The createMasterClient method is called when the socket server starts. This method initial-
izes the socket server and creates the master connection to which all other clients connect.

private function createMasterClient()
{

if(($this->masterClient = socket_create(AF_INET, SOCK_STREAM,
SOL_TCP)) < 0)

{
$this->handleError(ChatServer::SOCKET_CREATE_FAIL,
$this->masterClient);

}

172

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 172

The socket options are set to allow the reuse of the local address, which informs PHP that over-
writing the existing connection is allowed. You would set this to false if you want to retain a
unique connection.

socket_set_option($this->masterClient, SOL_SOCKET,SO_REUSEADDR,
1);

Before the initial connection can be made, you must ensure that the address is available and not in
use by an existing application.

if(($bindRes = socket_bind($this->masterClient,
$this->ipAddress, $this->port)) < 0)

{
$this->handleError(ChatServer::SOCKET_BIND_FAIL, $bindRes);

}

Assuming the address is available, a call to socket_listen is made, which makes the socket
ready to receive connection requests. Once the connection is made, the master client is added to
the client array and the initialization process is complete.

if(($ret = socket_listen($this->masterClient, 5)) < 0)
{

$this->handleError(ChatServer::SOCKET_LISTEN_FAIL, $ret);
}

$this->clients = array($this->masterClient);

The last step in the createMasterClient method is to send a server message that informs the
server operator that a new chat server has been initialized. In this example, the operator is you, so
you will notice a print statement in the prompt when you start the server.

$this->serverMessage(“Chat Server Started”);
}

Notifying a specific client
There are two types of client notifications in this chat application. The first type is a global notifica-
tion and the second type is for a single user. The single-user notification is most commonly used to
send status messages to a client.

The single-user method accepts two parameters defining the specific socket ID and the message to
send to that client. A foreach loop is used to find the specific client, and, if found, a call to
socket_write is made, sending the message.

private function notifyClient($sockID, $buffer)
{

foreach($this->clients as $client)
{

if($client == $sockID)

173

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 173

{
socket_write($client, $buffer . $this->LINE_ENDING);

}
}

}

Notifying all clients
The global notification is similar to the single-user method, with the exception that it checks to see
if the message being sent is to be marked as an admin message. The admin flag can be set when a
call to notifyClients is made. The default value is false, ensuring that client messages can’t
be marked as coming from the admin.

private function notifyClients($clients, $sock, $buffer, $admin)
{

foreach($clients as $client)
{

if($admin == true)
{

socket_write($client, “ADMIN NOTICE: “ . $buffer);
}
else
{

socket_write($client, $sock . “ wrote: “ . $buffer);
}

}
}

Handling errors
As the application continues to run, it is bound to have an error or two. Rather than throw these
errors away, it is a good idea to capture them and at least display them to the server. An example of
a basic error handler can be seen here:

private function handleError($str, $err)
{

if(ChatServer::SHOW_ERRORS)
{

$this->serverMessage(($str . “: reason: “
. $err) . $this->LINE_ENDING);

}
}

The handleError method first checks that errors should be displayed by checking the static
SHOW_ERRORS property, defined at the top of the class file. The passed-in error message is relayed
to the serverMessage method, which prints it.

174

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 174

You could call the serverMessage method directly, but using this relay system allows you to
trap errors and keep your code clean. It wouldn’t make sense to have the SHOW_ERRORS condition
in the serverMessage because a message isn’t always an error.

Ending a connection
The connection ends if the client closes the browser or application. However, the user can also
close the connection by sending the special “exit” parameter. A socket termination method is
used to ensure the array of active connections is properly handled. This method will also remove
the master if no active clients exist, ultimately ending the socket server connection itself.

The array_search function is used to find the socket id to close. This function returns the id
from the array. This is used to remove the connection from the list and terminate the specific
socket connection.

private function endSocket($sockID=null)
{

// close master if no socket is defined
if($sockID == null)
{

$sockID = $this->masterClient;
}

$index = array_search($sockID, $this->clients);
unset($this->clients[$index]);
socket_close($sockID);

}

Server monitoring
The last method of the chat class is used to print messages about the socket server directly to the
active prompt, generally running on the Web server to which the clients are connecting.

private function serverMessage($str)
{

print $str . $this->LINE_ENDING;
}

Connecting to the socket server
The connection to the chat class built in the previous section is handled by the second PHP file.
This file will be the one you would call when you want to start the chat server. Building the system
in this manner allows you to leave the chat class on its own and duplicate the connection without
modifying the code.

175

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 175

Building the connection file
Here is an example connection on the localhost domain, also commonly referred to as the
loopback address of your machine or server.

#!/usr/bin/php -q
<?php

include ‘ChatServer.php’;

The first line is used to define the command to the terminal. It is not required, but does mean you
can exclude the switches, in this case the -q which is used to suppress HTTP header output, when
you call the php file. The next line includes the ChatServer class, allowing it to be called from
that point.

Once the file is properly included you can make a new chat instance, passing in the host and port
that you would like to begin listening on. In this example, the local host is used and is bound to
port 8888. The port number does not need to be the same; it only needs to be open. It is a good
idea to choose a port number that won’t be used by other applications on your system.

$chatServer = new ChatServer(“127.0.0.1”, 8888);

The last step is to start the server and allow others to connect to it. To stop the server you can close
the terminal or press Ctrl+C, which in most terminals will end the active process.

$chatServer->startServer();

Here is the complete code for this simple test:

#!/usr/bin/php -q
<?php

include ‘ChatServer.php’;

$chatServer = new ChatServer(“127.0.0.1”, 8888);
$chatServer->startServer();

?>

Testing the connection
For simple testing, you can attach to the chat server using the telnet method, as shown in Figure
8.3, which was explained at the beginning of the chapter. This method poses a graphical and
usability limitation, so the next section is the process of developing the Flash application that will
connect to this PHP socket server.

176

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 176

FIGURE 8.3

Example of the chat server running in the command prompt

Building the Flash client
The Flash chat client is used to interact with the socket server. This client application can be used
locally or on a Web site, depending on how the socket server is configured. For this example, the
code assumes the socket server is running locally.

The design portion of the Flash client has been completed for you, as shown in Figure 8.4. This start-
ing file can be found on the Web site for this book, along with the code for all the other sections.

The first part of the Flash code initializes the host and port information, which is passed into a new
instance of the Socket class.

var host:String = “127.0.0.1”;
var port:uint = 8888;

var socket:Socket = new Socket(host, port);

177

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 177

FIGURE 8.4

The completed application, which can be found on the book’s Web site

After the connection is made, assign the event listeners, which will be called when new data is sent
or loaded.

socket.addEventListener(Event.CLOSE, closeHandler);
socket.addEventListener(Event.CONNECT, connectHandler);
socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
socket.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

securityErrorHandler);
socket.addEventListener(ProgressEvent.SOCKET_DATA, sockHandler);

The chat client also needs event handlers that will be assigned to the message box and text input
submission buttons, such as:

msgTxt.addEventListener(Event.CHANGE, inputHandler);

clearBtn.addEventListener(MouseEvent.CLICK, clearButtonHandler);
sendBtn.addEventListener(MouseEvent.CLICK, sendButtonHandler);

178

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 178

The last event handler will be assigned to the keyboard to allow the use of the Enter key for send-
ing messages. This is not a required step, but adds functionality to the application.

addEventListener(KeyboardEvent.KEY_DOWN, keyDownHandler);

Event handler functions
The functions that are assigned to the event handlers can be seen in the following code. As you can
see, these event handlers have basic functionality for this example, but could be expanded in a
more real-world application.

function closeHandler(event:Event):void
{

statusMessage(“Connection to [“ + host + “] closed”,
“#FF0000”);
disableInterface();

}

function connectHandler(event:Event):void
{

statusMessage(“Connected to [“ + host + “]”, “#006600”);
sendRequest();

}

function ioErrorHandler(event:IOErrorEvent):void
{

statusMessage(event.text, “#FF0000”);
}

function securityErrorHandler(event:SecurityErrorEvent):void
{

statusMessage(event.toString(), “#FF0000”);
}

function sockHandler(event:ProgressEvent):void
{

readResponse();
}

Trapping key presses
The key event handler has special code. This event traps the currently pressed key and checks to
see if it is the Enter key. For this example, the only key to look for is Enter. If you required more
than one, you could define them in an array or use a switch..case statement.

179

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 179

If the Enter key is pressed, a call to the dispatchEvent is made, forcing the click of the Submit
button.

function keyDownHandler(e:KeyboardEvent):void
{

if(e.keyCode == Keyboard.ENTER)
{

sendBtn.dispatchEvent(new MouseEvent(MouseEvent.CLICK));
}

}

Submit message handler
The key handler makes a call to the Submit button click event, which is assigned to the following
function. This function checks the length of the msgTxt TextInput and, if length is greater than
zero, the message is prepared and sent.

The last step of this function is to clear the message box to ensure the same message is not resent.
You could add this clearing code in the status handler. This would clear the field once you know
the message has been sent. This allows you to preserve the message and avoid lost messages due to
glitches in the network.

function sendButtonHandler(e:MouseEvent):void
{

if(msgTxt.text.length > 0)
{

writeLine(msgTxt.text);
clearBtn.dispatchEvent(new MouseEvent(MouseEvent.CLICK));

}
}

Clearing the message input
The clearButtonHandler function is called whenever you want to clear the text input field
and disable the Submit button until a new message is entered. The buttons will be disabled when
you dispatch the CHANGE event in the next section.

function clearButtonHandler(e:MouseEvent):void
{

msgTxt.text = “”;
msgTxt.dispatchEvent(new Event(Event.CHANGE));

}

Checking the text input length
When a new message is entered or the input box is cleared, a call to the CHANGE event on the
msgTxt box is made. This event is responsible for checking the length of text in the input box and
enabling or disabling the Submit and Clear buttons, as shown in Figure 8.5, depending on the
result of the length check.

180

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 180

function inputHandler(e:Event):void
{

if(e.target.text.length > 0)
{

clearBtn.enabled = true;
sendBtn.enabled = true;

}
else
{

clearBtn.enabled = false;
sendBtn.enabled = false;

}
}

FIGURE 8.5

Showing the application in the disabled state

Maintaining a stable interface
To create a stable application, the interface and buttons are disabled when a connection is not present.

function enableInterface():void
{

msgTxt.enabled = true;
bodyTxt.enabled = true;

}
function disableInterface():void
{

181

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 181

bodyTxt.editable = false;
msgTxt.enabled = false;
clearBtn.enabled = false;
sendBtn.enabled = false;

}

These enable and disable functions are called from other portions of the code, depending on
the result of the active connection. For example, the disableInterface function is called from
the closeHandler, which is dispatched when an active connection is terminated.

function closeHandler(event:Event):void
{

...
disableInterface();

}

Sending the initial request
The sendRequest function is called when a connection is made. This function sends data to the
status function and clears any existing queued information in the socket connection.

function sendRequest():void
{

statusMessage(“Send initial request to [“ + host + “]”,
“#006600”);
socket.flush();
enableInterface();

}

Sending messages to the socket server
The process of actually sending the messages to the socket server is handled in the writeLine
function. This writeLine function is called from the input and submit handlers, which are
defined in the previous portion of code.

function writeLine(str:String):void
{

...
}

The first part of the function is appending a new line to the message, which you may remember is
the end of message indicator in PHP.

str += “\n”;

This function also makes use of the try..catch programming style to ensure errors in the send-
ing process are properly captured and hidden from the user. For simplicity, the error is displayed in

182

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 182

the Output window. In a more realistic application, you would want to inform the user if the mes-
sage was not sent as well as store the message to attempt to send it again later.

try
{

socket.writeUTFBytes(str);
}
catch(e:IOError)
{

trace(e);
}

Handling status updates
This application has a status box, which is used to notify the user of the possible connection or
message issues. All of these status updates are sent to the statusMessage function, which inputs
them into the status box and colors them accordingly.

function statusMessage(str:String, color:String=”#000000”):void
{

statusTxt.htmlText += “<font color=\””
+ color + “\”>”
+ str + “”;

}

A default color is applied in case the caller forgets to define one. Failure to include a default color
could result in the text not being added.

The last function in this socket-based chat application is called when a new message is received
from the socket server.

function readResponse():void
{
}

The first part of this function retrieves the new message from the socket class and assigns it to the
str variable, which is used in the remaining portion of this function.

var str:String = socket.readUTFBytes(socket.bytesAvailable);

Before the message can be displayed, you must remove any extra new lines that could affect how
the text is displayed. This is performed using a very basic substring function that returns the
message excluding the last two characters, which in this case would be “\r\n”.

// strip off line feeds
if(str.substring((str.length-2), str.length) == “\r\n”)
{

trace(“found \\n\\r”);

183

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 183

str = str.substring(0, (str.length-2));
}

Once the new lines have been removed, the next step is to determine if this message was sent from
an admin. This example allows any *user* to be an admin. In a more complete application, you
would want to require login before an admin account could be used. If the message is from an
admin, the contents of the message are colored in red, to make the admin messages stand out.

if(str.substring(0, 12) == “ADMIN NOTICE”)
{

bodyTxt.htmlText += “” + str +
“”;

}

If the message is standard, then it is simply added to the TextArea and the function ends, wait-
ing for the next message to be retrieved.

else
{

bodyTxt.htmlText += “” + str +
“”;

}

That is all there is to the Flash-based chat client with a socket server in PHP. At this point, you can
start the socket server (unless it’s already running) and test the chat client, as shown in Figure 8.6.
Being that this system is intended for multiple connections, you can call over some of your friends
and have them test it.

Or, you can modify the code to allow remote connections and let many users connect by sending a
link to the Flash application.

Here is the complete code for the chat client example:

var host:String = “127.0.0.1”;
var port:uint = 8888;

var socket:Socket = new Socket(host, port);

socket.addEventListener(Event.CLOSE, closeHandler);
socket.addEventListener(Event.CONNECT, connectHandler);
socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
socket.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

securityErrorHandler);
socket.addEventListener(ProgressEvent.SOCKET_DATA, sockHandler);
msgTxt.addEventListener(Event.CHANGE, inputHandler);
addEventListener(KeyboardEvent.KEY_DOWN, keyDownHandler);

184

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 184

clearBtn.addEventListener(MouseEvent.CLICK, clearButtonHandler);
sendBtn.addEventListener(MouseEvent.CLICK, sendButtonHandler);

this.align = StageAlign.TOP_LEFT;
this.scaleMode = StageScaleMode.NO_SCALE;

function writeLine(str:String):void
{

str += “\n”;
try
{

socket.writeUTFBytes(str);
}
catch(e:IOError)
{

trace(e);
}

}

function sendRequest():void
{

statusMessage(“Send initial request to [“ + host + “]”,
“#006600”);
socket.flush();
enableInterface();

}

function readResponse():void
{

var str:String = socket.readUTFBytes(socket.bytesAvailable);

// strip off line feeds
if(str.substring((str.length-2), str.length) == “\r\n”)
{

trace(“found \\n\\r”);
str = str.substring(0, (str.length-2));

}

if(str.substring(0, 12) == “ADMIN NOTICE”)
{

bodyTxt.htmlText += “” + str +
“”;
}
else
{

185

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 185

bodyTxt.htmlText += “” + str +
“”;
}

}

function enableInterface():void
{

msgTxt.enabled = true;
bodyTxt.enabled = true;

}
function disableInterface():void
{

bodyTxt.editable = false;
msgTxt.enabled = false;
clearBtn.enabled = false;
sendBtn.enabled = false;

}

function statusMessage(str:String, color:String=”#000000”):void
{

statusTxt.htmlText += “” + str +
“”;

}

function clearButtonHandler(e:MouseEvent):void
{

msgTxt.text = “”;
msgTxt.dispatchEvent(new Event(Event.CHANGE));

}

function sendButtonHandler(e:MouseEvent):void
{

if(msgTxt.text.length > 0)
{

writeLine(msgTxt.text);
clearBtn.dispatchEvent(new MouseEvent(MouseEvent.CLICK));

}
}

function inputHandler(e:Event):void
{

if(e.target.text.length > 0)
{

clearBtn.enabled = true;
sendBtn.enabled = true;

}

186

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 186

else
{

clearBtn.enabled = false;
sendBtn.enabled = false;

}
}

function closeHandler(event:Event):void
{

statusMessage(“Connection to [“ + host + “] closed”,
“#FF0000”);
disableInterface();

}

function connectHandler(event:Event):void
{

statusMessage(“Connected to [“ + host + “]”, “#006600”);
sendRequest();

}

function ioErrorHandler(event:IOErrorEvent):void
{

statusMessage(event.text, “#FF0000”);
}

function securityErrorHandler(event:SecurityErrorEvent):void
{

statusMessage(event.toString(), “#FF0000”);
}

function sockHandler(event:ProgressEvent):void
{

readResponse();
}

function keyDownHandler(e:KeyboardEvent):void
{

if(e.keyCode == Keyboard.ENTER)
{

sendBtn.dispatchEvent(new MouseEvent(MouseEvent.CLICK));
}

}

// disable interface until connected
disableInterface();

187

Using Sockets 8

13_258248 ch08.qxp 3/28/08 1:40 PM Page 187

FIGURE 8.6

Chat application running in the browser

Summary
In this chapter, you have learned what a socket server is and how they are built. You then learned
how to build a simple socket server and connect to it using Flash. Once you had an understanding
of the Flash and PHP portions of the process, the final step was to build a complete multiuser chat
application with a socket server in PHP running behind the scenes.

You can take the information learned in this chapter and expand it to create a fully functional chat
application. You can add features such as moderation, members, timers, chat rooms, and so on. It
is important to realize that socket server systems are not limited to chat applications. You can use
this same technology to build a multiuser drawing application or even build a multipoint server
monitoring architecture.

As you can see, sockets can be used in a variety of ways. Once you learn the basics, your imagina-
tion is the only limit to your development.

188

Developing Interactive ContentPart II

13_258248 ch08.qxp 3/28/08 1:40 PM Page 188

Extending
Flash and PHP

IN THIS PART
Chapter 9
Working with Third-Party Libraries

Chapter 10
Using Object-Oriented
Programming

14_258248 pp03.qxp 3/28/08 1:40 PM Page 189

14_258248 pp03.qxp 3/28/08 1:40 PM Page 190

The use of third-party libraries continues to grow as more demanding
applications are being developed. Third-party libraries often solve a
problem or make a common task easier to handle, which lets the

developer focus on the more important aspects of the application.

The first part of this chapter is devoted to explaining what third-party
libraries are, how to use them, and what is needed to install a library.

The second part of this chapter focuses on the use of AMFPHP in Flash.
AMFPHP is basically a PHP library that offers a common link between Flash
and a database, as well as other data types.

Going over Third-Party Libraries
A third-party library is a custom package or piece of code that is developed
by a company or organization to work with another company’s product. For
example, if you look at the Firefox Web browser, there is a series of plug-ins
and enhancements that are released by developers not working for Mozilla.

Developers have different views on third-party libraries; one of the most
important concerns about these libraries is security. You have to be careful
working with other portions of code, especially if you don’t have the time or
expertise to thoroughly investigate how that code functions.

Security concerns are even more important when you don’t know the party
that developed the library or if the library itself is connected to some secure
aspect of your application.

For example, it’s not a good idea to use a cookie or session library from an
unknown developer. Doing so can introduce security holes in your application.

191

IN THIS CHAPTER
Going over third-party libraries

Installing third-party libraries

Using third-party libraries

Glancing at AMFPHP

Working with Third-Party
Libraries

15_258248 ch09.qxp 3/28/08 1:40 PM Page 191

There are some notable exceptions to working with third-party libraries and secure applications.
For example, if you are building a store application, it is a reasonable guess that you will be inter-
acting with some form of a merchant system, such as Authorize.net, Miva, or PayPal.

These systems offer third-party libraries that you can easily connect to your application and are
known to be secure because they have been thoroughly tested in various environments.

Other types of third-party libraries
These external libraries are not limited to security or data handling. This is due to the fact that
Flash is a design program as well. There are many excellent third-party libraries available to speed
up the development and design process.

In some cases, these external libraries provide functionality that isn’t possible directly in
Flash/ActionScript.

Commercial Flash libraries
There are some libraries being built that have commercial licenses, which means you get more
extensively developed code. You won’t have a problem getting support for these libraries.

For example, gskinner.com has a robust spell-check library and component set that is available for
purchase. This library allows you to build a real-time spell-check engine into your application with
only a few lines of code. You can find more information about the gskinner Spell Check library at
the company’s Web site At www.gskinner.com/products/spl/.

Open source Flash libraries
You will also find a large selection of free open source libraries for all aspects of application devel-
opment and deployment. One example of an open source library is AMFPHP, which is examined in
detail in the section “Glancing at AMFPHP.”

There are many other open source libraries available, such as MCtweener, which is similar to the
included Tween library with more functionality. Also, the project documentation contains a lot of
example code.

A few other open source libraries available to assist in your development process are shown in
Table 9.1.

TABLE 9.1

Open Source Libraries
Red5 Open Source Flash Server http://osflash.org/red5

Papervision3D Open Source 3D engine http://code.google.com/p/papervision3d/

as3corelib AS3 library for several http://code.google.com/p/as3corelib/
basic utilities

192

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 192

This is only a small portion of the full line of open source libraries available for ActionScript 3. It
should give you a good idea of not only how expandable ActionScript 3 is, but also how many
developers have spent long hours developing these awesome tools. Even more amazing is the fact
these libraries are free, which means more developers, including you, can create more interesting
and engaging content at no additional costs.

Libraries in PHP
There are also many libraries available for PHP, which include session management, image han-
dling, database connectivity, and overall server management to name a few. Basically, PHP is built
using third-party libraries because PHP in itself is an open source project. This means many differ-
ent developers contribute code to the project.

Some of the more common PHP libraries include the GD library, which is discussed Chapter 12.
Table 9.2 lists other common PHP libraries that you will use in your development process.

TABLE 9.2

Common PHP Libraries

Library Description Source

Pear A structured library of http://pear.php.net/
opensource code

ImageMagick Software suite to create, edit, www.imagemagick.org/
and compose bitmap images

PDF Library PDF creation library for PHP www.php.net/pdf

Installing Third-Party Libraries
You should now have an understanding of what third-party libraries are available for you to use in
your ActionScript 3 development.

The process of installing these third-party libraries is very similar no matter which library it is.

Check the version requirements on libraries to make sure they will work with
ActionScript 3 or the version of PHP you happen to be using.

Installing libraries in Flash CS3
After you select the third-party libraries that you want to use, the next step is to install them. The
process of installing a code library in CS3 depends on the specific class.

NOTENOTE

193

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 193

Installing as an MXP file
One way a library or component set can be distributed for portability is in the MXP format. These
files are loaded into the Extension Manager that ships with Flash CS3 and many other Adobe
applications (see Figure 9.1).

The advantage to using this included application to manage your libraries is that you can enable,
disable, or update the individual libraries in a nice, manageable GUI. This application also contains
direct links to the developer’s Web site for support or online documentation.

FIGURE 9.1

Extension Manager ships with Flash CS3 and other Adobe applications.

Installing as a standard class package
The other more common installation method is to manually add the classes to the classpath of
Flash CS3. You also need to copy the class files to the sharing directories that Flash knows to look
in for third-party libraries.

It is a good idea to create a new folder on a separate part of your computer so you don’t acciden-
tally modify the default classes that ship with Flash CS3.

Creating a custom classpath
In order to add a custom classpath, you must first create a directory on your computer to store
your classes. After you determine which directory you will use, add this new path to the existing
classpath listing.

To add a new classpath to the existing list, follow these steps:

1. Choose Edit ➪ Preferences (Windows). On a Mac, choose Flash ➪ Preferences to open the
Preferences dialog box.

194

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 194

2. Click ActionScript in the Category list, and then click ActionScript 3.0 Settings.

3. Click Browse To Path, and browse to the directory you want to add. Click OK.

You can also add a classpath to the specific Flash project by modifying the ActionScript settings in the
Publish Settings dialog box. Adding the classpath to a project has the benefit that it will move with
the FLA, which means this file can be shared and the global classpaths won’t need to be modified.

Default classpaths
The default classpath of all Flash documents can be modified so you don’t have to update each
individual Flash file. The following are the locations where Flash expects to find the class files,
based on a default installation.

Windows: Hard Disk\Documents and Settings\user\Local Settings\Application Data\Adobe\Adobe
Flash CS3\language\Configuration\Classes.

Macintosh: Hard Disk/Users/user/Library/Application Support/Adobe/Adobe Flash CS3/language/
Configuration/Classes.

Do not delete the absolute global classpath. Flash uses this classpath to access built-in
classes. If you accidentally delete this classpath you can re-add it by using the following

piece of code as a new class path: $(LocalData)/Classes.

Installing libraries in PHP
PHP libraries are often compiled directly into the PHP installation process. However, with the use
of PEAR and other common structured library systems, you can install new libraries after the initial
installation has been completed.

An example of an external library that is commonly used and can be added after you install PHP is
the MySQL library. This library is used to communicate with a database directly in PHP.

The first step is to open the php.ini file, uncomment the mysql library file, and modify the loca-
tion of the MySQL socket path and the port if you choose a different one when installing MySQL.

You must restart the Apache server after you modify the php.ini file.

If once you restart Apache, and MySQL still isn’t functioning properly, then you may have an out-
dated version installed. This means you may have to recompile PHP.

To learn about recompiling PHP, see Chapter 1.CROSS-REFCROSS-REF

NOTENOTE

NOTENOTE

195

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 195

Using Third-Party Libraries
The first step to working with third-party libraries is to download the library files from the devel-
oper’s Web site. Once you have successfully downloaded the class library files, the next step is to
install and configure the third-party libraries.

Normally the library will come with a testing kit to ensure everything is working properly. This
step is not required, but does minimize debugging needed in your final application.

If the library does not come with a test kit, you can quickly create one, which is explained in the
following section.

Working with libraries in Flash CS3
To determine if the classes are properly loaded, you can build an application to test a specific por-
tion of a class contained in the library.

For this example, the as3CoreLib library from Adobe is used. This class contains a series of utility
classes for everything including image manipulation all the way to security such as MD5 hash cre-
ation tools.

Here is an example application using the MD5 functionality:

import com.adobe.crypto.MD5;

function createHash(e:MouseEvent):void
{

responseTxt.text = MD5.hash(origStrTxt.text);

}

createBtn.addEventListener(MouseEvent.CLICK, createHash);

The first part of this application imports the necessary classes. In this example, that would be the
MD5 class found in the crypto package.

The function is called when the button is clicked. Once the function is called, the next step is to
create a new hash by calling the static hash method of the MD5 class. Finally, the newly created
string is returned to the responseTxt TextInput component located on the Stage.

That is the complete application. It is a very simple usage but informs you when the proper classes
are installed and are functioning properly.

Working in this unit style is very common in development because if an application gets too big it
is much harder to debug and manage.

196

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 196

Working with Libraries in PHP
Libraries in PHP are very similar to compiled portions of PHP, but you still should test them after
you install a new library. You normally will also have to restart Apache in order for new changes to
PHP to take effect. Oftentimes the installation instructions for a library will mention this, but either
way it needs to be done.

Testing the MySQL library
For testing the MySQL support you don’t have to create an elaborate example; in fact, you can cre-
ate a script that is guaranteed to not run properly, but will inform you whether MySQL is properly
installed or not.

This is not a very common practice, but in the interest of rapid testing it works very well.

After you run code that you know is going to fail it is a good idea to clear the error logs
so they don’t confuse you later on down the road.

Here is the code for the simple test.

<?php

// no password is sure to fail,
// unless it is a default installation

mysql_connect(“localhost”, “root”, “”);

?>

The simple application attempts to connect to the database, and if you are shown invalid user or
no database selected then you know MySQL is properly installed.

However, if you see a Fatal Error: function not found... it means MySQL has not been properly
configured or installed to work with PHP.

You can create a quick phpinfo file to determine whether or not MySQL has been installed and to
track down the specific error.

Installing the MySQL library
The MySQL library is normally included with PHP, but doesn’t come enabled, by default. The first
step is to open the php.ini file for the version of PHP that you have installed.

You will find a section in the php.ini file with the heading “[mysql]”. This is where you would con-
figure the installation of MySQL.

Once the configuration is finalized, the next step is to uncomment the line in the library list that
has the name “mysql” within it.

NOTENOTE

197

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 197

At this point the configuration is complete; the last step is to restart Apache and test the previous
script once again, which should display a connection error and not the PHP Fatal Error.

Glancing at AMFPHP
AMFPHP is an open source implementation of the Action Message Format (AMF). AMF allows for
binary serialization of ActionScript objects to be sent to server-side scripts.

AMFPHP for AS3 and PHP Developers
PHP developers can leverage their PHP experience by connecting to data such as Web services and
databases. AMF allows for native data types and complex object mapping between the client and
the server. AMFPHP is one of the most popular and fastest client server communication protocols
available to Flash Player developers. Communication is arranged into binary format, which is gen-
erally more compact than other representations.

AMFPHP and ActionScript 3
ActionScript 3 allows for the compression of communications, which means faster output of calls
and overall better performance. In addition, AMF3, which is available in ActionScript 3, also com-
presses the binary communication for increased performance.

Installing AMFPHP
Installing AMFPHP is simple. The scripts require a PHP server and do not need any additional
services or libraries installed. This offers the advantage of near instant setup, which allows the
developer to focus on the actual application instead of worrying about what is going on behind the
scenes.

To install AMFPHP, first download the latest version, which is available free from the SourceForge Web
site at http://sourceforge.net/project/showfiles.php?group_id=72483#files.
SourceForge is the largest open source Web development Web site that hosts a number of different
projects like AMFPHP.

The contents of the downloaded archive are placed in the root of your Web server in a new direc-
tory such as flashservices or any name you choose.

AMFPHP is almost ready to go right out of the box. The only file you need to modify is
gateway.php, which is located in the root of the installation directory. In this case, the path
would be flashservices/gateway.php. In some cases, you can leave all of the settings on
the default, which is what is used for this example.

198

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 198

Testing the installation
When everything is properly installed you can test the installation of AMFPHP by opening the
gateway.php in your Web browser. For example, assuming the installation is done locally, the
URL would be http://localhost/flashservices/gateway.php.

A screen, as shown in Figure 9.2, should appear that informs you that the installation was success-
ful. If an error occurs, a PHP error or a series of errors appears that will help you determine what
possibly went wrong.

AMFPHP debugging tools
Before beginning any development, look at some of the debugging and viewing tools that ship with
AMFPHP. These various tools can be used to debug your services.

Be sure to remove these debugging tools on a live server to minimize security concerns.

FIGURE 9.2

Example of the AMFPHP welcome message seen from calling gateway.php from your Web browser

CAUTION CAUTION

199

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 199

AMFPHP service browser
The AMFPHP service browser, as shown in Figure 9.3, is a Flash-based application that lets you
view individual services and closely examine their methods and properties. You can also use the
service browser to test new code before you write the ActionScript in Flash.

Using these added debugging tools allows you to more rapidly develop applications and test new
concepts with less overhead. They also assist in the debugging of your code.

AMFPHP debug gateway
The Debug Gateway is script that sits in between Flash and the gateway.php file to wrap up
errors. It is a best practice to use this script when debugging or developing locally. The only
change in your code is to point to the debuggateway.php file instead of the standard
gateway.php file.

FIGURE 9.3

Here is an example service as seen from the AMFPHP service browser.

200

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 200

The following are a few important points to keep in mind with using this specialized gateway:

n Sessions won’t work properly.

n cURL must be enabled in PHP.

n The server will experience a drop in performance.

n It should only be used on a development system.

Testing AMFPHP with a custom service
With AMFPHP properly installed, you can test a very simple service using the service browser.
Later, you build a small search application in Flash and PHP.

An AMFPHP service is a standard PHP file that is built in a known order. For example, the first
part of a service file is the method table, which is used to expose the available methods and define
the access restrictions of that service.

A method table is a multidimensional array containing each of the methods. This sample method
table defines the method getDate, which returns the current UNIX timestamp from PHP. The
method table is located within the constructor of the class seen in the next portion of code.

$this->methodTable = array
(

“getDate” => array
(

“access” => “remote”,
“description” => “Example, returns Unix timestamp”

)
);

Continuing with this example, you would create the sample PHP class, which will become the
AMFPHP service. Here is the sample class, which contains one method and the constructor.

<?php

class Example
{

function Example()
{

$this->methodTable = array
(

“getDate” => array
(

“access” => “remote”,
“description” => “Returns the current date.”

)

201

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 201

);
}

/**
* Returns Current Date
*/
function getDate()
{

// return current date
return “Current Date: “ . date(“F j, Y”, time());

}

}

?>

The comment above the getDate function will be seen by the service browser and
display it below the method. This is not required, but it helps you understand what a

service does at a glance.

Save this file as Example.php in the /services directory found in the root of the AMFPHP
directory.

Here is the location of this file if you install AMFPHP on the root of your Web server: http://
localhost/flashservices/services/Example.php.

Now that this simple service is created you can test it by going to the service browser. You will see
your new service located in the left-side list along with any other services already installed. If you
don’t see the service, click Refresh or reload the page by refreshing your browser.

To test the service, click the name in the left-side list, which loads the service in the Exploring pane
to the right. The name of the method is located on the Test tab, which in this example is named
getDate.

Click the Call button to run the service. You will see the services output in the Results tab located
on the bottom of the Exploring pane.

The output of the sample service should be the current date in string format, such as.

“Current Date: October 5, 2007”

The other tabs are for viewing the service data, which would be used for debugging and overall
tracking of your services.

This example is fairly simple. It has no parameters and doesn’t create any real code. You can
expand on the previous service by adding another method, which capitalizes the first letter of each
word found in the string. The capitalization portion of the code is done using a built-in function of
PHP called ucwords. This function accepts one parameter and returns the capitalized string.

NOTENOTE

202

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 202

<?php

class Example
{

function Example()
{

$this->methodTable = array
(

“getDate” => array
(

“access” => “remote”,
“description” => “Returns the current date.”

),

“upperCaseWords” => array
(

“access” => “remote”,
“description” => “Converts arg to uppercase”

)

);
}

/**
* Returns Current Date
*/
function getDate()
{

// return current date
return “Current Date: “ . date(“F j, Y”, time());

}

function upperCaseWords($str)
{

return ucwords($str);
}

}

?>

After the new method is added it is visible in the service browser (after a refresh). After looking at
the service browser, you will notice an advantage of the method table is that AMFPHP automati-
cally adds textboxes with the name of the variable for each argument found.

The new method accepts one argument as defined in the service code. If you type some text in the
TextBox and execute the method, your string is capitalized.

203

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 203

For example, if you use the string “hello world”, you see the following output:

“Hello World”

AMFPHP services can, of course, have more than one argument in a method. Create another new
method that has three arguments. The first argument is a string, the second a word to search for,
and the third is the replacement word. Basically, you are creating a PHP-based search-and-replace
method.

Start off by updating the method table.

$this->methodTable = array
(

“getDate” => array
(

“access” => “remote”,
“description” => “Returns the current date.”

),
“upperCaseWords” => array
(

“access” => “remote”,
“description” => “Converts arg to uppercase”

),
“searchAndReplace” => array
(

“access” => “remote”,
“description” => “Searches and replaces text”

)

);

When the method table is updated, the new method is added. You are not limited to the code
within the method. AMFPHP allows you to call other methods and properties within the same
class or even include other PHP files for added functionality.

/**
* Searches and replaces text
*/
function searchAndReplace($haystack, $needle, $replacement)
{

$string = str_replace($needle, $replacement, $haystack);
return $this->upperCaseWords($string);

}

If you create a new method and do not add it the method table, it will not be exported
for remoting. This is useful when you want to have private methods, such as database

connectivity, or overall security layers.

After the new method is added, you can test it by refreshing the service browser. Notice the methods
are listed in alphabetical order. The new method should be found in the middle of the horizontal list.

NOTENOTE

204

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 204

The service browser adds a text field for each argument; in this case there are three. Type a string in
the first text field, choose one of the words from that string as the needle, and then enter that into
the second TextField. Finally, type the replacement into the third text field. After all three text
fields are filled in, you can click the Call button and see the output in the Results tab.

Assuming you use the string “hello world” with the needle of “world” and a replacement of
“earth”, you should see the following result. The word is replaced and the first letter of each
word is capitalized using the upperCaseWords method.

“Hello Earth”

Now that you have thoroughly tested the AMFPHP services, you can move on to installing the nec-
essary classes required for Flash to actually be able to make use of this setup. That process is
explained in the next section.

Using AMFPHP in Flash
Unlike previous versions, ActionScript 3 has all of the necessary classes for remoting and interact-
ing with AMFPHP already installed. You simply load those Classes and write in the ActionScript,
which is all fairly simple. This section walks you through the process of building a simple Flash
application to better understand the process of working with AMFPHP in Flash.

Loading the remoting classes
The first step to working with AMFPHP in Flash is to load the classes. This is required for any
AMFPHP project you build as it contains the core of the remoting system.

import flash.net.*;

When the classes are loaded, you can define a variable that points to the AMFPHP gateway file.

var gatewayURL:String =
“http://localhost/flashservices/gateway.php”;

The next step is to create the NetConnection instance, which is assigned to the gateway vari-
able. At this point, you can also set up the method events that are called when a button is clicked.

var gateway:NetConnection;

getDateBtn.addEventListener(MouseEvent.CLICK, getDate);
searcBtn.addEventListener(MouseEvent.CLICK, searchAndReplace);
upperCaseWordsBtn.addEventListener(MouseEvent.CLICK,

upperCaseWords);
debugTxt.wordWrap = false;

Here is the skeleton for the button handlers that will be created in the next portion. Each of these
functions makes a call to the AMFPHP service.

function getDate(e:MouseEvent):void
{

205

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 205

...
}

function searchAndReplace(e:MouseEvent):void
{

...
}

function upperCaseWords(e:MouseEvent):void
{

...
}

The first method on which to focus is getDate, which will make a call to the server with no argu-
ments and receives a string of the current date. The Responder class is used to handle the object
response for both the success and failure calls.

var responder:Responder = new Responder(onResult, onFault);

The next portion of the function assigns a new instance of the NetConnection class. A call to
the connect method is called passing in the gateway url variable. Once the connection is
established, a call is made where the first argument is the service name and method. The second
variable is a reference to the Responder class instance.

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Example.getDate”, responder);

Here is the complete getDate function responsible for establishing the AMFPHP connection and
calling the requested service.

function getDate(e:MouseEvent):void
{

var responder:Responder = new Responder(onResult, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Example.getDate”, responder);

}

The other two functions are very similar with the exception of the method name and arguments
passed to the service.

The searchAndReplace function accepts three arguments.

n arg1: The string to search in

n arg2: The word to search for

n arg3: The replacement word

206

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 206

The service located in the AMFPHP setup is responsible for running the searchAndReplace
method, but also makes a call to the uppercase method before returning the string.

function searchAndReplace(e:MouseEvent):void
{

var responder:Responder = new Responder(onResult, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Example.searchAndReplace”, responder,

“hello world”,
“world”,
“earth”

);
}

The final function is upperCaseWords, which takes one argument and returns a new string with
the first letter of each word converted to uppercase. The rest of the function is the same as the pre-
vious two. This is a good example of AMFPHP being able to accomplish something that is not
native to ActionScript, which, of course, is the uppercase portion.

function upperCaseWords(e:MouseEvent):void
{

var responder:Responder = new Responder(onResult, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Example.upperCaseWords”, responder, “hello
world”);

}

Once the three functions responsible for calling the services are defined, the next part is the debug-
ging and result functions that are called when the service returns a valid response.

The onResult function is called when a successful message is received. In this simple example, the
raw contents of the output are sent to the TextArea component located on the Stage. You can also
replace the TextArea portion of the code with simple trace() statements for quicker testing.

function onResult(responds:Object):void
{

debugTxt.text = “Response: “ + responds;

}

If an error occurs, the onFault function is called, which contains the specific error. To better view
the error, the contents of the object are run through a for..in loop, which displays each item.
This function also clears the TextArea to ensure the old data is not mixed in, which could cause
confusion while trying to debug an application.

207

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 207

The appendText method is the AS3 replacement to the “+=” way of concatenating strings in
older versions of ActionScript. This method is much faster, which means quicker execution of code.

function onFault(responds:Object):void
{

debugTxt.text = “”;
debugTxt.appendText(“Debug::Error\n”);
for(var i in responds)
{

debugTxt.appendText(“ “ + responds[i] + “\n”);
}

}

Figures 9.4, 9.5, and 9.6 show example responses from sample applications within AMFPHP. You can
expand on these examples to build a more complete application, which is done in the next section.

The first example is displaying the response from the getDate method of the sample AMFPHP
classes. This example will return the current date in string format.

FIGURE 9.4

Here is a sample response from the first AMFPHP service method.

208

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 208

The second example accepts one argument and replaces the text. All of this is a simple example,
showing the process of working with arguments in AMFPHP.

FIGURE 9.5

Here is a sample response from the second AMFPHP service method.

The third and final example is a carbon response. It basically takes the passed-in string and returns
it exactly as it was sent.

209

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 209

FIGURE 9.6

Here is a sample response from the third AMFPHP service method.

Building a Real-World Application
Using AMFPHP
Now that you have seen AMFPHP service usage and how to implement it in Flash, you can continue
by building a real-world application. A good example of a real-world application is a Flash-based
album listing applications, which is explained in the next sections.

The database used for this example is the same one that is created in Chapter 2. If you haven’t
completed that chapter at this point, I recommend starting there.

AMFPHP services
The AMFPHP services needed for this example are responsible for querying the database based on
passed-in arguments. This also requires a database connection system that will need to be secure.
This means methods will not be exportable or viewable by AMFPHP.

210

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 210

For simplicity, all of this functionality is contained in one service. However, in a more complete
application, you would want to separate the classes into different services for a more portable solu-
tion. Figure 9.7 shows the completed application.

FIGURE 9.7

Here is the completed application from the real-world example.

The first part to the application is the AMFPHP services. Here is the class skeleton for the Album
service, which gives you a better understanding of the functionality.

<?php

class Albums
{

function Albums()
{

...
}
function connect()
{

...
}

function getAlbumByGenreID($genreID)
{

...
}

211

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 211

}

?>

The start to any AMFPHP project should be the method table either included in the same service
file or in a separate file that is included. The advantage to using the same file is you can quickly
make changes and not have to maintain a different file.

The method table in this example is included in the service constructor function. The connection
method is set to private to ensure a higher level of security.

function Albums()
{

$this->methodTable = array
(

“connect” => array
(

“access” => “private”
),
“getAlbumByGenreID” => array
(

“access” => “remote”
)

);

}

The connection method first checks for an existing connection to limit resources. If an existing
connection is not found, a new one is created and stored in the private variable _connection.

/**
* @access private
* @desc Connect to database - **PRIVATE**
*/
function connect()
{

if($this->_connection == null)
{

$this->_connection = mysql_connect(
$this->dbHost,
$this->dbUser,
$this->dbPass

);
mysql_select_db($this->dbName, $this->_connection);

}

}

212

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 212

The connection parameters are stored in private variables within the class. For an added level of
security, the variables are made private to prohibit external access of the sensitive database
credentials.

// Database info
private $dbHost = “localhost”;
private $dbUser = “username”;
private $dbPass = “password”;
private $dbName = “database name”;

private $_connection = null;

The last method of the service class is the getAlbumByGenreID, which returns an array of album
data based on the genre ID passed in as a single argument. The part of the function establishes a
connection to the database using the private connect() method defined in the previous step.

function getAlbumCatID($genreID)
{

$this->connect();

...
}

Once the database connection is established, the next step is to build the $sql string.

$sql = “SELECT g.name, a.artist, a.albumName
FROM albums a, genre g
WHERE a.genreID=g.id
AND g.id=” . $genreID;

The $sql string is passed in to the mysql_query() with the database connection as the second
argument.

$result = mysql_query($sql, $this->_connection);

The last step of the function is to create the associative array of album data.

$rows = array();

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}
return $rows;

An alternative to creating the array in PHP using a while loop is to pass the resource ID back to
Flash and use a custom record set class to parse the data row by row. Doing this in Flash takes
some of the strain off of the server and makes better use of the client’s machine.

213

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 213

Previous versions of Flash had a native RecordSet class. In AS3, you would have to create your
own class. This class has been added to the extra content available on the book’s Web site and
properly mimics the AS2 RecordSet class.

The first step in working with the RecordSet class is to modify the album method.

/**
* List of albums for RecordSet
*/
function getAlbumByGenreID($genreID)
{

$this->connect();

$sql = “SELECT g.name, a.artist, a.albumName
FROM albums a, genre g
WHERE a.genreID=g.id
AND g.id=” . $genreID;

return mysql_query($sql, $this->_connection);

}

Here is the completed Album class:

<?php

class Albums
{

// Database info
private $dbHost = “localhost”;
private $dbUser = “username”;
private $dbPass = “password”;
private $dbName = “db name”;

private $_connection = null;

function Albums()
{

$this->methodTable = array
(

“connect” => array
(

“access” => “private”
),
“getAlbumByGenreID” => array
(

“access” => “remote”,

214

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 214

“description” => “List of albums from category
ID.”

)
);

}

/**
* @access private
* @desc Connect to database - **PRIVATE**
*/
function connect()
{

if($this->_connection == null)
{

$this->_connection = mysql_connect(
$this->dbHost,
$this->dbUser,
$this->dbPass

);
mysql_select_db($this->dbName, $this->_connection);

}

}

/**
* List of albums from genre ID.
*/
function getAlbumByGenreID($genreID)
{

$this->connect();

$sql = “SELECT g.name, a.artist, a.albumName
FROM albums a, genre g
WHERE a.genreID=g.id
AND g.id=” . $genreID;

$result = mysql_query($sql, $this->_connection);

$rows = array();

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}

215

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 215

return $rows;

}

/**
* List of albums for RecordSet
*/
function getAlbumByGenreID_recordset($genreID)
{

$this->connect();

$sql = “SELECT g.name, a.artist, a.albumName
FROM albums a, genre g
WHERE a.genreID=g.id
AND g.id=” . $genreID;

return mysql_query($sql, $this->_connection);

}

}

?>

ActionScript for AMFPHP integration
The next step is to build the Flash portion of the application, which is responsible for displaying
the album data in a prebuilt DataGrid component.

The only function changes are within the onResult function for this more complete example.

function onResult(responds:Object):void
{

albumsDG.removeAll();
for(var i:uint=0; i < responds.length; i++)
{

albumsDG.addItem(responds[i]);
}

}

Clearing old results
The onResult function clears any existing data in the DataGrid by making a call to the
removeAll method of the DataGrid component.

albumsDG.removeAll();

216

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 216

After the DataGrid has been cleared a for.. loop is used to insert the row data from the data-
base. The addItem accepts an Object as an argument. The DataGrid is also smart enough to
match up the Object names to be used as the column titles.

for(var i:uint=0; i < responds.length; i++)
{

albumsDG.addItem(responds[i]);
}

The remainder of the example is the same as the proof-of-concept application. While not an addi-
tion to the application, the method name of the service needs to be modified if you decide to use
the RecordSet way of displaying the row data.

Here is the complete source from the Album application example.

import flash.net.*;

var gatewayURL:String =
“http://localhost/flashservices/gateway.php”;

var gateway:NetConnection;

function loadAlbumData(e:MouseEvent):void
{

var responder:Responder = new Responder(onResult, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Albums.getAlbumByGenreID”, responder, 4);

}

function onResult(responds:Object):void
{

albumsDG.removeAll();
for(var i:uint=0; i < responds.length; i++)
{

albumsDG.addItem(responds[i]);
}

}

function onFault(responds:Object):void
{

for(var i in responds)
{

217

Working with Third-Party Libraries 9

15_258248 ch09.qxp 3/28/08 1:40 PM Page 217

trace(“[“ + i + “]\t” + responds[i]);
}

}

loadAlbumBtn.addEventListener(MouseEvent.CLICK, loadAlbumData);

As you can see, working with dynamic data using AMFPHP does have many advantage over nor-
mal methods of working with data.

This section should have given you a good understanding of how to work with AMFPHP in
ActionScript 3. You can take the concepts learned in this section and build upon the other infor-
mation in this book to create a very robust application.

Summary
You learned the process of working with third-party libraries in the first part of the chapter. Then
in the second part you were introduced to how you properly install the third-party libraries. Once
the initial setup and installation process was completed, the next step was to build some custom
code to work with the installed libraries.

The final portion of the chapter focused on working with AMFPHP to create more robust applica-
tions and strengthen the concepts of working with libraries.

218

Extending Flash and PHPPart III

15_258248 ch09.qxp 3/28/08 1:40 PM Page 218

This chapter focuses on classes and object-oriented programming.
Understanding how classes work and where they should be used will
help you write more efficient code. The key to successfully writing in

an object-oriented programming format (OOP) is to properly evaluate the
application you will be writing.

This chapter starts by explaining the individual aspects of OOP in both Flash
and PHP. The last section of this chapter is the construction of an example
class to strengthen your understanding of the practices learned in the previ-
ous sections.

It is important to note that this is not an in-depth guide to OOP, which actu-
ally would require its own book, but is more an overview to support the
usages in this book.

Understanding OOP
The key to understanding object-oriented programming (OOP) is to think of
each element as a separate piece. In traditional programming, the code flows
from line 1 until it reaches the end of the document, with the occasional
function to accomplish repetitive tasks. The problem with this approach is
scalability, or the ability to let a program grow is it evolves in the future.

I am sure you’re wondering why you should care if an application is scalable
or not. It actually is a very important concern that is often overlooked in
applications. Making a program scalable from the beginning means less code
reworking and editing in the future. In a way, OOP and scalable code actu-
ally go together quite nicely when used properly.

219

IN THIS CHAPTER
Understanding classes in PHP

Understanding classes in Flash

Using methods

Using properties

Writing a custom class

Using Object-Oriented
Programming

16_258248 ch10.qxp 3/28/08 1:41 PM Page 219

Overview of OOP practices
Now that you have an understanding of what OOP is and how it can benefit your code, you can
look at what is involved in writing it. The first O in OOP is for “object” or a collection of informa-
tion contained in one easy-to-manage piece.

As you begin to work with OOP practices you will quickly understand how easy it is implement
and will be using OOP all of the time.

Classes
A class is a definition of all objects of a specified type. The class defines the objects structure and
behavior. This approach not only allows the code to be distributed, but also allows you to maintain
a certain level of security.

To better understand classes, here is a very basic example:

public class Hello
{

function Hello()
{

}
public function getSaying():String
{

return “Hello World!”;
}

}

The previous code is a simple example of a class and is merely meant to visually demonstrate how
a class is constructed. The public before the class defines the entire class as globally accessible. In
certain instances, this is not the desired result. You can also assign each method and property as
public, private, or other types depending on the requirements.

Here is a common example of applying protections to a class to ensure security:

public class UserLogin
{

function UserLogin()
{
}
public function login():void
{

callDatabase();
}
private function callDatabase():void
{
}

}

220

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 220

It is safe to assume that you would not want the callDatabase method to be called directly
because a malicious call could actually harm your database and weaken the overall integrity of the
application. Forcing the method as private ensures the method cannot be called. The user must call
the login method where you can validate the request before the database is called. This is, of
course, a very simple usage of public and private types, but it should help you understand why
they are important.

Constructor
The first method in a class is generally the constructor. The constructor is automatically called by
the system and cannot return data. It is usually where initialization tasks would take place, such as
drawing an object on the stage or calling a database.

Packages
Packages are containers for multiple classes that offer the ability to share the information within the
global container. This is similar to the employees in an office who share information within their
own department, but at the same time can pass information along to upper management without it
ever leaving the organization. In a way, a package is an organization of classes.

There are two ways to define a package. The first is the current directory, which just becomes:

package {
class Example
{

function Example()
{
}

}
}

The other option is to define a package structure, usually defined by the developer or company’s
domain name in reverse order, such as:

com.companywebsite.projectname

The structure is placed after the package keyword.

package com.companywebsite.projectname {
class Example
{

function Example()
{
}

}
}

A reverse domain package path is used to make sure the package is unique. It is also used to prop-
erly define the application or library. Another advantage to using this approach is it stops class

221

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 221

collisions, which is when two different classes have the same name. This happens more often when
third-party libraries are used in an application because you have no control over the names used in
those classes. If the library is properly built, it will have a unique package structure to avoid
collisions.

Importing
Importing when working with classes is referring to loading in, or connecting classes together. For
example, in Flash the stage is an instance of the DisplayObject class. However, when you cre-
ate a movieclip, which is an instance of the MovieClip class, it is also loading in an instance of
the DisplayObject, along with a lot of other classes and packages.

You can place imports within the class so they are only visible to that class, or you can load them
into the package allowing them to be shared across the entire package. For example, if you had a
Member class it is safe to assume that you would always want that member’s credentials visible to
validate them in various portions of the application. You would start off by defining the Member
class and then import the UserCredentials class for validation, such as:

import UserCredentials;

public class Member
{

function Member()
{
}

}

This would allow the UserCredentials to be viewed by any method or property in the
Member class. However, there are some cases where you would want all classes to share another
class.

package
{

import UserCredentials;
public class Member
{

function Member()
{
}

}
}

In ActionScript 3 you don’t have to worry about importing a class more than once because the AS
compiler is intelligent enough to only import it one time. PHP, on the other hand, throws an error
if you attempt to load a class more than once. This actually isn’t a bad thing and can easily be
avoided by loading all classes in one file. Just think of this master class as the parent of all others.
The next section will focus on the differences and similarities of class in PHP and Flash.

222

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 222

Static methods and properties
A static method is one that doesn’t require a class instance to be called. It also allows the code to
have a certain level of consistency. For example, there is a Date class, and in that a method that
returns the days of the week. It is safe to assume the days of the week aren’t going to change, so
you can access that method by simply calling it directly.

Date.getDaysOfWeek();

A static method is called in the following way: Class.method. There is no need for an instance
name or constructor; in fact, a constructor isn’t even needed in this type of class. However, it is
good practice to have a constructor for complete compatibility.

A static property is similar to a static method in that it can be accessed without an instance.
However, it does have one special attribute; its type and data can’t be changed, with the obvious
exception of an Array or Object, which can have no elements added to it.

trace(“Days in Week: “ + Date.daysInWeek);

The preceding code would access the static property daysInWeek, which would return a numeric
value representing the total days in a week. A static property is useful when you have a value that
never changes, such as a URL or company information to be used in an application.

Singletons
A singleton is a design pattern. The subject of design patterns requires its own book, but basically
they are rules and practices formed between various developers. You are not required to follow any
design pattern, but doing so offers cleaner and more scalable code. The singleton is likely the most
common design pattern. It is commonly used to pass around a piece of information that never
changes and will be needed quite a bit during an application.

In most programming languages it is common to declare the constructor of a singleton
private. This keeps developers from accidentally creating more than one instance of a

singleton. However, ActionScript does not support private constructors.

As you learned previously, an instance of a class is made by using the new keyword. That is one
way you can access a class; another is to reuse the existing instance, such as:

public class User
{

private static instance:User;
function User(){}
public static function getInstance():User
{

if(instance == null)
{

instance = new User();
}

NOTENOTE

223

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 223

return instance;
}
public function exampleName():String
{

return “Joey”;
}

}

The majority of this class is the same as previous examples, with the exception of the addition of
the getInstance method. This method is used to ensure that a unique instance of the class is
always used. Any call to this class is done through the getInstance method, such as:

import User;
trace(“Example Call: “ + User.getInstance().exampleName);

The first time the class is referenced the unique instance is generated. Any call from that point sim-
ply returns the existing instance. This ensures any changes to this class will be seen by all callers.
The magic behind this class is the static method and properties, which are used to essentially put a
gate between the methods and the caller. All calls going through getInstance also allow you to
place an authorization check on all calls.

A singleton should only be used when needed. Turning every class you create into a sin-
gleton is not a good practice; in fact, most programs have one singleton that stores all of

the necessary information.

Getters and setters
You may have noticed that a lot of class usage is focused on passing data back and forth. In fact,
that is pretty much what all programming is, in a way. The idea behind a getter and setter is to gain
access to private properties. In fact, it is a pretty safe bet that most of your properties will be pri-
vate, because that is sort of the idea of a class. Here is an example of a getter and setter, using a
class skeleton as an example:

class People
{

private var _person:String;
public function get person():String
{

return _person;
}
public function set person(u:String):void
{

if(u.length > 0 && u.length < 25)
{

_person = u;
}

}
}

NOTENOTE

224

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 224

The preceding code simply returns the current value of the private _person property. Or, a call to
person will modify that private property if the new value is at least 1 and no more than 25 char-
acters in length. You can add any level of security or data modification to these setters. The advan-
tage to using a setter is the ability to lock access to the private properties, also called encapsulation.
This ensures the code can’t be broken by passing in the incorrect data, or worse, compromising a
system due to an open class.

Now that you understand what a getter and setter are, it is probably a safe bet to say you probably
also want to know how to call them. That is done by accessing the public variable, such as:

var people:People = new People();
people.person = “Timmy”;
trace(“The new person is: “ + people.person);

Like most aspects of programming, it is the developer’s responsibility to determine where and
when the use of a getter/setter is a good idea. The easiest way to determine this is by first creating a
proper application outline.

Using Classes in PHP
Now that you have an understanding of what OOP is and how it works, the next step is looking at
the class differences in Flash and PHP.

To start, here is a quick example of a class in PHP:

<?php

class Example
{

public $sample = “Hello, World!”;
function Example()
{

return $sample;
}

}

?>

That is the basic way to set up a class in PHP. The main aspects are property definitions that start
with public, private, or protected. A property will still require the $, just like in standard PHP
code. The only other real difference is the fact PHP does not declare the return type. In fact, PHP
really doesn’t strictly care what type a variable holds, which is actually not a good thing. The devel-
oper can lose the ability to know what type of data a variable holds.

225

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 225

Importing classes in PHP
Importing a class in PHP is done by loading the file using include or require. Using include
will attempt to load the file, but will continue if the file isn’t found. Require, on the other hand,
also looks for the file, but exits the script with a fatal error if the file is not found, as shown in
Figure 10.1. Using require offers the ability to halt a script if the proper files aren’t found. Here
is an example of loading a class by requiring it:

<?php

if(!file_exists(‘Interface.php’))
{

print “Class ‘Interface’ not loaded, exiting script!”;
}
@require(‘Interface.php’);

class Example
{

function Example()
{

$i = new iExample();

print “My i: “ . $i->samplr();
}

}

$example = new Example();

?>

An if statement is used to first check for the existence of the file, because require will create a
fatal error, which means the script will be unable to report any proper error messages. If for some
reason the file is not found, the message is sent to the browser and the script ends silently when it
reaches the require line. The @ is used to silence the internal errors that more often then not
cause a security concern because they display crucial file paths. An alternative way to hide errors is
to disable error reporting, which is explained in Chapter 13.

Instantiation
Class instantiation is the act of making a class instance. The action is the same in any OOP lan-
guage, but each language has a different way of setting it up. In PHP, you first create a variable and
then assign the class to that variable. Once the new instance is created, you can access the public
methods and properties of that class.

$myNewInstance = new Example();

226

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 226

FIGURE 10.1

Here is the error message displayed in the browser, which is a result of the class not being found.

Methods in PHP are accessed using:

$instance->methodName();

However, when you want to access a method inside the same class, you can substitute the
instance variable and use $this. So, assuming you want to access the helloWorld method in
the Speak class, it would look like this:

$this->helloWorld();

You can also use the Scope Resolution Operator (also called Paamayim Nekudotayim, which is
Hebrew for double-colon) to access methods and properties. The difference is instead of using
$this, you would use the actual Class name. This approach makes the code easier to read.

Speak::helloWorld();

227

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 227

Multiple classes
PHP allows a class script to hold multiple classes. This is both a good and bad idea, because too
many classes in one file result in bloated code that is hard to manage. On the other hand, having
the classes all in one file makes it easier to distribute. I am sure you are asking yourself how exactly
are multiple classes defined in one file; here is an example of a pseudo-class package.

<?php

class Animals
{

function Animal()
{

}
public function speak($word)
{

print $word;
}

}

class Dog extends Animals
{

function Dog($word)
{

$this->speak($word);
}

}

// Create a new Dog
$dog = new Dog(“Hello.. Woof!”);

?>

In fact, PHP really doesn’t follow all of the standard OOP practices, which I think will change as
newer versions are developed. For now, you can create your own version of a package and get the
same basic functionality. It is important to note that a pseudo-package does not offer the same level
of separation and security that a real package does, but with some creative programming and
proper creation of your classes, you can keep the code secure.

See Chapter 6 for more in-depth information on code security.

That is all there is to using and understanding classes in PHP, up to the point needed for this book.
You can, of course, extend this newfound knowledge and start exploring the more advanced
aspects of classes in PHP.

PHP offers a lot of “magic” methods and properties that make classes more fun and less
painful to work with.NOTENOTE

CROSS-REFCROSS-REF

228

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 228

Using Classes in Flash
As stated previously, classes in Flash and PHP are similar in most aspects. Let’s look at how you use
and modify classes in ActionScript Flash.

Importing
Importing a class in ActionScript is a little less forgiving if the class is not found. In fact, the com-
piler that runs when you export a movie stops if a class is not found. This basically means you
don’t need error messages if a class is not loaded, because the movie is never able to be seen by the
general public.

The exception to this compiler check is if the class is dynamic, which means its overall structure
can change, but that is beyond the scope of this book. Now back to importing classes, which
would be set up like this:

import com.organization.project.Example;
var example:Example = new Example();
trace(“Call a method: “ + example.methodName());

You may have noticed the use of import instead of require or include. The other obvious
difference in the preceding example is the :Example type definition. This actually isn’t required,
but it allows better error checking when the movie is being compiled or is running.

Document class
The Document class is used as the main class for an application. Think of it as the Timeline class,
similar to the days of adding basic code on frame 1 of a movie. Those days are over and it is a good
thing, too. However, there are some things to know about when using a Document class, as shown
in Figure 10.2. First, look at what a Document class looks like:

package
{

import flash.display.MovieClip;
public class DocRoot extends MovieClip
{

function DocRoot
{

trace(“I am the Document Class”);
}

}
}

229

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 229

FIGURE 10.2

The Document class, which can be found in the Properties inspector

The assignment of the Document class is fairly unique. You can add or edit the class file using the
following steps:

1. Click on the Stage, to ensure nothing is selected.

2. Open the Properties inspector if it isn’t already open.

3. Click in the Document Class TextBox and add the name of the class.

You may have noticed the Document class extends the MovieClip Class, but it can also extend
the Sprite class. In fact, this extension is required because the Document class is in fact a
MovieClip.

Library classes
A library class is the new way to attach ActionScript to a MovieClip in the Timeline. In previous
versions of Flash you would assign a Linkage Identifier to your MovieClip. In ActionScript 3,
you take the same basic steps of opening the Properties inspector, select the Export for
ActionScript option, and add the class name, as shown in Figure 10.3.

230

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 230

FIGURE 10.3

The Properties inspector with the Export for ActionScript option selected

Just like the Document class, you need to make sure the MovieClip’s custom class extends the
MovieClip class. In fact, the Document and Library classes are very similar when setting them up.

Using Flash and PHP to Build Custom
Classes
You may have noticed that there is less to explain with class usage in Flash than there is in PHP.
This section focuses on a complete class-based example in Flash and PHP. It is used to strengthen
the concepts learned in the previous pages.

Let’s start with PHP that will be used in this example. The idea is to build a basic application that
allows PHP and Flash to communicate, while taking advantage of custom classes.

<?php

class Communication
{

public $MESSAGE_NOTIFY = “Hi, from PHP! You said: “;

function Communication()

231

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 231

{

}

public function respond($str)
{

return $this->MESSAGE_NOTIFY . $str;
}

}

$communication = new Communication();

if($_GET[‘a’] == “newMessage”)
{

// send message back to Flash
print “resp=” . $communication->respond();

}
?>

The PHP portion of this example allows Flash to communicate by passing along a request for the
respond() method to be called. Inside the class, PHP then builds a string and returns it to the
Flash, where at that point it is read in and displayed on the Stage.

The next step is to build the Document class and caller in Flash. Here is the Document class:

package
{

import flash.display.MovieClip;
import flash.text.TextField;

import Communicator;

public class Document extends MovieClip
{

function Document()
{

makeCall();
}

public function makeCall():void
{

var mc:MovieClip = new MovieClip();
var txt:TextField = new TextField();

mc.addChild(txt);
addChild(mc);

var communicator:Communicator = new Communicator();

232

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 232

communicator.action = “newMessage”;
communicator.container = mc;
communicator.callServer();

}
}

}

The constructor is responsible for calling the makeCall() method. This method creates a new
TextField, attaches it to the Stage using addChild, and finally sets up the call to the custom
communicator class.

As the call to the communicator class is being set up, it is also responsible for assigning the
TextField instance and the action. The action in this example is used to tell PHP which code to
run. Of course, in this example there is only one action assigned. However, it is easy to quickly
have ten or more actions in a real-world application.

The TextField class is similar to the createNewTextField method that would have been
used in ActionScript 2. The change in code for ActionScript 3 was done to be consistent with cus-
tom library items, such as the ones in the previous section.

The next step is to build the custom class, which will be used to communicate with PHP on the
Web server.

package{

import flash.net.URLRequest;
import flash.net.URLLoader;
import flash.net.URLVariables;
import flash.display.MovieClip;
import flash.events.*;

public class Communicator
{

private var _action:String;
private var _txtBoxContainer:MovieClip;

function Communicator() {}

public function callServer():void
{

var variables:URLVariables = new URLVariables();
variables.a = _action;

var request:URLRequest = new
URLRequest(“http://localhost/flashphp/Communicate.php”);
request.data = variables;

var loader:URLLoader = new URLLoader();

233

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 233

loader.addEventListener(Event.COMPLETE, serverHandler);
loader.load(request);

}

public function serverHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);

_txtBoxContainer.text = variables.resp;
}

public function set action(a:String):void
{

_action = a;
}

public function set container(mc:MovieClip):void
{

_txtBoxContainer = mc;
}

}
}

The class is pretty straightforward and has the concepts that have been used in prior examples. The
main focus points of this class are the callServer and serverHandler methods, which are
responsible for calling and dealing with the response from the server.

The first method, callServer, sets up the variable _action that is passed to PHP using the
value that was set in the Document class in the previous section. You may have noticed the _
before the variable name, which is used to clearly define a private variable. It is not required, but it
makes your code easier to read.

The last two methods in this class are responsible for setting the container of the TextField and
the action. These two setters are called from the document class.

As you can see, building this application as a custom class offers the ability to quickly update it or
extend it to another application and best of all keeps it all secure. This basic application is just a
sampling of what classes can offer, but should give you a better understanding of how the
Document class is set up.

The following, Table 10.1, is a table quickly and graphically explaining the differences of classes in
PHP and Flash. You can always refer back to this page if you have a question of whether a feature
exists in the language you are working in.

234

Extending Flash and PHPPart III

16_258248 ch10.qxp 3/28/08 1:41 PM Page 234

TABLE 10.1

Differences Between Classes in PHP and Flash

Class PHP Flash

Instantiation X X

Multiple classes in one file X

Importing X X
include or require

Constructor X X

Packages X

Static methods and properties X X

Summary
A lot of information was covered in this chapter and at this point you should have a pretty good
understanding of how object-oriented programming works and when to use it. As you may now
notice, classes and OOP in general offer a lot of advantages. However, you might also notice OOP
development does take more time. This isn’t necessarily a bad thing, because in the long run you
will notice less development time on future updates. It also offers the less obvious advantage of
more secure code that the developer can control. At this point you know how to set up and use
classes in PHP and Flash, and will probably want to experiment with some of the more advanced
topics that were not covered in this chapter.

235

Using Object-Oriented Programming 10

16_258248 ch10.qxp 3/28/08 1:41 PM Page 235

16_258248 ch10.qxp 3/28/08 1:41 PM Page 236

Developing
Applications

IN THIS PART
Chapter 11
Developing Basic Applications

Chapter 12
Developing Real-World
Applications

Chapter 13
Using Advanced Real-World
Applications

Chapter 14
Debugging Applications

17_258248 pp04.qxp 3/28/08 1:41 PM Page 237

17_258248 pp04.qxp 3/28/08 1:41 PM Page 238

In this chapter, you develop a series of full applications. The objective of
this chapter is to end up with complete applications while explaining
common pitfalls and how to overcome them. You will investigate some

new concepts as well, such as multiple event handlers, custom classes, and
remote services.

This chapter also focuses on the best way to work with MySQL in an efficient
and safe way. The chapter concludes by evaluating best practices for main-
taining the applications and allowing the ability to add new functionality.

Understanding Elements of an
Application
Building applications isn’t only about jumping into Flash or your favorite
editor and writing line after line of code. The best place to start in applica-
tion development is the evaluation stage. This is the point where you look at
the list of what your application should do, who the audience is, and how
you plan to develop the application. Table 11.1 illustrates the three points of
the evaluation stage.

239

IN THIS CHAPTER
Understanding elements of an
application

Developing a chat client

Building a Gallery using PHP

Using MySQL to create a series
of other dynamic applications

Developing Basic
Applications

18_258248 ch11.qxp 3/28/08 1:41 PM Page 239

TABLE 11.1

The Three Points of the Evaluation Stage
What Defines what the application will do

Who The target audience of your application

How Techniques you use to develop your application

The following examples skip over the “how” step because this is a Flash and PHP book. Once the
“how” is defined you can think about the “who.” This is, of course, your target audience. An appli-
cation will not always have a rigidly defined who, especially if it is a service Web site, but it is best
to define one. The best way to determine your target audience is to think about the type of applica-
tion. For example, will it be an e-commerce application or maybe video player. Knowing who will
be using the application is crucial to its success.

Now that the “how” and “who” are defined, you can think about what exactly your application will
do. You would never go to the hardware store, buy all the materials, and then decide what to build.
The same is true for developing applications. As you begin to follow these practices they become
second nature.

Understanding application design
With the evaluation stage completed you would naturally move into the design stage. But, just like
the evaluation stage, it is always a good idea to plan first. This would be a sketch with paper and
pencil or using Flash with primitive shapes. For example, Figure 11.1 shows an example sketch.

Working with pseudo-code
After you have the overall layout of the application developed, you can move on to functionality.
This would be the point where you start to write pseudo-code, such as functions, variables, events,
and any other concepts you will use in your application. The following is an example of pseudo-
code for a user management program.

// Pseudo-code

function loadUser(id:uint):void
{

// make call to server passing
// along the id as the user id

}
function handleServerResponse(e:Event):void
{

// capture server response
// make necessary calls to application

}

function drawInterface():void

240

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 240

{
// paint “draw” the interface that
// the user will interact with

}

function redraw():void
{

// redraw interface as info is loaded,
// to keep things up to date

}

// Assign event handlers

You will notice that pseudo-code is not a complete application, but a skeleton of the overall appli-
cation. This allows you to quickly develop how the application will work and what it will do.
Writing pseudo-code becomes a lot more important when developing large-scale applications, but
it is good practice to evaluate, sketch, and plan no matter how large the project is.

FIGURE 11.1

An example application sketch using primitive shapes in Flash

241

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 241

Finalizing the planning stage
The last step to planning an application is not definitive because you can either wrap up the plan-
ning stages or begin the development process. This choice can sometimes be determined by your
client or creative director if one has been assigned.

At this point in the planning process, you have determined what the application will do, who will
be using it, and how it will be built. You have also designed a layout and begun the programming
process. The next step is up to you as the developer. You can either continue and finalize the
design process or begin developing the code the application will use.

Normally, you would design the application enough to get started in the programming because
things are more than likely going to change as you continue to develop. However, with the proper
amount of planning you can minimize these revision phases.

Developing a Chat Client
Now that you have looked at the best practices for application development you can begin devel-
oping your first complete application. This application will be a Flash chat client using PHP to
interface with a MySQL database. After developing the basic application you will continue to add
features and look at the best way to build a scalable application.

A scalable application is developed keeping in mind that two users may use the application at first,
but it could easily be used by millions over time. The idea is to account for this and develop the
application in a manner that allows for expansion.

The Flash portion
You begin this project by designing the application. For this application, the design is provided,
but feel free to modify it. In fact, you are encouraged to expand upon all the examples, which is
how you become familiar with new concepts and also how you grow as a developer. Figure 11.2
shows the interface for the chat application.

Basically the interface consists of a TextArea component, which is used for displaying the chat
messages, two TextInput components for the message and username items, and a Button
instance for the submit button.

242

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 242

FIGURE 11.2

The design from your chat application built using prebuilt components in Flash

Table 11.2 shows the instance names for each component.

TABLE 11.2

Instance Names for the Components

Component Instance Name Result

TextArea messagesTxt Display the chat messages

TextInput newMsgTxt New message

TextInput usernameTxt Name of the chat person

Button sendBtn Send new message to the server

243

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 243

You will be referencing the instance names during the development of the ActionScript for your
chat application.

With the user interface “design” portion completed or in this case loaded, you can begin develop-
ment of the code.

The first part of the chat application code is a block of variables that are used throughout. The first
variable is the absolute path to the PHP files. Then next two variables are the PHP files responsible
for sending and loading the chat messages from the database. After that are two Boolean variables
to ensure multiple message calls can’t be made. The last set of variables is a reference to the Timer
object and the cache buster.

var phpPath:String = “http://localhost/ch10/chatClient/”;
var phpSendMessage:String = phpPath + “message.php”;
var phpLoadMessages:String = phpPath + “getMessages.php”;

var loadingMessages:Boolean = false;
var sendingMessage:Boolean = false;

var timer:Timer;
var cacheBuster:String = “?cb=1”;

The first function you will build is the init() or initialization function. This is called only once,
when the application starts. It is responsible for setting up a timer handler for loading the mes-
sages from the server and making the first call to a cache buster, which is explained in the next sec-
tion. The last action of the init() function is to call the loadMessages function and populate
the message list.

function init():void
{

// start timer for loading of messages
timer = new Timer(5000, 0);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.start();

cacheBuster = getCacheBuster();
loadMessages(); // first time

}

The Timer class ships with Flash and has a lot of great uses. This example takes advantage of the
TIMER event, which is called every time the countdown is reached. The countdown time and
number of repeats are passed into the constructor. Set countdown to 5000 or 5 seconds and the
repeats to 0, which actually tells ActionScript to repeat continuously. After a new Timer instance
is created you assign the event handler and start the timer immediately. The timer handler simply
makes a call to the loadMessages function.

244

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 244

This portion of the code could be condensed by placing the loadMessages function in place of
the timerHandler, but doing it this way allows us to add more functionality down the road. It is
all good development practice to create proper handlers for events so the code can be updated, and
it makes it overall a lot easier to read.

function timerHandler(e:TimerEvent):void
{

loadMessages();
}

The loadMessages function is responsible for calling and handling the response from the server.
The call to the server is very similar to other examples with a few new elements. One new element
is the cacheBuster variable, which is used to ensure we don’t receive a cached result.

Stop caching with dynamic data
You just created a variable to stop caching, but what exactly is that? Caching on the server is when
dynamic data is stored for quicker loading on all future calls. At first glance this would seem like a
good idea, and in most cases it is. However, in the example of loading chat data that is constantly
changing it is probably safe to say you want this data to be fresh. This is accomplished by adding a
variable referred to as a “cache buster,” which fools the browser into thinking each call to the same
file is different.

Here is a very simple example of a cache buster and the actual string that is sent to the server:

function getRandom(length:uint):void
{

return Math.round(Math.random() * (length - 1)) + 1;
}

var rand:String = “?cb=” + getRandom(8);
var php:String = “http://localhost/ch04/getMessages.php” + rand;

trace(“URL: “ + phpFile); // getMessages.php?cb=65378426

Cache busters add to download time and force any file with a cache buster to be down-
loaded every time it is requested.

Everything after the ? in the URL is telling the browser and server that the call is dynamic and
results in the file not being cached.

The next part to the process of sending the message is ensuring the message is at least three charac-
ters long. If the message is not at least three characters, an error message is displayed. There are
two ways you can write this conditional check.

CAUTION CAUTION

245

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 245

The first option is:

if(newMsgTxt.text.length > 2)
{
}

The second option, which is easier to quickly understand:

if(newMsgTxt.text.length >= 3)
{
}

Both options achieve the same result, but the second option is much easier to read from a logical
point of view.

Now, assuming you have a message of the correct length you can continue with the process of
sending the message to the server. The next part is constructing the call to the server.

var variables:URLVariables = new URLVariables();
variables.user = usernameTxt.text;
variables.msg = newMsgTxt.text;
var urlRequest:URLRequest = new URLRequest(phpSendMessage +

getCacheBuster());
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, sendMessageHandler);
urlLoader.load(urlRequest);

When calling the server, you must set up a URLVariables object in order to pass along the user-
name and message that was entered. A call is also made to the custom cache buster function to
ensure the data is always fresh.

The last step in the sending function is to immediately add the user’s message instead of waiting for
the message list to update from the server. This gives the application a more responsive feel and
makes it so the message doesn’t appear to have been ignored.

addMessage(usernameTxt.text, newMsgTxt.text);

This function accepts two arguments: the username and the message gathered from their respective
components. This information is then built into an HMTL string that is assigned to the
messagesTxt TextArea. The username is placed within bold tags to emphasize the name. In
fact, you can use a lot of common HTML tags within HTML-enabled textboxes.

function addMessage(user:String, msg:String):void
{

messagesTxt.htmlText += “” + user + “” + “: “ + msg +
“\n”;

}

246

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 246

Table 11.3 shows the supported HTML tags that can be used.

TABLE 11.3

Supported HTML Tags

Label HTML Tag

Anchor Tag <a>

Bold Tag

Break Tag

Font Tag

Image Tag

Italic Tag <i>

List Item Tag

Paragraph Tag <p>

Span Tag

Underline Tag <u>

The sendMessageHandler function is called once the message is successfully sent to the
server. The only important part of this function is the last line, which clears the message box and
allows the user to type a new message. You could clear the message in the send function, but
doing it this way ensures the message stays intact until you are sure it has been added.

The PHP does not alert you to an error if the SQL fails, only if the page is not loaded.
You can certainly add more advanced error handling to this example.

function sendMessageHandler(e:Event):void
{

...
newMsgTxt.text = “”;

}

Now that you have completed the code for sending and handling calls to the server, you can begin
the function that manages the messages and displays them in TextArea.

The loadMessages() function is called from two different points. The first point is the init()
function, which you looked at earlier; the second is the timer handler.

The function first checks to see if another call has already been made to load the messages. Adding
this check ensures you can’t flood the server and potentially force it to become unresponsive. If
another load has already begun, you simply back out of the function and stop processing.

NOTENOTE

247

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 247

Assuming that another load is not already under way, you set the loadingMessages variable,
which is similar to locking your door after you enter a room. Most of the loadMessages func-
tionality is similar to the sending process.

You basically set the correct PHP file to load and set up an event handler for when the server sends
back the message data.

function loadMessages():void
{

if(loadingMessages) return;
loadingMessages = true;

var urlRequest:URLRequest = new URLRequest(phpLoadMessages +
getCacheBuster());
var urlLoader:URLLoader = new URLLoader();

urlLoader.addEventListener(Event.COMPLETE,
loadMessagesHandler);

urlLoader.load(urlRequest);
}

Handling XML response
The loading response function is responsible for working with the XML data and passing the mes-
sages to be displayed.

function loadMessagesHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

messagesTxt.htmlText = “”;

for each(var item in xml..message)
{

addMessage(item.name, item.msg);
}

cacheBuster = getCacheBuster();
loadingMessages = false;

}

The item names within the XML response are case sensitive. The standard is lowercase,
or camel case, for multiple words.

After the XML is properly loaded and ready to use, you set up a for..each loop just like you
used in the loading XML example in Chapter 3. The loop is based on all “message” nodes found
in the example response. A sample of the response passed back would look something like this:

NOTENOTE

248

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 248

<messages>
<message id=’29’>

<name>guest1</name>
<msg>Flash is a lot of fun</msg>

</message>
<message id=’30’>

<name>guest2</name>
<msg>PHP and Flash is better</msg>

</message>
<message id=’32’>

<name>guest1</name>
<msg>You can do so many things with it</msg>

</message>
<message id=’33’>

<name>guest2</name>
<msg>For sure, just look at this cool chat client</msg>

</message>
</messages>

The final step of the loadMessagesHandler function is to create a new cache buster and set the
loadingMessages variable to false, which allows future calls to get the latest messages.

Cache busters were explained earlier in the section. However, there are multiple ways to create a
unique string. The date is always changing and ActionScript has a getTime method that returns
the milliseconds since January 1, 1970. This date method is used because it is constantly changing
and never repeats, which leaves a unique string each time it is called.

At this point, you have completed the ActionScript for your chat application. Here is the complete
code for reference:

var phpPath:String = “http://localhost/ch10/chatClient/”;
var phpSendMessage:String = phpPath + “message.php”;
var phpLoadMessages:String = phpPath + “getMessages.php”;

var loadingMessages:Boolean = false;
var sendingMessage:Boolean = false;
var chatMessages:Array = new Array();

var timer:Timer;
var cacheBuster:String = “?cb=1”;

function init():void
{

// start timer for loading of messages
timer = new Timer(5000, 0);
timer.addEventListener(TimerEvent.TIMER, timerHandler);

249

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 249

timer.start();

cacheBuster = getCacheBuster();

loadMessages(); // first time
}

function sendMessage(e:MouseEvent):void
{

if(usernameTxt.text == “”)
{

trace(“Username required”);
return;

}

if(newMsgTxt.text.length >= 3)
{

var variables:URLVariables = new URLVariables();
variables.user = usernameTxt.text;
variables.msg = newMsgTxt.text;

var urlRequest:URLRequest = new URLRequest(phpSendMessage +
getCacheBuster());
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,
sendMessageHandler);
urlLoader.load(urlRequest);

// force message into display
addMessage(usernameTxt.text, newMsgTxt.text);

}
}

function sendMessageHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);
trace(“Response: “ + variables.resp);

// clear message box
newMsgTxt.text = “”;

}

function loadMessages():void
{

if(loadingMessages) return;

250

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 250

loadingMessages = true;

var urlRequest:URLRequest = new URLRequest(phpLoadMessages +
getCacheBuster());
var urlLoader:URLLoader = new URLLoader();

urlLoader.addEventListener(Event.COMPLETE,
loadMessagesHandler);
urlLoader.load(urlRequest);

}

function loadMessagesHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

loadingMessages = false;
messagesTxt.htmlText = “”;

for each(var item in xml..message)
{

addMessage(item.name, item.msg);
}

cacheBuster = getCacheBuster();
}

function getCacheBuster():String
{

var date:Date = new Date();
cacheBuster = “?cb=” + date.getTime();
return cacheBuster;

}

function addMessage(user:String, msg:String):void
{

messagesTxt.htmlText += “” + user + “” + “: “ + msg +
“\n”;

}

function timerHandler(e:TimerEvent):void
{

trace(“Timer hit”);
loadMessages();

}

sendBtn.addEventListener(MouseEvent.CLICK, sendMessage);

init();

251

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 251

PHP for chat application
At this point, you have completed the ActionScript portion of the chat application. The second
step is to develop the PHP code, which is called from the ActionScript.

The PHP code is broken up into three files, which are illustrated in Table 11.4.

TABLE 11.4

Breakdown of PHP Files

PHP Code File Action

getMessages.php Grabs all of the messages in the past 15 minutes

messages.php Handles the writing of a new message to the database

dbConn.php The database connection shared with the other files

The first file you work with is getMessages.php. The first part of the code loads or includes the
database connection file, which you will look at in just a moment. The next part is the SQL call,
which queries the MySQL database and grabs all the latest messages posted in the last 15 minutes.

$sql = “SELECT * FROM flashChat WHERE dateAdded > “ .
(time() - (60 * 15));
$result = mysql_query($sql);

The condition of the last 15 minutes is determined by the following code. The time() returns a
UNIX timestamp that is subtracted by 60 and multiplied by 15. The 60 is for seconds in a minute
and the 15 is how many minutes you are referring to. You could also write this basic math equa-
tion by removing the multiplication step. Doing so makes it harder to read the code, but it also
increases the speed of the application.

time() - 900

This SQL string is passed into the actual function that makes the call to the server
mysql_query(), which is assigned to the $result variable. Now that you have successfully
made the call to the MySQL database, the next step is to generate a loop that builds the messages.
Figure 11.3 shows the query display in MySQL Query Browser, which is available for free from
www.mysql.com.

This loop is done using a while, which is set to run until a valid row is not returned from the
database. You could also place this in a for loop and use mysql_num_rows() to determine how
many rows are being returned.

252

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 252

FIGURE 11.3

The SQL query returned within the MySQL Query Browser

The mysql_fetch_array() function grabs a single row from the database table in an associa-
tive array format and assigns it to the $row variable. The contents of the loop are set up to gener-
ate XML nodes that contain the message data, which you looked at earlier in the chapter.

while($row = mysql_fetch_array($result))
{

$xmlData .= “ <message id=’” . $row[‘id’] . “‘>\n”;
$xmlData .= “ <name>” . $row[‘username’] . “</name>\n”;
$xmlData .= “ <msg>” . $row[‘message’] . “</msg>\n”;
$xmlData .= “ </message>\n”;

}

At this point, you have a completed SQL call to the server and a loop to generate the message data
XML, which is returned to the ActionScript in Flash. Sending the data back to ActionScript is very
simple; you just assign the $xmlData variable to the print statement.

print $xmlData;

253

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 253

The print statement wraps up your messages.php file, which is shown in its entirety here.

<?php

include ‘dbconn.php’;

$sql = “SELECT * FROM flashChat WHERE dateAdded > “ . (
time() - (60 * 15));

$result = mysql_query($sql);
$xmlData = “<messages>\n”;

while($row = mysql_fetch_array($result))
{

$xmlData .= “ <message id=’” . $row[‘id’] . “‘>\n”;
$xmlData .= “ <name>” . $row[‘username’] . “</name>\n”;
$xmlData .= “ <msg>” . $row[‘message’] . “</msg>\n”;
$xmlData .= “ </message>\n”;

}

$xmlData .= “</messages>”;
print $xmlData;

?>

The next PHP file that needs to be developed is messages.php, which is responsible for insert-
ing new messages into the MySQL database. The first part of this PHP file starts off the same as the
previous one by loading the dbconn.php file, which is responsible for handling the login and
connection to the MySQL database.

include ‘dbconn.php’;

The next step is to check that the message sent from ActionScript is indeed larger than 0 characters
empty string. In PHP, strlen() returns the length of a string that is passed in as an argument.

if(strlen($_POST[‘msg’]) > 0)
{

...
}

Assuming that you have a valid length message, you assign three variables; one is for the username,
the second is from the message, and the third is the date in UNIX timestamp format.

$username = $_POST[‘user’];
$message = $_POST[‘msg’];
$date = time();

The next step in developing this file is take make the actual MySQL call, which is done using
mysql_query(). This function takes the SQL statement as an argument and either returns a
resource id or throws an error.

254

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 254

The actual SQL statement is fairly similar to others used in previous examples. There is a
flashChat table within the database that happens to have four columns, but one of those is an
auto_increment and doesn’t need to be defined in an INSERT statement.

In a more robust application, you would want to add a layer of security on data passed
in from another source. It doesn’t matter if this is Flash, the browser, or a third-party

service; it is always important.

mysql_query(“INSERT INTO flashChat (username, message, dateAdded)
VALUES (

‘“ . $username . “‘,
‘“ . $message . “‘,
‘“ . $date . “‘

)”);

The name dateAdded was used because date is a reserved word in MySQL and will
cause an error in most cases. It is never a good idea to use reserved words for another

use in any development language.

The last step in this file is to return a response to Flash notifying that the message has been added
and another message can now be added from that user. Overall, the messages.php file is pretty
simple but it gets the job done.

Here is the completed messages.php file for reference.

<?php

include ‘dbconn.php’;

if(strlen($_POST[‘msg’]) > 0)
{

$username = $_POST[‘user’];
$message = $_POST[‘msg’];
$date = time();

mysql_query(“INSERT INTO flashChat (username, message,
dateAdded)
VALUES (

‘“ . $username . “‘,
‘“ . $message . “‘,
‘“ . $date . “‘

)”);

print “resp=MESSAGE_ADDED”;
}

?>

CAUTION CAUTION

NOTENOTE

255

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 255

Using PHP to connect to MySQL
The last PHP file in your Flash chat application is the dbconn.php file. This file is responsible for
connecting to MySQL and providing a link to your tables contained in the database.

There can only be one connection to a single database at a time. Best practice is to plan
your SQL connects to be more efficient. This prevents you from having to jump back

and forth.

This file is fairly small but has a very important requirement, which is to honor security measures
to the highest extent. A good portion of these sections have noted that security is important. You
looked at many examples earlier; in this example security is not excluded for simplicity.

The first part to the file is assigning the database variables that will be passed along for the connec-
tion. Oftentimes more advanced applications will have a separate file for configuration variables. That
configuration file would be loaded only when the application begins and referenced throughout.

However, because this application is fairly small you will just assign the database connection vari-
ables inside the dbconn.php connection file.

$host = “HOST_NAME”;
$user = “SQL_USERNAME”;
$pass = “SQL_PASSWORD”;
$database = “SQL_DATABASE_NAME”;

The first variable is often localhost or the IP address of the server where MySQL is running if it
happens to be running remote from the server where PHP is running. You wouldn’t expect to see a
remote installation of MySQL in smaller systems, but it is very common in larger applications.

The other three variables are username, password, and the name of the database to which you
want to connect. This connection information is provided by your system administrator or host if
you don’t already know it.

MySQL creates a default installation with a username of “root” and no password, but it
is very insecure this way and should be changed immediately.

Now that the variables are properly defined, you can make the actual connection to MySQL. This
is accomplished by the mysql_connect() function within PHP. This function accepts three
arguments: host, username, and password defined just a moment ago.

$link = mysql_connect($host, $user, $pass);

The mysql_connect() function returns a resource id that you store in the $link variable.
This is referenced when you go to select your database.

Selecting the database is simply a matter of referencing the name of the database to which you
want to connect and passing along the link received in the connection step.

mysql_select_db($database, $link);

NOTENOTE

NOTENOTE

256

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 256

The final and most important step is to destroy the variables that contain the MySQL connection
information. Destroying or deleting a variable is done by passing the variable reference to the
unset() function, which removes the existence of that variable.

unset($host);
unset($user);
unset($pass);
unset($database);
unset($link);

It is important to have this step to ensure that future aspects of an application can’t gain access to
these variables. This is especially important when introducing third-party applications into your
custom application.

A safer alternative to the previous method is to wrap all of this in a class. This is similar to working
with a closed component in Flash. Access is allowed only to what you want others to see; the rest
is hidden.

Here is an example of a database connection using a class:

<?php

// simple mysql connection class

class MysqlConnection
{

public $link;

private $host = “localhost”;
private $user = “SQL_USERNAME”;
private $pass = “SQL_PASSWORD”;
private $database = “SQL_DB_NAME”;

function MysqlConnection() {}

public function connect()
{

$this->link = mysql_connect(
$this->host,
$this->user,
$this->pass

);
mysql_select_db($this->database, $this->link);

}

public function setConnectionDetails($h=’’, $u=’’, $p=’’,
$d=’’)
{

257

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 257

$this->host = $h;
$this->user = $u;
$this->pass = $p;
$this->database = $d;

}

public function getLink()
{

return $this->link;
}

}

$sql = new MysqlConnection();
$sql->connect();

?>

At first glance it doesn’t look very different than the previous connection example; however, the
important section is the variable definitions.

public $link;

private $host = “localhost”;
private $user = “SQL_USERNAME”;
private $pass = “SQL_PASSWORD”;
private $database = “SQL_DB_NAME”;

As you learned in Chapter 9, PHP class variables can be given a public and private designation. In
this example class, the connection variables are defined as private, locking them tightly within the
class. Doing this ensures those variables can’t be discovered accidentally, and it also offers another
benefit. Say you have a new project and want to connect to a database; doing so would be as sim-
ple as the following block of code.

<?php

include ‘MysqlConnection.php’;

$mysqlConn = new MysqlConnection();
$mysqlConn-> setConnectionDetails(“host”, “user”, “pass”, “db”);
$mysqlConn->connect();

$query = “SELECT * FROM our_table”;
$result = mysql_query($query, $mysqlConn->getLink());

?>

Notice that you use the custom connection class, give new connection information, and finally pass
the database link into the query call. At no point in this code is the connection information accessi-
ble or exposed to the general public.

258

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 258

When connecting to a database on a live server it is a good idea to disable error report-
ing or at least suppress any connection errors.

Here is the original connection file in its entirety:

<?php
$host = “localhost”;
$user = “SQL_USERNAME”;
$pass = “SQL_PASSWORD”;
$database = “SQL_DB_NAME”;

$link = mysql_connect($host, $user, $pass);
mysql_select_db($database, $link);

unset($host);
unset($user);
unset($pass);
unset($database);
unset($link);
?>

Creating a database table
At this point, all of the ActionScript and PHP is written. However, if you attempt to test the appli-
cation it won’t run because you haven’t defined the SQL table that will interact with the PHP for
sending and loading messages.

The SQL syntax is very easy to follow but is important to construct carefully. A poorly built table’s
performance will suffer more and more as it begins to grow. This SQL creates a flashChat table
and adds the rows that you use in the PHP. Notice the id row, which is not used in the PHP but
instead is used internally for indexing and key assignment. Another way to think about the ID is
the key that unlocks the mystery to where your data is located within this big table.

The rows that you do use in the PHP are username, message, and dateAdded. The message
row is most important because it is set as TEXT, which gives an open-ended length ability. This
basically means a message can be any length. That row also could have been assigned a
varchar(), which would force the length to a certain predetermined limit, such as:

message varchar(150) NOT NULL default ‘’

This new definition for the message row would force any chat message longer than 150 charac-
ters to be truncated or ended. Setting it as TEXT is more convenient but has potential performance
concerns as the database and table grow.

CREATE TABLE flashChat (
id int(11) not null auto_increment,
username varchar(20) NOT NULL default ‘’,
message text NOT NULL,
dateAdded int(11) NOT NULL default 0,
PRIMARY KEY (id)

) ENGINE=MyISAM;

NOTENOTE

259

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 259

It took a lot of code, but your PHP-driven Flash chat application is complete. Take the time to look
over the code and extend the example to add more features. Here are a few ideas to get you started.

The first and probably most obvious feature that could be added is some higher level of security
between PHP and Flash. You could also add a moderation panel or as a bonus a basic moderation
script has been provided in the bonus content available for this book.

At this point, you should have a pretty good understanding of how to build a complete application
using Flash, PHP, and MySQL. In the next section, you use Flash and PHP to build a complete
photo gallery with categories and navigation controls.

Using PHP to Develop a Photo Gallery
What is better than a Flash gallery? How about a dynamic Flash gallery where PHP feeds auto-
updating XML files? This section is a step-by-step guide on how to develop just that. The develop-
ment will begin with the ActionScript and then move into the PHP side. The last step will be to
evaluate the finished application and explain ways to advance it.

As you learned at the beginning of this chapter, every good application is designed and evaluated
before any programming begins. Take a moment to look at the finished application, which is avail-
able in the source material for this book. Figure 11.4 shows the completed application.

FIGURE 11.4

The completed Flash/PHP photo gallery showing loaded content

260

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 260

The ActionScript for the completed application will automatically populate a category list.
Dynamically load in the images and allow previous and next navigation through each category of
images.

Developing the ActionScript
Now that you know what the application will do, you can start to place the variables.

var phpPath:String = “http://localhost/ch10/photoGallery/”;
var phpFile:String = phpPath + “gallery.php”;

var images:Array = new Array();

var imageHolder:MovieClip;
var categoryHolder:MovieClip;

The first two variables are referencing the PHP file that generates the category and image data. The
images variable is used to store the image data sent back from the PHP, which is used for loading
the images. The last two variables in this section are holder MovieClips for the main image and
navigation. Both of these variables are populated at runtime once the image and category data are
loaded.

The next set of variables needed is specifically for navigating around the images and categories.

var currentID:uint;
var currentImage:Number = 0;
var imageDir:String = “photos/”;
var cacheBuster:String = “?cb=1”;

The currentID is used to remember which image is being viewed. This will be used in the previ-
ous and next navigation functions. The imageDir is a reference to the image directory, which is
where the category directories are located. The last variable is a cache buster, which as explained at
the beginning of this chapter is used to ensure the loading of data is always fresh and never cached.

Now that you have completed the process of setting all the necessary variables, you can move on to
the core of the application, which is functions.

The init() function is responsible for creating the two holder MovieClips. The MovieClips
are dynamically created, positioned, and attached to the display list. This is done by making a call
to addChild and passing along the movieclip reference. The init function is also where the
cache buster is generated. The last step of the init function is to make a call to the
loadCategories() function. It is important that this function is only called at startup because
the objects and categories would be undefined or duplicated.

function init()
{

imageHolder = new MovieClip();
imageHolder.x = 212;

261

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 261

imageHolder.y = 49;
addChild(imageHolder);

categoryHolder = new MovieClip();
categoryHolder.x = 15;
categoryHolder.y = 50;
addChild(categoryHolder);

cacheBuster = getCacheBuster();

loadCategories();
}

Once the initialization init phase has been completed the loadCategories() function is
called. This function calls the PHP file to load in the category list using URLRequest and passing
along a custom action that tells the script you want the category list. This is important because the
gallery.php handles both the categories and photo selection. Overall, the loadCategories
function is pretty similar to other loaders used throughout this book.

function loadCategories():void
{

var action:String = “action=cat”;
var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster() + “&” + action);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, drawCategories);
urlLoader.load(urlRequest);

}

The drawCategories function is called once the category list has been sent back from the PHP.
The data is loaded into an XML object and parsed using a for..each loop. To better understand
the loop, look at a sample XML result passed back from the PHP. One of these XML nodes is cre-
ated for each category in the gallery.

<category id=”2” name=”Landscapes” copyright=”Other”/>

The category text that is displayed on the stage is a dynamic TextField created within the
for..each loop. You could also attach a movie clip from the library, but doing so results in a
more fragmented application and you lose some formatting options.

function drawCategories(e:Event):void
{

...
for each(var item in xml..category)
{

...
}

}

262

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 262

Before you continue with the application-specific code look at what exactly is being done to create
the TextField.

var txt:TextField = new TextField();
txt.selectable = false;
txt.width = 200;
txt.text = “Sample Text”;

The first line is creating a new TextField instance and setting a reference to the txt variable.
The next line is making sure the text can’t be selected with the mouse.

Don’t always set the selectable property to false. Users often like to copy content,
especially blocks of text.

The second-to-last line of code is responsible for setting the width of the TextField to 200 pix-
els to accommodate the text. Then the last line is simply applying the text that will be visible in the
textbox.

Once the text field is created, you attach an event listener to load a category of images when the
text is clicked.

Anonymous functions
An anonymous function is attached directly to the addEventListener call. An anonymous
function cannot be called by name because it doesn’t have one; it is used as an alternative to a reg-
ular function when the task is simple and doesn’t require a lot of code. Realistically anonymous
functions are used to make code more compact or if you need to access a variable that is scoped
locally to the calling method.

Here is an example of an anonymous function similar to the one located within the
drawCategories function.

txtContainer.addEventListener(MouseEvent.CLICK,function(e:Event):
void

{
trace(“Anonymous function here, I don’t have a name.”);

});

You may notice one potential reason to avoid anonymous functions (aside from not being multi-
functional) is they make code a lot harder to read at a glance. This is mostly due to the fact the
function definition is buried within the addEventListener. Also, an anonymous function can-
not be removed, which can cause a potential for memory leaks.

The drawCategories function’s last task is to attach the text field to the stage using addChild,
as done for the category.

txtContainer.addChild(txt);
categoryHolder.addChild(txtContainer);

NOTENOTE

263

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 263

Here is the complete drawCategories function for reference.

function drawCategories(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

for each(var item in xml..category)
{

var txtContainer:MovieClip = new MovieClip();
var txt:TextField = new TextField();
txt.selectable = false;
txt.width = 200;
txt.text = item.attribute(‘name’);
txt.y = uint(item.attribute(‘id’) + 4) * 2;
txt.name = “text_” + item.attribute(‘id’);
txtContainer.addEventListener(MouseEvent.CLICK,
function(e:Event):void
{

loadImages(e.target.name.substring(5));
});
txtContainer.addChild(txt);
categoryHolder.addChild(txtContainer);

}
}

The next function to focus on is loadImages. This is the function that loads the image data from
the PHP. The result passed back is nearly identical to the one found in the category function. The
action variable is set to photos, and we also add an id letting PHP know what photos to load.

function loadImages(id:uint):void
{

var action:String = “action=photos&id=” + id;
var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster() + “&” + action);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, imagesLoaded);
urlLoader.load(urlRequest);
currentID = id;

}

A response is sent back when the PHP is loaded, and the imagesLoaded function is called. The
image data is passed back in XML format and handled with a for..each loop.

This loop processes each photo node in the XML data and builds an object, which is added
“pushed” to the images array.

function imagesLoaded(e:Event):void
{

264

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 264

for each(var item in xml..photo)
{

images.push({name:’’, src:item.attribute(‘src’)});
}
...

}

Here is the object by itself and an alternative, more readable method of creating the object.

{ name:’’, src:item.attribute(‘src’) }

Here is the alternative method to define the object.

var obj:Object = new Object();
obj.name = ‘’;
obj.src = item.attribute(‘src’);

The last task of the imagesLoaded function is to set the currentImage variable and make a
call to the displayImage function passing the image source. The image source is loaded from
the images array using currentImage as the array index.

function imagesLoaded(e:Event):void
{

...
currentImage = 0;
displayImage(images[currentImage].src);

}

Here is the complete imagesLoaded function:

function imagesLoaded(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);
images = new Array();
for each(var item in xml..photo)
{

images.push({name:’’, src:item.attribute(‘src’)});
}
currentImage = 0;
displayImage(images[currentImage].src);

}

With the categories and images loaded, you can display the image. This is done by assigning a
URLRequest built of the image directory, current category id, and the photo’s name. The loader
class is placed directly into an addChild call, which handles the displaying of the image once it is
fully loaded. You won’t notice any loading time locally, but you might online.

265

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 265

It is good practice to place preloaders wherever data is being loaded. This informs the
user that something is happening.

function displayImage(src:String):void
{

var loader:Loader = new Loader();
loader.load(new URLRequest(imageDir + currentID + “/” + src));
imageHolder.addChild(loader);

}

Photo gallery navigation
The navigation portion of the photo gallery is built using two movieclips on the Stage. Each of
the clips is assigned to an event handler that either loads the next or previous image.

Image navigation
You will notice the nextImage() function has some conditional logic. This is checking to see if
the currentImage variable is a higher number than the total images, which would result in a
loading error. The same basic process is done for the prevImage() function with the exception
that the conditional check is ensuring the value is not less than zero.

The next and previous image functions will crash if a category has not been chosen.

function nextImage(e:MouseEvent):void
{

currentImage++;
if(currentImage > images.length-1)
{

currentImage = 0;
}
displayImage(images[currentImage].src);

}

function prevImage(e:MouseEvent):void
{

currentImage--;
if(currentImage <= 0)
{

currentImage = images.length-1;
}
displayImage(images[currentImage].src);

}

The last function in the photo gallery script is used to generate your cache buster, which is used to
ensure the calls to the server are never cached. This function is identical to the one used in the
Flash chat application you built earlier in this chapter.

NOTENOTE

NOTENOTE

266

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 266

The last part of the application is to call init() at the start of the application and assign the event
handlers used by the navigation buttons.

function getCacheBuster():String
{

var date:Date = new Date();
cacheBuster = “?cb=” + date.getTime();
return cacheBuster;

}

init();

prevMC.addEventListener(MouseEvent.CLICK, prevImage);
nextMC.addEventListener(MouseEvent.CLICK, nextImage);

Here is the completed ActionScript for the photo gallery application:

var phpPath:String = “http://localhost/ch%2010/photoGallery/”;
var phpFile:String = phpPath + “gallery.php”;

var images:Array = new Array();

var imageHolder:MovieClip;
var categoryHolder:MovieClip;

var currentID:uint;
var imageDir:String = “photos/”;

var currentImage:uint = 0;

var cacheBuster:String = “?cb=1”;

function init()
{

imageHolder = new MovieClip();
imageHolder.x = 212;
imageHolder.y = 49;
addChild(imageHolder);

categoryHolder = new MovieClip();
categoryHolder.x = 15;
categoryHolder.y = 50;
addChild(categoryHolder);

cacheBuster = getCacheBuster();

loadCategories();
}

function loadCategories():void

267

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 267

{
var action:String = “action=cat”;
var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster() + “&” + action);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, drawCategories);
urlLoader.load(urlRequest);

}

function drawCategories(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

for each(var item in xml..category)
{

var txtContainer:MovieClip = new MovieClip();

var txt:TextField = new TextField();
txt.selectable = false;
txt.width = 200;
txt.text = item.attribute(‘name’);
txt.y = uint(item.attribute(‘id’) + 4) * 2;
txt.name = “text_” + item.attribute(‘id’);
txtContainer.addEventListener(MouseEvent.CLICK,
function(e:Event):void
{

loadImages(e.target.name.substring(5));
});

txtContainer.buttonMode = true;

txtContainer.addChild(txt);
categoryHolder.addChild(txtContainer);

}
}

function loadImages(id:uint):void
{

trace(“Load Images: “ + id);
var action:String = “action=photos&id=” + id;
var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster() + “&” + action);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, imagesLoaded);
urlLoader.load(urlRequest);

268

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 268

currentID = id;
}

function imagesLoaded(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);
images = new Array();

for each(var item in xml..photo)
{

images.push({name:’’, src:item.attribute(‘src’)});
}

currentImage = 0;
displayImage(images[currentImage].src);

}

function displayImage(src:String):void
{

trace(“Load Image: “ + src);

var loader:Loader = new Loader();
loader.load(new URLRequest(imageDir + currentID + “/” + src));
imageHolder.addChild(loader);

}

function nextImage(e:MouseEvent):void
{

currentImage++;
if(currentImage > images.length-1)
{

currentImage = 0;
}
displayImage(images[currentImage].src);

}

function prevImage(e:MouseEvent):void
{

currentImage--;
if(currentImage <= 0)
{

currentImage = images.length-1;
}
displayImage(images[currentImage].src);

}

function getCacheBuster():String
{

269

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 269

var date:Date = new Date();
cacheBuster = “?cb=” + date.getTime();
return cacheBuster;

}

init();

prevMC.addEventListener(MouseEvent.CLICK, prevImage);
nextMC.addEventListener(MouseEvent.CLICK, nextImage);

PHP for the photo gallery
The PHP portion of this photo gallery application is built of three files. The first file is
categories.php, which is a static representation of categories being sent to ActionScript.

The first part of the code is the category in a multidimensional array format. The category items
hold the name, id, and copyright information for each category.

$categories = array(
array(“Boston”, 1, “M. Keefe”),
array(“Landscapes”, 2, “Other”),
array(“Las Vegas”, 3, “M. Keefe”),
array(“Weddings”, 4, “Other”),

);

The getCategories() function first sets a global reference to the $categories variable. The
next step is to define a loop that is responsible for building the XML data passed back to
ActionScript.

function getCategories()
{

global $categories;

$xml = “<categories>\n”;

for($i=0; $i < count($categories); $i++)
{

$xml .= “ <category id=\”” .
$categories[$i][1] . “\” name=\”” .
$categories[$i][0] . “\” copyright=\”” .
$categories[$i][2] . “\” />\n”;

}

$xml .= “</categories>”;

return $xml;
}

270

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 270

The loop length is determined by how large the $categories array happens to be.

count($categories)

The body of the loop is nothing more than construction of the XML data, similar to the sample
looked at during the ActionScript development portion.

$xml .= “ <category id=\”” .
$categories[$i][1] . “\” name=\”” .
$categories[$i][0] . “\” copyright=\”” .
$categories[$i][2] . “\” />\n”;

The last step of this function is to return the XML data for ActionScript to process.

return $xml;

Here is the categories.php file in its entirety:

<?php

$categories = array(
array(“Boston”, 1, “M. Keefe”),
array(“Landscapes”, 2, “Other”),
array(“Las Vegas”, 3, “M. Keefe”),
array(“Weddings”, 4, “Other”),

);

function getCategories()
{

global $categories;

$xml = “<categories>\n”;

for($i=0; $i < count($categories); $i++)
{

$xml .= “ <category id=\”” .
$categories[$i][1] . “\” name=\”” .
$categories[$i][0] . “\” copyright=\”” .
$categories[$i][2] . “\” />\n”;

}

$xml .= “</categories>”;

return $xml;
}

?>

271

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 271

The next file to develop is getPhotos.php, which opens the photo directory and returns the
XML file populated with source information for each of the photos.

The meat of this file is the getPhotosFromID() function, which accepts one argument, an id.
You want to make sure a valid ID is passed before continuing so a simple conditional statement
will work in this case. If a valid ID has been found, then you can continue with the opening of the
directory and the while loop.

<?php

$photo_dir = “photos/”;

function getPhotosFromID($id=null)
{

global $photo_dir;

if($id == null)
{

print “ID Not Provided”;
return false;

}

$xml = “<photos id=\”” . $id . “\”>”;

$dir = opendir($photo_dir . $id);
while(false !== ($file = readdir($dir)))
{

if($file != “.” && $file != “..”)
{

$xml .= “<photo name=\”” . “” . “\” src=\”” . $file . “\”
/>\n”;
}

}
closedir($dir);

$xml .= “</photos>”;

return $xml;
}

?>

The while loop is set up to loop through each file in the directory until the file pointer is false,
which means no valid file was found.

while(false !== ($file = readdir($dir)))
{

...
}

272

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 272

You use a conditional if statement to exclude .and .. which is directory pointers for current direc-
tory and parent directory. If you exclude this check there will be at least two bogus entries in the
XML file; or worse, the file can error out all together because it could put the while loop into an
infinite recursive state.

After all of the images in the directory are gathered, you will want to close the directory to free up
valuable resources. This is especially important if the file could be used by someone else at the
same time.

closedir($dir);

The last step in this file is to return the XML for Flash to process.

After have created the category and photo files, you can create the gallery.php file, which han-
dles the calls from PHP and returns the proper XML based on what is requested.

<?php

include ‘categories.php’;
include ‘getPhotos.php’;

header(‘Content-type: text/xml’);

if($_GET[‘action’] == ‘cat’)
{

print getCategories();
}
else if($_GET[‘action’] == ‘photos’)
{

print getPhotosFromID($_GET[‘id’]);
}

?>

This file starts by including the two previous files you created. Then a header() call is made to
force the output of all content as proper XML. This header function can be used for pretty much
any content type. You basically set it, and from that point the output follows that format. For
example, assume you want to export content as a PNG.

header(“Content-type: image/png”);

Make sure you use the correct content type in your application. Using the wrong one
can cause errors and in rare cases cause an application to crash.

The final block of code is used to determine which content you are requesting. The two types of
content available in this example are category and photo list. The $_GET[‘action’] variable is
passed from Flash on the url as a query string.

http://localhost/photoGallery/gallery.php?cb=1192408716823&action
=cat

NOTENOTE

273

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 273

At this point, the Flash gallery driven by PHP is complete. You can extend this example to add sub-
categories, transitions, or maybe some titles and descriptions for each image.

That’s the cool thing about ActionScript: you can extend from the book’s examples or just use them
as they ship.

Using PHP to Develop an RSS Reader
RSS readers are a very popular item, and applications can be found for nearly every device that is
Web enabled. They can be found on everything from a browser on your desk to the phone in your
pocket.

RSS is a group of Web feeds used to publish frequently updated content such as entries, news
headlines, podcasts, or entertainment. Another way to think of RSS is someone delivering the daily
news directly to you; the only difference is there is no limit to the amount of feeds you can sub-
scribe to.

Following is a look at the RSS application you will develop and how it will function, as shown in
Figure 11.5.

FIGURE 11.5

The RSS reader with a PHP delivery system

274

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 274

The application is constructed of prebuilt components that have already been placed in the starting
file. The three main elements you are interested in are the List, TextArea, and Submit compo-
nents. Each of these components has been assigned an instance name that is referenced in the
ActionScript.

Importing classes
Most of the classes that ship with Flash do not require you to import them. However, there are
some exceptions, one of which is the ListEvent class.

import fl.events.ListEvent;

When the event is imported you can assign the variables for your RSS application. The only global
variable needed for this application is the php reference.

var phpPath:String = “http://locahost/ch10/rssReader/”;
var phpFile:String = phpPath + “rss.php”;

Loading the PHP
The function used to load the PHP, which returns XML is very similar to previous examples. Set up
a URLRequest, a URLLoader, and attach a handler to the COMPLETE event.

function loadFeeds():void
{

var urlRequest:URLRequest = new URLRequest(phpFile);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, feedHandler);
urlLoader.load(urlRequest);

}

The feedHandler() function is responsible for working with the response from the PHP call. In
this application, the PHP sends back XML, which is used to populate the List component. The
RSS entries are placed into the List component using the addItem() function.

This feedHandler function accepts an object as an argument. The object needs at least a label
property in order to add the item, but you would generally add the data property as well.

function feedHandler(e:Event):void
{

...
for each(var item in xml..entry)
{

topicsList.addItem({label:item..name, data:item..desc});

topicsList.addEventListener(ListEvent.ITEM_CLICK,
listClickhandler);
}

}

275

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 275

The list items load the body text when clicked, so create the function that handles this event. The
ListEvent is passed from the ITEM_CLICK event, which contains the item property. The item
property is where the data property is stored. In this example, that data is the RSS body, so you
can simply pass that data directly to the feedBody TextArea.

function listClickhandler(e:ListEvent):void
{

feedBody.htmlText = e.item.data;
}

The last function in the RSS application is the button handler, which is called any time the
Button component is clicked. This function simply makes a call to the loadFeeds function.

function submitHandler(e:Event):void
{

loadFeeds();
}

As you can see, the ActionScript is fairly simple for this example. XML really speeds up develop-
ment of Web-enabled applications, and this is a perfect example of it.

Here is the RSS application code in its entirety for reference:

import fl.events.ListEvent;

var phpPath:String = “http://localhost/ch10/rssReader/”;
var phpFile:String = phpPath + “rss.php”;

function loadFeeds():void
{

var urlRequest:URLRequest = new URLRequest(phpFile);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, feedHandler);
urlLoader.load(urlRequest);

}

function feedHandler(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(loader.data);

for each(var item in xml..entry)
{

topicsList.addItem({label:item..name, data:item..desc});
topicsList.addEventListener(ListEvent.ITEM_CLICK,
listClickhandler);
}

}

function listClickhandler(e:ListEvent):void

276

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 276

{
feedBody.htmlText = e.item.data;

}

function submitHandler(e:Event):void
{

loadFeeds();
}

loadBtn.addEventListener(MouseEvent.CLICK, submitHandler);

With the ActionScript portion of the RSS reader finished you can focus on the PHP code.

The RSS feed that is being used for this example, as shown in Figure 11.6, comes from Adobe and
is the latest news and information on Adobe AIR.

<?php
$rssFeed = “http://weblogs.macromedia.com/mxna/xml/rss.cfm?” .

“query=bySmartCategory&languages=1&smartCategoryId=28&” .
“smartCategoryKey=F2DFD9E0-FBB6-4C2D-2AFE6AFD941FDDB1”;

?>

FIGURE 11.6

How the RSS feed looks in your Web browser, assuming you don’t have a reader installed

277

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 277

The $feed variable is a placeholder for the generated XML that is constructed once the RSS feed is
successfully loaded. The RSS feed is read in using the simplexml library that is shipped with
PHP 5. This isn’t the only XML parsing library available for PHP, but it is the most efficient and eas-
iest to use.

$feed = “”;
$xml = simplexml_load_file($rssFeed);

At this point, you can begin building the foreach loop, which is responsible for constructing the
XML document passed back to the ActionScript.

$feed .= “<items>\n”;

foreach($xml->item as $item)
{

$desc = $item->description;

$desc = preg_replace(‘/[...\[\]]/’, ‘’, $desc);

$feed .= “ <entry>\n”;
$feed .= “ <name>” . $item->title . “</name>\n”;
$feed .= “ <desc><![CDATA[“ . $desc .”]]></desc>\n”;
$feed .= “ </entry>\n”;

}

$feed .= “</items>\n”;

The loop takes each element of the XML and loops through the item nodes.

You will notice the description is assigned to a $desc variable. The reason for this is because the
description needs to be cleaned before it is returned. The cleaning process is accomplished using
preg_replace(), a regular expression function that removes unescaped and improper
characters.

$desc = preg_replace(‘/[...\[\]]/’, ‘’, $desc);

This book does not provide an in-depth walkthrough on regular expressions (regex);
however, there is a very good guide found at http://php.net/manual/en/

reference.pcre.pattern.syntax.php.

The last portion of the PHP code sets the header type and outputs the XML to ActionScript.

header(‘Content-type: text/xml’);
print ‘<?xml version=”1.0” encoding=”UTF-8”?>’ .”\n”;
print $feed;

You will notice the PHP required to build the RSS application is not in depth; a lot of that is due to
simplexml being such a great library. This example could be extended to pull in more of the
information contained within the RSS feed. For example, you could display the title of the entry,
the date, and even the URL where the original entry is located.

NOTENOTE

278

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 278

Finally, here is the completed PHP for reference:

<?php

$rssFeed = “http://weblogs.macromedia.com/mxna/xml/rss.cfm?” .
“query=bySmartCategory&languages=1&smartCategoryId=28&” .
“smartCategoryKey=F2DFD9E0-FBB6-4C2D-2AFE6AFD941FDDB1”;

$feed = “”;
$xml = simplexml_load_file($rssFeed);

$feed .= “<items>\n”;

foreach($xml->item as $item)
{

$desc = $item->description;

$desc = preg_replace(‘/[...\[\]]/’, ‘’, $desc);

$feed .= “ <entry>\n”;
$feed .= “ <name>” . $item->title . “</name>\n”;
$feed .= “ <desc><![CDATA[“ . $desc .”]]></desc>\n”;
$feed .= “ </entry>\n”;

}

$feed .= “</items>\n”;

header(‘Content-type: text/xml’);
print ‘<?xml version=”1.0” encoding=”UTF-8”?>’ .”\n”;
print $feed;

?>

Using PHP, Flash, and MySQL to Develop a
Dynamic Banner Ad
A lot of designers use Flash to create ads to be placed online. These range from mini ads within a
page to full-blown ads that are the page. The most common ad format is the banner ad, which is
usually 468 × 60, as shown in Figure 11.7, pixels in size. These banners are usually scripted to
load a Web site when clicked. What about tracking those clicks? Even better, why not create a
dynamic banner that loads a random ad and doesn’t require the owner to update anything more
than an XML file and image directory?

This section will be the process of developing a dynamic banner ad in Flash. You then add tracking
to this banner using only a few lines of PHP. This example doesn’t require any starting files because
any image will work for the banner, and the application is going to be developed 100 percent in
ActionScript code.

279

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 279

FIGURE 11.7

Example of the banner ad application in action

The first part of the code is responsible for initializing the variables used in the application.

var phpPath:String = “http://localhost/ch10/bannerAd/”;
var phpFile:String = phpPath + “ads.php”;

var imageHolder:MovieClip;
var cacheBuster:String = “?cb=1”;
var adURL:String;

Once the variables are defined you can build the functions. The first one is responsible for attach-
ing the image holder, adding the event handler, and calling the loadImage function.

imageHolder = new MovieClip();
imageHolder.x = 0;
imageHolder.y = 0;
imageHolder.addEventListener(MouseEvent.CLICK, loadAdURL);
imageHolder.buttonMode = true;
addChild(imageHolder);

cacheBuster = getCacheBuster();

loadImage();

The loadImage() function is responsible for loading the XML file that holds the banner ad data.
Then assign a handler function that is called after the XML is completely loaded.

function loadImage():void
{

var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster());
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, imageLoaded);
urlLoader.load(urlRequest);

}

After the XML is fully loaded, a call to imageLoaded is made. This function is responsible for
loading the XML data, pulling out the image information, and loading the image. Following is a
look at each part, one at a time.

280

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 280

The following is the process of loading the data and creating the XML object:

function imageLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);
...

The next part of this function is to pull in the image data and assign it to local variables:

var url:String = xml..banner.attribute(‘url’);
var name:String = xml..banner.attribute(‘name’);
var image:String = xml..banner.attribute(‘src’);
var directory:String = xml..banner.attribute(‘dir’);

adURL = url;

The last step in this function is to load the image and attach it to the display list:

var loader:Loader = new Loader();
loader.load(new URLRequest(directory + image));
imageHolder.addChild(loader);

Opening a browser window
The process of loading and displaying the ad is now complete. The next step is to assign the event
handler that is called when the banner is clicked. Use navigateToURL() to open a new browser
window and navigate to the predetermined ad page.

function loadAdURL(e:MouseEvent):void
{

navigateToURL(new URLRequest(adURL));
}

The last task of the ActionScript is to call the init() function and start the process.

init();

Here is the completed ActionScript code for reference:

var phpPath:String = “http://localhost/ch10/bannerAd/”;
var phpFile:String = phpPath + “ads.php”;

var imageHolder:MovieClip;
var cacheBuster:String = “?cb=1”;
var adURL:String;

function init()

281

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 281

{
imageHolder = new MovieClip();
imageHolder.x = 0;
imageHolder.y = 0;
imageHolder.addEventListener(MouseEvent.CLICK, loadAdURL);
imageHolder.buttonMode = true;
addChild(imageHolder);

cacheBuster = getCacheBuster();

loadImage();
}
function loadImage():void
{

var urlRequest:URLRequest = new URLRequest(phpFile +
getCacheBuster());
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, imageLoaded);
urlLoader.load(urlRequest);

}

function imageLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

var url:String = xml..banner.attribute(‘url’);
var name:String = xml..banner.attribute(‘name’);
var image:String = xml..banner.attribute(‘src’);
var directory:String = xml..banner.attribute(‘dir’);

adURL = url;

var loader:Loader = new Loader();
loader.load(new URLRequest(directory + image));
imageHolder.addChild(loader);

}

function loadAdURL(e:MouseEvent):void
{

navigateToURL(new URLRequest(adURL));
}

function getCacheBuster():String
{

var date:Date = new Date();
cacheBuster = “?cb=” + date.getTime();
return cacheBuster;

}

init();

282

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 282

Developing the PHP
At this point the ActionScript code is complete and you can focus on the PHP. The ads.php file is
made up of two global variables and a function.

The first global variable is the directory where the ad images are located. The second variable is the
array containing the ad data.

$adImageDir = “./adImages/”;
$bannerAds = array(

array(‘Banner Name’, ‘randomimage1.jpg’, ‘http://localhost/’),
array(‘Banner Name’, ‘randomimage2.jpg’, ‘http://localhost/’),

);

The getBannerAd function assigns the two variables as globals so they are accessible within this
function.

Random selection
The single banner ad is chosen from the array by using a random key. This random key is gener-
ated using the mt_rand() function and the length of the $bannerAds array.

$random = (mt_rand() % count($bannerAds));

The XML file is built by outputting a single line of image data that ActionScript will process.

function getBannerAd()
{

...

$xml .= “ <banner id=\”” . 0 .
“\” dir=\”” . $adImageDir .
“\” url=\”” . $bannerAds[$random][2] .
“\” name=\”” . $bannerAds[$random][0] .
“\” src=\”” . $bannerAds[$random][1] . “\” />\n”;

$xml .= “</banners>”;

return $xml;
}

print getBannerAd();

The PHP responsible for loading the banner ad is now complete. As you can see, the amount of
code needed to create this application is fairly small. This basic example can easily be extended to
add in categories or even multiple images that transition as the movie sits on a browser.

283

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 283

Here is the completed code for reference.

<?php

$adImageDir = “./adImages/”;

$bannerAds = array(
array(‘Banner 1’, ‘randomimage1.jpg’, ‘http://localhost/’),
array(‘Banner 2’, ‘randomimage2.jpg’, ‘http://localhost/’),
array(‘Banner 3’, ‘randomimage3.jpg’, ‘http://localhost/’),
array(‘Banner 4’, ‘randomimage4.jpg’, ‘http://localhost/’),
array(‘Banner 5’, ‘randomimage5.jpg’, ‘http://localhost/’),
array(‘Banner 6’, ‘randomimage6.jpg’, ‘http://localhost/’),
array(‘Banner 7’, ‘randomimage7.jpg’, ‘http://localhost/’),
array(‘Banner 8, ‘randomimage8.jpg’, ‘http://localhost/’)

);

function getBannerAd()
{

global $bannerAds, $adImageDir;

$xml = “<banners>\n”;

$random = (mt_rand() % count($bannerAds));

$xml .= “ <banner id=\”” . 0 .
“\” dir=\”” . $adImageDir .
“\” url=\”” . $bannerAds[$random][2] .
“\” name=\”” . $bannerAds[$random][0] .
“\” src=\”” . $bannerAds[$random][1] . “\” />\n”;

$xml .= “</banners>”;

return $xml;
}

print getBannerAd();

?>

You have now successfully created a fully functional PHP and Flash banner ad viewer. The con-
cepts learned in this section can easily be adapted to other projects. In fact, you are encouraged to
expand upon the example and create a more robust application.

This application can also be simplified by loading a static XML file; however, this is more difficult
to update and doesn’t offer the same level of customization. The application as PHP means you can
attach a MySQL database layer to it and return the image data from a database, which would most
likely be updated from another source.

284

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 284

Using PHP to Develop a Hit Counter
A hit counter is used to determine how many visitors are going to a site. Generally, the hit counter
is visible to visitors in the form of text or a graphic. Some sites use other forms of monitoring that
are not publicly available, for stats tracking purposes. The major draw and feature of a hit counter
is some graphical representation.

You can either use a flat file text or SQL database to store the data for the hit counter. This example
uses an SQL database for a couple of reasons: speed (the database can process information much
faster) and file permission concerns. In rare cases a server can place a lock on a file, which means
that file cannot be opened. This would force the hit counter to fail and is not the ideal result you
would be looking for.

Hit counter logic
The logic behind the hit counter is fairly simple. You first make a call to the database to capture the
current hit count and increment it by 1.

$oldCount = $row[‘amount’];
$newCount = $oldCount + 1;

When you have the new value, send it back into the SQL table. Do this by updating the existing
row and setting the amount column to the value of $newCount variable.

mysql_query(“UPDATE counter SET amount=” . $newCount);

The last step in the PHP code is to return the new value to Flash for it to display.

return “resp=” . $newCount;

That is all the PHP needs for the hit counter logic. Following is the completed file.

<?php

include ‘dbConn.php’;

$query = “SELECT amount from counter”;
$result = mysql_query($query);
$row = mysql_fetch_array($result);
$oldCount = $row[‘amount’];
$newCount = $oldCount + 1;

mysql_query(“UPDATE counter SET amount=” . $newCount);

return “resp=” . $newCount;

?>

285

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 285

Developing the Flash hit counter
With the PHP done, you can move onto the Flash development, which consists of an all
ActionScript application.

The hit counter needs to first call the PHP file, which serves two purposes. The first is calling the
PHP file to load and increment the count. The second purpose is to return the new value, which is
passed in to a dynamic text field.

The first part is to assign the phpFile variable, which is a reference to the hit counter file located
on the server.

var phpFile:String = “ http://localhost/ch10/hitCounter/”;

The first function to build is the loadHitCounter(), which is responsible for calling the server
and assigning the response handler.

function loadHitCounter():void
{

var urlRequest:URLRequest = new URLRequest(phpFile);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, handleServerResp);
urlLoader.load(urlRequest);

}

After the response is loaded, the handleServerResp() is called passing along the loaded data.
This data is then sent to the URLVariables class to pull out the resp property. This property is
where the current count is located.

function handleServerResp(e:Event):void
{

var loader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(loader.data);
var count:uint = variables.resp;
...

}

The count is finally placed in the dynamic text field, which is not formatted in this example, but
you can easily add this on your own.

var txt:TextField = new TextField();
txt.selectable = false;
txt.width = 200;
txt.text = count + “ visitors”;

}

The absolute last line of code in the ActionScript is the call to the loadHitCounter function,
which kicks it all off.

loadHitCounter();

286

Developing ApplicationsPart IV

18_258248 ch11.qxp 3/28/08 1:41 PM Page 286

Summary
In this chapter you learned the elements of developing and designing an application. Then once
you understood how the application should be constructed you built a chat client using PHP and
Flash.

In the next section you learned how to develop a Flash-based photo gallery with dynamic category
and image support using XML.

The last section was devoted to developing other applications using Flash, PHP, and MySQL to bet-
ter understand the concepts.

You should now have a good idea how to build robust applications that take advantage of dynamic
data for updating and functionality.

287

Developing Basic Applications 11

18_258248 ch11.qxp 3/28/08 1:41 PM Page 287

18_258248 ch11.qxp 3/28/08 1:41 PM Page 288

In this chapter, you learn about developing complete applications from
the ground up. The focus is on class-based designs that you can easily
update later on. The main aspect of this chapter will be how to use Flash

and PHP to develop these applications.

This chapter is broken up into four applications: a PayPal cart, custom shop-
ping cart, Amazon searcher, and a flickr photo gallery searcher. Each applica-
tion section starts with the PHP code and continues with the ActionScript.
Building an application like this makes it easier to test as you build and
reduces the amount time in the development process.

The examples in this chapter are built using custom classes, which are cov-
ered in Chapter 9. If you haven’t read that chapter yet, I strongly recommend
you do so before continuing on in this chapter. Of course, if you have used
classes in the past, then by all means continue on.

Understanding Real-World
Applications
A real-world application is one that has been designed, tested, and deployed
with the intention that other users will be using it.

Just like in a real application there will be some sections that use a third-
party Application Programming Interface (API) to load in and search data.
When working with an API it is common to find a list of the methods and
calls allowed as shown in Figure 12.1.

289

IN THIS CHAPTER
Using PayPal in Flash

Developing a shopping cart

Searching Amazon

Developing a photo gallery

Developing Real-World
Applications

19_258248 ch12.qxp 3/28/08 1:42 PM Page 289

FIGURE 12.1

The flickr API list, which displays which methods and properties are publically available

An open API doesn’t always mean anyone can gain access. For example, with flickr you are
required to pass along a key that authorizes a request. This is not only to lock down certain aspects
of an API, but also stops spamming and automated responses that could result in the API being
disabled.

The Amazon and flickr examples in this chapter use those APIs, but the first thing to look at are
the rules and requirements for the API that you are using.

Using PayPal in Flash
Working with PayPal in Flash is similar to HTML because PayPal offers a common set of connec-
tion and access abilities. However, one advantage to developing the solution in Flash is the ability
to enhance the user experience as Flash offers more fluid communications with other services
because it does not need to reload the entire page or open any additional windows.

290

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 290

Signing up for PayPal Premier
Before you begin to write the code for interfacing with PayPal, create a PayPal Premier account,
which you can use to track your sales and authenticate your requests. It only takes a few minutes
to set up an account, and it doesn’t cost anything.

To set up a PayPal Premier account, follow these steps:

1. In your Web browser, navigate to www.paypal.com. Choose Get Started ➪ Account
Types.

2. On the PayPal Account Types page, click Sign Up Now. The Choose Account Type page
appears.

3. Under Premier Account, click Start Now. In the Create a PayPal Account form that
appears (see Figure 12.2), type the requested information.

4. After you submit your form, you will received a confirmation e-mail. You must respond
to the e-mail to activate your account.

5. Log in and test your new account.

Remember, you must activate the account via e-mail before you can use it.

FIGURE 12.2

The PayPal account registration screen

NOTENOTE

291

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 291

At this point, you should have a working PayPal login. Using the account you just registered for
you can login to PayPal and begin setting up the account specifics.

The system requires a login and password to generate content. However, in order to
submit a data request you only need to provide your e-mail address. This is used to

ensure the request is correct. At no time should you place your PayPal password in this form.

Click the Merchant link on the top of the page to visit the Buy Now generator page. The other
options on the first screen are not important at this point. Finally, click Create Button, which will
move to the next page where the HTML code is for the Buy Now button. Copy the HTML code
that is generated by PayPal for the Buy Now buttons.

This code is used to build the Flash example. Following is the sample code copied from PayPal’s
merchant system generator that you just visited.

<form action=”https://www.paypal.com/cgi-bin/webscr”
method=”post”>

<input type=”hidden” name=”cmd” value=”_xclick”>
<input type=”hidden” name=”business” value=”{email_address}”>
<input type=”hidden” name=”item_name” value=”{item_name}”>
<input type=”hidden” name=”item_number” value=”{item_number}”>
<input type=”hidden” name=”amount” value=”{item_amount}”>
<input type=”hidden” name=”currency_code” value=”USD”>
<input type=”hidden” name=”weight” value=”1”>
<input type=”hidden” name=”weight_unit” value=”lbs”>
<input type=”hidden” name=”lc” value=”US”>
</form>

Ensure that you don’t have Button Encryption enabled; doing so makes it impossible to
grab the necessary information to build the Flash button.

As you can see, the code generated for the HTML form has all of the necessary variables that will
be used to create a Flash button. The next step is to build the Flash code that will make the Buy
Now button for the application.

Here is the ActionScript code needed to interface with PayPal, as you can see this code is very simi-
lar to the existing HTML code you generated on the PayPal page. The first part to focus on is the
url variables that are responsible for building the POST data. This POST data is passed along to
PayPal when the user clicks Buy Now.

// Paypal variables
var pp_cmd:String = “_xclick”;
var pp_business:String = “store@example.com”;
var pp_item_name:String = “sample product”;
var pp_item_number:String = “0001”;
var pp_amount:String = “24.99”;
var pp_currency:String = “USD”;
var pp_weight:String = “1”;
var pp_weight_unit:String = “lbs”;
var pp_location:String = “US”;

NOTENOTE

NOTENOTE

292

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 292

Even though you can clearly see numbers in the block of variables, all of the parameters are set as
strings to be compatible with the HTML equivalent. The next piece is to establish the URL, which
will be used to interface with PayPal. This is essentially the same variable as action, which is
found in the original HTML.

var paypalURL:String = “https://www.paypal.com/cgi-bin/webscr”;

When the PayPal variables and data are established, you can create the code that is called when the
Buy Now button is clicked.

Here is the function that is used to call PayPal. This method doesn’t require the custom variables to
be passed in because they are defined outside of the function. Defining a variable outside a func-
tion is scoped so any function has access to them. If this variable is defined within the function it
would only be visible to the function in which it is defined. The exception is, of course, if the func-
tion is global or the variable is returned from the created function.

function callPaypal(e:MouseEvent):void
{

var urlVariables:URLVariables = new URLVariables();
urlVariables.cmd = pp_cmd;
urlVariables.business = pp_business;
urlVariables.item_name = pp_item_name;
urlVariables.item_number = pp_item_number;
urlVariables.amount = pp_amount;
urlVariables.currency_code = pp_currency;
urlVariables.weight = pp_weight;
urlVariables.weight_unit = pp_weight_unit;
urlVariables.lc = pp_location;

var urlRequest:URLRequest = new URLRequest(paypalURL);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;
sendToURL(urlRequest);

}

Using POST data
The method of the data sent to PayPal is in POST format. This means the variables are included in
the call, but not on the URL as seen with GET. Using the POST format holds a few advantages, the
first being the URL is clean and can’t really be tampered with. The second is the added level of
security when passing moderately sensitive data to the server.

If you need to send highly sensitive data, such as billing or credit card information, it is important
that you use an HTTPS call. The reason for that is POST really only becomes a Security by
Obscurity and isn’t the safest result.

293

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 293

This example makes use of the constant POST variable that is found in the URLRequestMethod.
Of course, you can simply use the literal string POST because this is what the constant actually has
for a variable.

urlRequest.method = URLRequestMethod.POST;

Using sendToURL
In previous examples, you may have noticed the use of navigateToURL, which calls a URL and
offers the ability to send GET data across the URL. This example calls for POST data, so the use of
sendToURL is a better option. It is important to understand that the sendToURL method sends
the request to the server, but ignores any response that is returned.

sendToURL(urlRequest);

Setting up PayPal communication
The final step is to assign the button action that is attached to the Buy Now MovieClip. Simply
place a MovieClip on the Stage and give it the instance name buyNowBtn. If you choose to have
more than one button, I recommend a Class structure that passes the PayPal data to minimize the
amount of code needed.

The callPaypal function is attached to the button using an event listener. The CLICK event is
used, which is called when the user clicks the button.

buyNowBtn.buttonMode = true;
byNowBtn.useHandCursor = true;
buyNowBtn.addEventListener(MouseEvent.CLICK, callPaypal);

The last step is to put all of the code together and test it.

// Paypal variables
var pp_cmd:String = “_xclick”;
var pp_business:String = “store@example.com”;
var pp_item_name:String = “sample product”;
var pp_item_number:String = “0001”;
var pp_amount:String = “24.99”;
var pp_currency:String = “USD”;
var pp_weight:String = “1”;
var pp_weight_unit:String = “lbs”;
var pp_location:String = “US”;

var paypalURL:String = “https://www.paypal.com/cgi-bin/webscr”;

function callPaypal(e:MouseEvent):void
{

var urlVariables:URLVariables = new URLVariables();
urlVariables.cmd = pp_cmd;

294

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 294

urlVariables.business = pp_business;
urlVariables.item_name = pp_item_name;
urlVariables.item_number = pp_item_number;
urlVariables.amount = pp_amount;
urlVariables.currency_code = pp_currency;
urlVariables.weight = pp_weight;
urlVariables.weight_unit = pp_weight_unit;
urlVariables.lc = pp_location;

var urlRequest:URLRequest = new URLRequest(paypalURL);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;
sendToURL(urlRequest);

}

buyNowBtn.buttonMode = true;
byNowBtn.useHandCursor = true;
buyNowBtn.addEventListener(MouseEvent.CLICK, callPaypal);

At this point, you have a working example of a Buy Now button for PayPal. It is just a matter of
adding the specific item information. You can also create a class to make this creation process eas-
ier, as mentioned earlier.

PayPal also offers a shopping cart–based system where you can allow the user to choose multiple
items and quantities. This item info is stored in the same basic format POST data, but keeps track
of each individual item. Whether you use the cart option or a one-item Buy Now solution you only
need to send one request.

This example didn’t actually require the use of any PHP. You can easily extend the example by first
sending the order information to PHP and storing the purchases for your own order tracking sys-
tem. PayPal even offers solutions for developers to directly connect to their payment system and
get confirmation if an order goes through. This service is beyond the scope of the book, but PayPal
provides adequate documentation to get started.

Using Flash and PHP to Build a Cart
The previous section focused on building a Buy Now button in Flash using PayPal as the payment
system. That system works pretty well, but it doesn’t really offer the developer complete control of
the cart, payment, and storage components. Most of the time when you choose to build a custom
solution you will end up with better results. This is not to say everyone can develop the next
PayPal interface, but how much of that site do you use? Building a custom solution is where you
get to focus on the features you will use and exclude the ones you won’t.

This shopping cart is broken into four parts: design, MySQL, PHP, and the ActionScript that brings
it all together.

295

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 295

Designing the shopping cart
The shopping cart application will be built using classes for reusability. This also makes it easier to
modify later on.

For more information on ActionScript classes, see Chapter 9.

Developing the StoreItem class
The first portion of code to focus on will be the individual product items that will be displayed to
the left of the shopping cart. The store items MovieClip will be dynamically added to the Stage
and will be assigned to a custom class StoreItem.

The class is responsible for assigning the store item variables and displaying the necessary values.
Just like the class chapter, these classes are built up of stand-alone packages for simplicity, so there
is no need to provide a package structure.

The first part of the code imports the MovieClip and TextField classes. This custom class
extends the MovieClip class and the TextField needs to be loaded because there are text
boxes in the movieclip.

import flash.display.MovieClip;
import flash.text.TextField;

There are five private variables that are used to hold the item specific data. This data is later shared
with the shopping cart, but for now the data just needs to be stored.

private var albumName:String;
private var albumDesc:String;
private var albumThumb:String;
private var albumPrice:String;
private var storeItemID:uint;

The StoreItem method is left empty and actually isn’t required because the ActionScript com-
piler will place it automatically, but for completeness it is a good idea to have it.

function StoreItem() {}

The first custom method is responsible for saving the item data to the private variables that were
just defined. The five arguments defined in this function are passed from the caller and will hold
the item data that is used later.

public function setStoreData(
id:uint,
n:String,
d:String,
t:String,
p:String):void

{

CROSS-REFCROSS-REF

296

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 296

storeItemID = id;
albumName = n;
albumDesc = d;
albumThumb = t;
albumPrice = p;

...
}

The two text boxes that hold the name and description for each item are the last part of this cus-
tom class. The data that was passed in is assigned to each text box. Normally, you would probably
check for valid data, but because you are controlling the PHP that is returned you can be sure the
data will be valid.

nameTxt.text = albumName;
descTxt.text = albumDesc;

The final method in this class is used to send the data back to whoever calls it. The return action
sends back a custom object that is filled with the item data in the previous method.

public function getItem():Object
{

return
{

target:this,
id:storeItemID,
name:albumName,
price:albumPrice

};
}

The above method has a special type of return defined. This return value is an inline Object which
is used to simplify code by excluding unnecessary variable names.

Each of the types: Array, Object, and String have a shorthand way to define them. For exam-
ple, the Object type can be defined simply with:

var sampleObj:Object = {name:value};

Table 12.1 shows the type and the shorthand equivalent for it. Using the shorthand values can save
development time because you have to type less.

The shorthand can create problems because you create a “weakly” typed object.
Therefore you cannot benefit from compile time type checking. You may access the

dynamic object improperly and you will not know until runtime. This means that you should use cau-
tion when creating your properties and variables in shorthand.

WARNING WARNING

297

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 297

TABLE 12.1

Types and Shorthand Equivalents
Array new Array() []

Object new Object() {}

String new String() “”

Both application methods that were created are public because they are called from external
classes. You could also build an intermediate function that offers a higher level of security, which
would be responsible for calling the private methods.

With the StoreItem class built, you can move to the ShoppingCartItem, which is attached to
the shopping cart item MovieClip.

Developing the ShoppingCartItem class
This class is basically responsible for holding the item id, which will be used in the
ShoppingCart class. Just like the previous class, this one also needs to import the MovieClip
and TextField classes to accommodate the components located in this MovieClip.

package
{

import flash.display.MovieClip;
import flash.text.TextField;

public class ShoppingCartItem extends MovieClip
{

private var cartItemID:uint;
function ShoppingCartItem() { }

public function getID():uint
{

return cartItemID;
}

public function setID(id:uint):void
{

cartItemID = id;
}

}

}

The last portion of this class is responsible for getting and setting the cartItemID. This value is
used to link the products with the cart items.

298

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 298

The last custom ActionScript class is the ShoppingCart. This class is fairly large, so it will be
broken up into pieces to better understand it. The best place to start is to first look at a class skele-
ton, which shows the methods that are used in this application. I often build this skeleton first,
which can double as an outline.

package
{

public class ShoppingCart extends MovieClip
{

function ShoppingCart() {}

public function addProduct(product:Object):void {}
public function removeProduct(e:MouseEvent):void {}
public function updateList():void {}
public function updateTotal():void {}
public function checkout():void {}
public function setGatewayURL(url:String):void {}
private function round2D(n:Number):Number {}

}
}

The most logical place to begin on this class is by assigning the Class imports that will be
needed.

import flash.display.MovieClip;
import flash.text.TextField;
import flash.events.MouseEvent;
import flash.net.*;

The properties for this class consist of all private variables so they can’t be accessed by other
classes.

private var cartItemCount:uint = 0;
private var cartContents:Array;

private var cartItemHeight:uint = 20;
private var lineSpacing:uint = 30;
private var gateway:String;

The constructor is responsible for setting up the Checkout button and initializing the cart item
array.

function ShoppingCart()
{

cartContents = new Array();
cont = cartContents;
checkoutBtn.addEventListener(MouseEvent.CLICK, function():void
{

var xml:String = “<?xml version=’1.0’ ?>\n\r”;
xml += “<products total=\”” + totalTxt.text + “\”>”;
for(var i in cont)

299

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 299

{
xml += “<product>”;
xml += “\t<quantity>” +

cont[i].cartItem.quantityTxt.text
+ “</quantity>”;

xml += “\t<name>” + cont[i].name + “</name>”;
xml += “\t<price>” + cont[i].price + “</price>”;
xml += “</product>”;

}
xml += “</products>”;

var variables:URLVariables = new URLVariables();
variables.action = “checkout”;
variables.xml = xml;

var urlRequest:URLRequest = new URLRequest(gateway);
urlRequest.data = variables;
urlRequest.method = “GET”;

navigateToURL(urlRequest);
})

}

The contents of the Checkout button may seem overwhelming, but it is simply building a custom
XML document that will be passed to the PHP. The xml variable starts off by assigning the proper
XML heading. Without this heading, PHP would assume the file is incomplete and not load it.

var xml:String = “<?xml version=’1.0’ ?>\n\r”;

The for.. loop is responsible for going through the cartContents array and pulling out each
cart item. Once inside the loop, the cartItem is a reference to the custom ShoppingCartItem
that was created in the previous section. These items hold the quantity and item id, which will be
placed in this custom XML document.

cont = cartContents;
for(var i in cont)
{

...
xml += “\t<name>” + cont[i].name + “</name>”;
...

}

Once the for.. loop completes the process of building the XML, the PHP file located on the
server can be called. The request is a basic GET, passing along the XML data.

var variables:URLVariables = new URLVariables();
variables.action = “checkout”;
variables.xml = xml;

var urlRequest:URLRequest = new URLRequest(gateway);

300

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 300

urlRequest.data = variables;
urlRequest.method = “GET”;

navigateToURL(urlRequest);

The PHP code expects two variables to be passed along. The action in this case is checkout, and
the xml data that was generated by the selected shopping cart items in the shopping cart code.

The next step is to build the methods. The first method is responsible for adding a product to the
shopping cart. The shopping cart is built up of ShoppingCartItem class instances, but this class
is actually a movieclip in the library. The first step is to create a new instance of this
movieclip. After creating a new instance, an event listener is added to the removeProduct
button, which is located within the movieclip. The default quantity of a new item is set to 1;
this can then be updated, which you learn in the next section.

public function addProduct(product:Object):void
{

...
var cartItem:ShoppingCartItem = new ShoppingCartItem();
cartItem.removeItemBtn.addEventListener(MouseEvent.CLICK,
removeProduct);
cartItem.quantityTxt.text = “1”;
cartItem.nameTxt.text = product.name;
...

}

The next step is to create a fake ID that you can use to add and remove the instance later.

cartItem.setID(cartItemCount); // faux id for removal system

The placement of a new shopping cart item instance is determined by first multiplying the
cartItemCount by the height and then adding a spacing to that.

cartItem.y = (cartItemCount * cartItemHeight) + lineSpacing;

Once the new instance is positioned, it is temporarily added to the product object so that future
pieces of code can access it without hunting for it. Then it is added to the cartContents array.

product.cartItem = cartItem;
cartContents.push(product);

The next portion of the addProduct method is responsible for adding the instance to the display
list, incrementing the count and finally making a call to the price updater.

addChild(cartItem);
cartItemCount++;
updateTotal();

At this moment, if you were to add an item to the shopping cart it would allow duplicates to be
added. When the desired result is to increment the quantity a for.. loop is placed at the begin-
ning of the method to take care of this.

301

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 301

public function addProduct(product:Object):void
{

// Look for product in list
for(var i in cartContents)
{

if(cartContents[i].id == product.id)
{
var q:Number = cartContents[i].cartItem.quantityTxt.text;

cartContents[i].cartItem.quantityTxt.text = q + 1;
updateTotal();
return;

}
}
...

}

The loop is set up to first check for a valid cart item ID. If a valid ID is found, the quantity is
assigned to the q variable. This is then appended to the value of the quantity text box and a call to
the price updater is made to ensure that it is always correct. A return is used to halt any further
execution of code located within this function.

This method was probably the largest, as it is responsible for a lot of the functionality in this appli-
cation. The completed code is provided in one final display at the end of this section, and of
course, is also available on the book’s Web site.

The next method is used to remove an item from the shopping cart. The getID method that was
created in the ShoppingCartItem class is used in this function to retrieve the id. The parent
reference is used to take the target (Delete button) and inform the code what the parent or upper
object is. This provides a solid link to the ShoppingCartItem class instance and ultimately the
method to retrieve the id.

public function removeProduct(e:MouseEvent):void
{

var id:uint = e.target.parent.getID();
...

}

After the id is known it can be used to remove the item from the array of cart items and from the
display list. The splice method is used to delete the cart item using the id, which is actually the
position the item can be found in the array. The second argument in the splice method is to ensure
only one element is deleted.

cartContents.splice(id, 1);
removeChild(e.target.parent);
cartItemCount--;

If the second argument is not provided, the splice method will remove all of the items
from that point.NOTENOTE

302

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 302

The Flash file has a note automatically added that is displayed to inform the user that no items
exist in the cart. However, this is removed when an item is added. The problem is, if the user
removes all of the items from the cart it needs to be displayed again, so a simple if statement is
added to the end of the remove method to handle this.

if(cartItemCount == 0)
{

noItemsTxt.visible = true;
}

Finally, a call to the updateTotal and updateList methods is made to ensure the data stays
consistent and the price is updated.

updateList();
updateTotal();

The cart items are added to the array as the user clicks the Add to Cart button; however, you may
remember in the previous section that the cart item can be found in the array using the cart id.
The problem is if an item is removed the list is now mixed and an incorrect item can be added or
removed. The solution is to provide new id’s as an item is removed. This is accomplished by loop-
ing through all the remaining cart items and making a call to set a new id.

public function updateList():void
{

for(var i:uint=0; i < cartItemCount; i++)
{

cartContents[i].cartItem.setID(i);
}

}

The other side effect to removing an item freely is it can create a gap in the list. This doesn’t change
how the application functions, but visually it isn’t the cleanest. The way around this little issue is to
realign the list as an item is removed.

public function updateList():void
{

for(var i:uint=0; i < cartItemCount; i++)
{

cartContents[i].cartItem.setID(i);
}
cartContents[i].cartItem.y = (i * cartItemHeight) +
lineSpacing;

}

In the previous methods there has been a call to updateTotal. This method is responsible for
keeping the price total updated as items are added and edited. The process is to loop through the
cart items, multiply the price by the quantity, and display the final result. The result is then tested
for valid numbers and a decimal (.) is provided if needed.

303

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 303

public function updateTotal():void
{

var total:Number = 0;

for(var i:uint=0; i < cartItemCount; i++)
{

total += Number(cartContents[i].price) *
Number(cartContents[i].cartItem.quantityTxt.text);

}

totalTxt.text = “$” + String(round2D(total));

// tack on extra 0 if needed or two 0’s
if(totalTxt.text.indexOf(‘.’) == -1)
{

totalTxt.appendText(“.00”);
}
else if(totalTxt.text.indexOf(‘.’) + 2 == totalTxt.text.length)
{

totalTxt.appendText(“0”);
}

}

The setGatewayURL method set the gateway property which refers to the url that is called when
the Checkout button is clicked.

public function setGatewayURL(url:String):void
{

gateway = url;
}

At this point the ShoppingCart class has been created. The last portion of code that is needed
will be placed on the Timeline. This code will be responsible for setting everything up and ulti-
mately controlling the individual elements.

The Timeline ActionScript could also be placed in a Document class, which is explained in
Chapter 9. However, for simplicity, it will be included directly in the Flash file.

The first part is to assign the php file, which will be built in the next section.

var phpFile:String = “http://localhost/ch11/store/flashCart.php”;

The shopping cart is already on the stage with an instance name and is simply assigned to the
cart variable to be used in the rest of the code. The next step is to create an empty movieclip
that holds the store items.

var cart:MovieClip = shoppingCart;
cart.setGatewayURL(phpFile);

var storeItems:MovieClip = new MovieClip();

304

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 304

storeItems.x = 25;
storeItems.y = 80;

The request to the server is pretty much the same process that has been used in the past. The only
unique portion is the action that is attached to the end of the url.

var urlRequest:URLRequest = new URLRequest(phpFile
+ “?action=getproducts”);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, productsLoaded);
urlLoader.load(urlRequest);

After the server loads the data, the response function is called. This function is responsible for
parsing the XML and adding the store item to the shopping cart. Here is a sample of the XML that
is returned and parsed.

<products>
<product id=”1”

name=”Cool Tracks”
desc=”Another hot release”
thumbnail=”” />

</products>

This function is also responsible for loading a new instance of the StoreItem movieclip,
which contains the information for each product. The button in this instance also gets an event
attached to it that is responsible for adding a new item to the shopping cart.

function productsLoaded(e:Event):void
{

...
var id:uint = 0;
for each(var xmlItem in xml..product)
{

var item:StoreItem = new StoreItem();
item.y = 85 * id;
item.setStoreData(

id,
xmlItem.attribute(‘name’),
xmlItem.attribute(‘desc’),
xmlItem.attribute(‘thumbnail’));
xmlItem.attribute(‘price’));

item.addToCartBtn.addEventListener(MouseEvent.CLICK,
addItemHandler);

storeItems.addChild(item);
id++;

}
addChild(storeItems);

}

305

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 305

The addItemHandler function first grabs the unique object and adds the product to the cart.
The object is found by loading the object from the parent container, similar to the code that was
used in the previous section. The to trace() statements are simply for testing and are never seen
by the final user of the application.

function addItemHandler(e:MouseEvent):void
{

var prod:Object = e.target.parent.getItem();

trace(“Add Item: “ + e.target.parent);
trace(“Item ID: “ + prod.id);

cart.addProduct(prod);
}

It took a while and resulted in a lot of new code, but all of the ActionScript needed for this exam-
ple is complete. The next part to focus on is the PHP code that is called by the Checkout button.

Actually, the PHP and MySQL go hand in hand, so it is better to build the required SQL table
before the PHP is written. This makes it easier to debug in the long run.

CREATE TABLE flashStore_products (
`id` int NOT NULL AUTO_INCREMENT,
`name` varchar(25),
`category` int(3) NOT NULL DEFAULT 0,
`description` TEXT,
`thumbnail` varchar(200) NOT NULL DEFAULT “”,
`price` varchar(10) NOT NULL,
`active` int(1) NOT NULL DEFAULT 1,
PRIMARY KEY (`id`)

)

The SQL is responsible for holding all of the information for each item in the store. In a complete
application, this would probably be populated by a content management system. For this example,
the INSERT code is provided so that you can quickly test the example.

INSERT INTO flashStore_products (name, description,price)
VALUES (‘Cooler Music’, ‘Another new one’);

Building the PHP
When the SQL is set up the PHP can be written. The PHP is responsible for loading the store items
and handling a checkout request. These two tasks can be broken up into multiple files and are
probably better off as classes, but for simplicity it will all be located within this one php file.

Before the database can be used, a connection needs to be established. This is accomplished by
loading an external file that holds the database connection information.

include ‘dbconn.php’;

306

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 306

The contents of that dbconn.php file are seen here.

<?php

$host = “localhost”;
$user = “username”;
$pass = “password”;
$database = “database name”;

$link = mysql_connect($host, $user, $pass);
mysql_select_db($database, $link);

unset($host);
unset($user);
unset($pass);
unset($database);

?>

Now you can determine which action is being requested. There are two possible options:
getproducts, which returns an xml document of store items, or checkout, which loads the
xml from Flash and displays it.

if($_GET[‘action’] == ‘getproducts’)
{

print getProducts();
}
else if($_GET[‘action’] == ‘checkout’)
{

$xml = new SimpleXMLElement($_GET[‘xml’]);

$nodeCount = count($xml->product);

print “<table border=\”1\” width=\”500\”>”;
print “<tr><td>Quantity</td>”;
print “<td>Product</td>”;
print “<td>Price</td></tr>”;

for($x=0; $x < $nodeCount; $x++)
{

print “<tr style=\”background-color:#eeeeee;\”>”;
print “<td style=\”width:60px;text-align:center;\”>”
. $xml->product[$x]->quantity . “</td>”;
print “<td>” . $xml->product[$x]->name . “</td>”;
print “<td>” . $xml->product[$x]->price . “</td></tr>”;

}

print “<tr>”;
print “<td colspan=\”3\”>Total: ”

307

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 307

. getAttribute($xml, ‘total’) . “</td></tr>”;

print “</table>”;
print “
Checkout code goes here
”;

}

The getproducts action simply makes a call to another function that returns the xml generated
from the database entries. The checkout action, as shown in Figure 12.3, is a little more involved.
It starts off by grabbing the XML data passed from Flash. This XML is loaded into the SimpleXML
library where it is parsed and each of the store items is retrieved.

FIGURE 12.3

Here is a sample of the checkout page, loaded from Flash. This page is visible when the Checkout button is
clicked.

This function is called from the first action and is responsible for building an XML document from
the data in the database. The store items are broken down by id, name, desc, and thumbnail,
which are all visible in the Flash file.

The result set from MySQL returns any item that is currently active. This result is then passed into
a while loop, which is where the XML data is built. Finally, the XML is returned to the caller and,
in this example, is printed to the screen for Flash to load.

308

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 308

function getProducts()
{

global $link;

$result = mysql_query(“SELECT * FROM flashStore_products
WHERE active=1”, $link);

$xml = “<products>\n”;
while($row = mysql_fetch_array($result))
{

$xml .= “<product id=\”” . $row[‘id’] .
“\” name=\”” . $row[‘name’] .
“\” desc=\”” . $row[‘description’] .
“\” thumbnail=\”” . $row[‘thumbnail’] . “\” />\n”;

“\” price=\”” . $row[‘price’] .”\” />\n”;

}
$xml .= “</products>”;

return $xml;
}

The last function is actually a forgotten feature of SimpleXML. This function takes two arguments,
the xml and the attribute name you are looking for. It first loops through all of the arguments and
matches those arguments against the passed-in variable. It returns either the value of the attribute
or false, depending on what the result is.

function getAttribute($xml, $name)
{

foreach($xml->attributes() as $key=>$val)
{

if($key == $name)
{

return (string)$val;
}

}
return false;

}

Now that all of the code is complete, here are the three classes and Timeline code provided in one
place for easier viewing and comparison with your code.

ShoppingCart
package
{

import flash.display.MovieClip;
import flash.text.TextField;
import flash.events.MouseEvent;

309

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 309

import flash.net.*;

public class ShoppingCart extends MovieClip
{

private var cartItemCount:uint = 0;
private var cartContents:Array;

private var cartItemHeight:uint = 20;
private var lineSpacing:uint = 30;
private var gateway:String;

function ShoppingCart()
{

cartContents = new Array();

checkoutBtn.addEventListener(MouseEvent.CLICK,
function():void

{
var xml:String = “<?xml version=’1.0’ ?>\n\r”;
xml += “<products total=\”” + totalTxt.text + “\”>”;

for(var i in cartContents)
{

xml += “<product>”;
xml += “<quantity>” +
cartContents[i].cartItem.quantityTxt.text
+ “</quantity>”;
xml += “<name>” + cartContents[i].name
+ “</name>”;
xml += “<price>” + cartContents[i].price
+ “</price>”;
xml += “</product>”;

}
xml += “</products>”;

var variables:URLVariables = new URLVariables();
variables.action = “checkout”;
variables.xml = xml;

var urlRequest:URLRequest = new URLRequest(gateway);
urlRequest.data = variables;

urlRequest.method = “GET”;

navigateToURL(urlRequest);
})

}

public function addProduct(product:Object):void
{

// Look for product in list

310

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 310

for(var i in cartContents)
{

if(cartContents[i].id == product.id)
{
var quantity:Number =
cartContents[i].cartItem.quantityTxt.text;

cartContents[i].cartItem.quantityTxt.text =
quantity + 1;

updateTotal();
return;
}

}

if(cartItemCount == 0)
{

noItemsTxt.visible = false;
}

var cartItem:ShoppingCartItem =
new ShoppingCartItem();

cartItem.removeItemBtn.addEventListener(
MouseEvent.CLICK, removeProduct);

cartItem.quantityTxt.text = String(1);
cartItem.nameTxt.text = product.name;
cartItem.setID(cartItemCount);

cartItem.y =
(cartItemCount * cartItemHeight) + lineSpacing;

product.cartItem = cartItem;

cartContents.push(product);

addChild(cartItem);

cartItemCount++;

updateTotal();
}

public function removeProduct(e:MouseEvent):void
{

var id:uint = e.target.parent.getID();

cartContents.splice(id, 1);
removeChild(e.target.parent);

311

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 311

cartItemCount--;

if(cartItemCount == 0)
{

noItemsTxt.visible = true;
}

updateList();
updateTotal();

}

public function updateList():void
{

for(var i:uint=0; i < cartItemCount; i++)
{

cartContents[i].cartItem.setID(i);
cartContents[i].cartItem.y =
(i * cartItemHeight) + lineSpacing;

}
}

public function updateTotal():void
{

var total:Number = 0;
for(var i:uint=0; i < cartItemCount; i++)
{
total += Number(cartContents[i].price) *
Number(cartContents[i].cartItem.quantityTxt.text);
}

totalTxt.text = “$” + String(round2D(total));

// tack on extra 0 if needed or two 0’s
if(totalTxt.text.indexOf(‘.’) == -1)
{

totalTxt.appendText(“.00”);
}
else if(totalTxt.text.indexOf(‘.’) + 2 ==

totalTxt.text.length)
{

totalTxt.appendText(“0”);
}

}

public function setGatewayURL(url:String):void
{

gateway = url;
}

private function round2D(n:Number):Number

312

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 312

{
return Math.round(n * Math.pow(10, 2)) / Math.pow(10, 2);
}

}
}

ShoppingCartItem
package
{

import flash.display.MovieClip;
import flash.text.TextField;

public class ShoppingCartItem extends MovieClip
{

private var cartItemID:uint;

function ShoppingCartItem() { }
public function getID():uint
{

return cartItemID;
}

public function setID(id:uint):void
{

cartItemID = id;
}

}

}

StoreItem
package
{

import flash.display.MovieClip;
import flash.text.TextField;

public class StoreItem extends MovieClip
{

private var albumName:String;
private var albumDesc:String;
private var albumThumb:String;
private var albumPrice:String;
private var storeItemID:uint;

function StoreItem() {}

public function setStoreData(
id:uint, n:String,

313

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 313

d:String, t:String, p:String):void
{

storeItemID = id;
albumName = n;
albumDesc = d;
albumThumb = t;
albumPrice = p;

nameTxt.text = albumName;
descTxt.text = albumDesc;

}

public function getItem():Object
{

return {
target:this,
id:storeItemID,
name:albumName,
price:albumPrice

};
}

}
}

Timeline code
var phpFile:String = “http://localhost/ch11/store/flashCart.php”;

var cart:MovieClip = shoppingCart;
cart.setGatewayURL(phpFile);

var storeItems:MovieClip = new MovieClip();
storeItems.x = 25;
storeItems.y = 80;

var urlRequest:URLRequest = new URLRequest(phpFile +
“?action=getproducts”);

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, productsLoaded);
urlLoader.load(urlRequest);

function productsLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

trace(“XML: “ + xml);

var id:uint = 0;
for each(var xmlItem in xml..product)
{

314

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 314

var item:StoreItem = new StoreItem();
item.y = 85 * id;
item.setStoreData(id,

xmlItem.attribute(‘name’),
xmlItem.attribute(‘desc’),
xmlItem.attribute(‘thumbnail’));
xmlItem.attribute(‘price’));

item.addToCartBtn.addEventListener(
MouseEvent.CLICK, addItemHandler);

storeItems.addChild(item);
id++;

}
addChild(storeItems);

}

function addItemHandler(e:MouseEvent):void
{

var prod:Object = e.target.parent.getItem();

trace(“Add Item: “ + e.target.parent);
trace(“Item ID: “ + prod.id);

cart.addProduct(prod);
}

PHP code
<?php

$host = “localhost”;
$user = “username”;
$pass = “password”;
$database = “database name”;

$link = mysql_connect($host, $user, $pass);
mysql_select_db($database, $link);

unset($host);
unset($user);
unset($pass);
unset($database);

?>

<?php

include ‘dbconn.php’;

function getProducts()
{

315

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 315

global $link;

$result = mysql_query(“SELECT * FROM flashStore_products
WHERE active=1”, $link);

$xml = “<products>\n”;

while($row = mysql_fetch_array($result))
{

$xml .= “<product id=\”” . $row[‘id’] .
“\” name=\”” . $row[‘name’] .
“\” desc=\”” . $row[‘description’] .
“\” thumbnail=\”” . $row[‘thumbnail’] . “\” />\n”;

“\” price=\”” . $row[‘price’] .”\” />\n”;

}

$xml .= “</products>”;

return $xml;
}

if($_GET[‘action’] == ‘getproducts’)
{

print getProducts();
}
else if($_GET[‘action’] == ‘checkout’)
{

$xml = new SimpleXMLElement($_GET[‘xml’]);

$nodeCount = count($xml->product);

print “<table border=\”1\” width=\”500\”>”;
print “<tr><td>Quantity</td>”;
print “<td>Product</td>”;
print “<td>Price</td></tr>”;

for($x=0; $x < $nodeCount; $x++)
{

print “<tr style=\”background-color:#eeeeee;\”>”;
print “<td style=\”width:60px;text-align:center;\”>”

. $xml->product[$x]->quantity . “</td>”;
print “<td>” . $xml->product[$x]->name . “</td>”;
print “<td>” . $xml->product[$x]->price . “</td></tr>”;

}

print “<tr><td style=\”text-align:right;\” colspan=\”3\”>Total:
” . getAttribute($xml, ‘total’) .
“</td></tr>”;

print “</table>”;

316

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 316

print “
Checkout code goes here
”;
}

function getAttribute($xml, $name)
{

foreach($xml->attributes() as $key=>$val)
{

if($key == $name)
{

return (string)$val;
}

}
return false;

}

?>

The example is now complete; it is just a matter of placing the PHP on an active Web server. From
this point you can extend the example to have multiple categories, products, and images.
Realistically, building the application in a class format offers greater expandability, but don’t just
take my word for it. Experiment and extend the example.

Using PHP and Flash to Build an Amazon
Search Application
Amazon offers a very powerful set of tools designed to work with its site data. This section covers
the building of a search application using Amazon.com as the data source. This example uses the
ECS (Amazon E-Commerce Service), which provides direct access to Amazon’s amazing searching
and inventory system.

In order to use the ECS you need to have a valid Amazon access ID, which is provided when you
create a developer’s account. This registration process is quick and free; all you need is a valid
e-mail address and an active account.

Using the Amazon Web Service
To get started with creating a developers account, visit the Amazon Web Service (AWS) page at
www.amazon.com/gp/aws/landing.html.

Be sure to activate the account via e-mail before you begin to use it.

The AWS is set up to be accessed from different mediums. The format used for this example is
Representational State Transfer (REST), which is basically a formatted URL with all of the necessary
information provided in GET format.

NOTENOTE

317

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 317

Here is a sample request sent to Amazon, as shown in Figure 12.4, to return information about
possible book matches for a keyword or series of keywords.

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService&AWS
AccessKeyId={AWS_ACCESS_KEY}&Operation=ItemSearch&SearchIndex=
Books&ResponseGroup=Medium&Keywords={SEARCH_TERMS}

The AWS_ACCESS_KEY is the access id that is provided by Amazon, and the SEARCH_TERMS
would be the keyword(s) that are passed along for searching.

As you may have noticed, the XML response from Amazon is fairly complex. However, for this
example the focus will be on the book title, author, and thumbnail path. Amazon is actually very
nice to provide the amount of detail it does. You can build some pretty interesting applications
with the AWS system.

FIGURE 12.4

Here is the XML response from Amazon, after a search for “PHP”.

318

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 318

In fact, the URL sent to Amazon can be modified to search for different items or subjects all
together. The AWS is set up to even return valid error messages similar to this one if you don’t pro-
vide an operation parameter.

AWS.InvalidOperationParameterThe Operation parameter is invalid.
Please modify the Operation parameter and retry. Valid values
for the Operation parameter include TagLookup, ListLookup,
CartGet, SellerListingLookup, CustomerContentLookup,
ItemLookup, SimilarityLookup, SellerLookup, ItemSearch,
VehiclePartLookup, BrowseNodeLookup, CartModify, ListSearch,
CartClear...

The search system offers a lot of types and modifiers, and you don’t have to rely on this “create an
error” concept to see what is available. Amazon happens to provide very robust documentation in
the developer’s center. Log in for access.

Simplifying the XML response
When the XML response was loaded in the previous section, the result was overwhelming. There
are many XML nodes and data that just aren’t applicable to this application. You could pass this
raw data into Flash, but what if you want to cache the results? You would have a bunch of unused
information clogging up your database.

The idea is to build a custom XML response that only contains the data necessary for this
application.

<?php

$terms = “”;

define(“AWS_ACCESS_KEY”, “{AWS_KEY_GOES_HERE}”);

It is important to check for valid tags before a response is sent to Amazon. It really doesn’t harm
anything, but it could be considered a fraudulent request.

if(!empty($_GET[‘terms’]))
{

...
}

Assuming valid tags where found, build the request that will be sent to the AWS.

if(!empty($_GET[‘terms’]))
{

$terms = $_GET[‘terms’];
$request = ‘http://ecs.amazonaws.com/onca/xml’ .

‘?Service=AWSECommerceService&’ .
‘AWSAccessKeyId=’ . AWS_ACCESS_KEY .
‘&Operation=ItemSearch’ .

319

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 319

‘&SearchIndex=Books’ .
‘&ResponseGroup=Medium’ .
‘&Keywords=’ . $terms;

}

Now call the AWS, passing along the search parameters.

$rawXml = file_get_contents($request);

The response from the AWS is loaded using file_get_contents, which reads in the entire file
requested into a string. In this example, the string is saved to the $rawXML variable. A call to the
simplexml library is made to build a properly formatted XML object.

$xmlResponse = simplexml_load_string($rawXml);

The next step is to build the custom XML document that will be sent back to Flash when it is
requested. The nodeCount variable is hard-coded to 4 so that only four book results are saved.
Even if Amazon returns thousands, Flash only sees four.

$nodeCount = 4;

$xml = “<?xml version=\”1.0\” ?>\n<books>”;

for($i=0; $i < $nodeCount; $i++)
{

...
}

$xml .= “</books>”;

The contents of the for.. loop is where the majority of the XML building process occurs. For
example, to load the current book title, you first access the Items node. Once inside that node,
the selected Item node is accessed using the $i variable to determine which child should be refer-
enced. Inside the current child node, there is another child with the node name
ItemAttributes, which contains a title node and ultimately becomes the name of the book
for this selected child.

$xmlResponse->Items->Item[$i]->ItemAttributes->Title

As you can see, Amazon packs this XML file full of information, which in this instance makes it
sort of difficult to load the desired information. The process of loading the author and thumbnail
data is pretty much the same — just access each child and reference the desired node.

$xml .= “\t<book>”;
$xml .= “\t\t<title><![CDATA[“ . $xmlResponse->Items
->Item[$i]->ItemAttributes->Title . “]]></title>”;

$xml .= “\t\t<author><![CDATA[“ . $xmlResponse->Items
->Item[$i]->ItemAttributes->Author . “]]></author>”;

$xml .= “\t\t<price><![CDATA[“ . $xmlResponse->Items

320

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 320

->Item[$i]->ItemAttributes->ListPrice
->FormattedPrice . “]]></price>”;

$xml .= “\t\t<thumb>” . $xmlResponse->Items->Item[$i]
->SmallImage->URL . “</thumb>”;

$xml .= “\t</book>”;

The data to generate the XML is one line per $xml variable; the wrapping is to fit this
page and can potentially break your code.

The last portion of the PHP for this example creates a header type so XML readers know the format
that is being sent. Then it finally outputs it to the screen.

header(“content-type: text/xml”);
print $xml;

The Flash (ActionScript) required for the application is all in external classes. This is done because
it is easier to manage and maintain moving forward.

If you need a more in-depth explanation of classes, I strongly recommend you read
Chapter 9.

The Flash File (FLA) for this application consists of a simple design with a search box and button. The
main class, BookSearch, is assigned as the document class and is responsible for managing the over-
all application. Here is the class skeleton, which gives you an idea of what methods and properties are
used to create this application.

package
{

import flash.display.MovieClip;
import flash.events.*;
import flash.net.*;

public class BookSearch extends MovieClip
{

public var webServiceURL:String;
private var bookItems:Array;
private var bookItemsContainer:MovieClip;

public function BookSearch() {}

public function searchHandler(e:MouseEvent):void {}

public function loadSearchResults(terms:String):void {}

public function loadedResultsHandler(e:Event):void {}

private function removeOldResults():void {}
}

}

CROSS-REFCROSS-REF

CAUTION CAUTION

321

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 321

The constructor method is used to initialize the array, create a container movieclip, and add the
event listener to the Search button.

public function BookSearch()
{

bookItems = new Array();
bookItemsContainer = new MovieClip();
bookItemsContainer.y = 100;
searchBtn.addEventListener(MouseEvent.CLICK, searchHandler);

}

The final step of the constructor method is to add the new book container to the display list, which
ultimately makes it visible.

public function BookSearch()
{

bookItems = new Array();
bookItemsContainer = new MovieClip();
bookItemsContainer.y = 100;
searchBtn.addEventListener(MouseEvent.CLICK, searchHandler);
addChild(bookItemsContainer);

}

The next method to focus on is the searchHandler(). This method is called when the user
clicks the Search button. When this method is called it first checks the length of the data from the
search box to ensure a valid search will happen. If the value is of valid length, a call to remove the
old search results is made.

public function searchHandler(e:MouseEvent):void
{

if(searchTxt.text.length > 0)
{

removeOldResults();
loadSearchResults(searchTxt.text);

}
}

Once a valid search term is found, the next step is to set up and make the call to the PHP, which is
responsible for interfacing with the AWS. The call used in this example is very similar to previous
examples. You first set up the variables object, assign that to the URLRequest, create a new
loader instance, and finally assign an event listener.

public function loadSearchResults(terms:String):void
{

var urlVariables:URLVariables = new URLVariables();
urlVariables.terms = terms;

var urlRequest:URLRequest = new URLRequest(webServiceURL);

322

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 322

urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,
loadedResultsHandler);
urlLoader.load(urlRequest);

}

You might have noticed this method has been made public. This is done so other applications can
use the searching ability, because that is what reusability is all about. Of course, if you allow others
to call this method directly, you would most likely want to place another term check to make sure
bad data isn’t going to be sent.

Once the Web server returns the data, it is sent to the loadedResultsHandler() method. The
response is sent in XML format and, using a for..each loop each element is pulled out and sent
to a unique BookItem class instance.

var xml:XML = new XML(urlLoader.data);

for each(var item in xml..book)
...

The BookItem is referencing a movieclip in the library. This movieclip is prefilled with
dummy entries that are populated with the real data before they are displayed on the Stage.

var bookItem:BookItem = new BookItem();
bookItem.setValues(
item..title,
item..author,
item..price,
item..thumb

);
bookItem.y = (bookItems.length * (bookItem.height + 30));
bookItems.push(bookItem);
bookItemsContainer.addChild(bookItem);

The completed event handler follows:

public function loadedResultsHandler(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

for each(var item in xml..book)
{

var bookItem:BookItem = new BookItem();
bookItem.setValues(

item..title,
item..author,

323

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 323

item..price,
item..thumb

);

bookItem.y = (bookItems.length * (bookItem.height + 30));
bookItems.push(bookItem);
bookItemsContainer.addChild(bookItem); }

}

The last method for the document class is used to remove the existing book item instances. This
method is called each time a new search begins, to ensure the data doesn’t accidentally stack up.

private function removeOldResults():void
{

if(bookItems.length > 0)
{

bookItems = new Array();
removeChild(bookItemsContainer);
bookItemsContainer = new MovieClip();
bookItemsContainer.y = 100;
addChild(bookItemsContainer);

}
}

The first part of the method checks for valid entries because the first time the application runs
there would be no existing products on the Stage.

if(bookItems.length > 0)
{

...
}

If there are existing items, a new array is created that clears the existing objects. Then, using
removeChild, the old container is cleared and a new one is created. This is done to free up
resources and remove the existing products.

bookItems = new Array();
removeChild(bookItemsContainer);
bookItemsContainer = new MovieClip();

The last step is to add the new book container to the display list, which is done by calling
addChild() and passing the new instance of the container as an argument.

addChild(bookItemsContainer);

Now you can move on and create the BookItem class, which is used for each product that is
added to the Stage. It is responsible for storing off the product data and loading in the book
thumbnail.

324

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 324

Before any development of the class begins it is a good idea to look at the skeleton, such as in the
previous example. Doing so allows you to better understand how it is intended to work.

package
{

import flash.display.MovieClip;
import flash.text.TextField;
import flash.display.Loader;
import flash.net.URLRequest;

public class BookItem extends MovieClip
{

public function BookItem() { }
public function setValues(t:String, a:String, p:String,

i:String):void {}
public function loadThumb():void {}
public function getValues():Object {}

}
}

The first method in most classes is the constructor, and this one is no exception, except for the fact
that this constructor is empty. The next method is setValues, which is responsible for storing
the passed values. These values will be the book data that is retrieved from Amazon. You can also
pass this information in as an object but for this example it is easier to understand using stand-
alone variables.

public function
setValues(t:String,a:String,p:String,i:String):void

{
title = t;
author = a;
price = p;
thumb = i;

titleTxt.text = title;
authorTxt.text = author;
priceTxt.text = price;

loadThumb();
}

Once all the variables are stored off, a call to loadThumb is made, which is responsible for retriev-
ing the thumbnail of the book cover. When using the Loader class, you can pass it into the
addChild, which removes the need for an event listener, but even more importantly, it loads on
its own because the book cover isn’t required. You can also create a visual loader to inform the user
that something is actually loading. The remainder of the method is just a standard URLRequest,
which you should be familiar with from previous examples.

325

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 325

public function loadThumb():void
{

var thumbLoader:Loader = new Loader();
var thumbURL:String = thumb;
var thumbURLRequest:URLRequest = new URLRequest(thumbURL);
thumbLoader.load(thumbURLRequest);
thumbLoader.x = 10;
addChild(thumbLoader);

}

The last method is for returning the BookItem data that was populated in the previous methods.

public function getValues():Object
{

return {title:title, author:author, price:price};
}

At this point, you have completed an Amazon search application with PHP and Flash. You have
also obtained a wealth of information regarding the AWS system and should be pumped up to
build your own Web service-enabled applications.

A few potential projects to build are CD search application, genre matching system, or even a
gallery that uses your local iTunes or similar music player’s library to build a visual cloud of music
you have listened to. Check the Web site for this book to see other examples of applications built
using the Amazon AWS system.

Developing a Photo Gallery Using flickr
The photo gallery is a very popular application that is often built using Flash. It offers a very
unique way to showcase your work or in some cases is used as an information delivery application,
such as on gaming and news sites.

In this section, you learn to develop a photo gallery using the flickr photo service provided by
Yahoo. The Flash application will make a call to PHP, which will interact with the flickr Web serv-
ices and finally return that data back to Flash for displaying.

Before you begin developing the application, sign up for a flickr API key, which is a two-step
process. The first step is to create a flickr account by visiting the registration page at
www.flickr.com/signup/.

Once you have a flickr account, apply for an API by visiting www.flickr.com/services/
api/keys/apply/.

If you select the Non-commercial option it authorizes your request almost instantly.NOTENOTE

326

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 326

This example uses a Document class to handle the majority of the loading and displaying process.
In fact, the bulk of this class is similar to the previous example. If you completed that example you
can copy those class files and make the changes as needed.

Here is the class skeleton, which will give you a better idea of how the class will work.

package
{

import flash.display.MovieClip;
import flash.events.*;
import flash.net.*;

public class PhotoGallery extends MovieClip
{

public var webServiceURL:String;
private var photos:Array;
private var photosContainer:MovieClip;

public function PhotoGallery() {}
public function searchHandler(e:MouseEvent):void {}
public function loadSearchResults(terms:String):void {}
public function loadedResultsHandler(e:Event):void {}

private function removeOldPhotos():void {}
}

}

The first method is actually the constructor, which in this application handles the creation of a new
container and also initializes the element array.

public function PhotoGallery()
{

photos = new Array();
photosContainer = new MovieClip();
photosContainer.y = 75;

}

After the new movieclip is created, it needs to be added to the display list, and an event handler
needs to be assigned to the Search button located on the Stage.

searchBtn.addEventListener(MouseEvent.CLICK, searchHandler);
addChild(photosContainer);

The next method to focus on is the searchHandler().When this method is called it first checks
for a valid search term. If the value is valid, a call to remove the old images is made.

public function searchHandler(e:MouseEvent):void
{

if(searchTxt.text.length > 0)

327

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 327

{
removeOldPhotos();
loadSearchResults(searchTxt.text);

}
}

The next method is for calling the PHP, which is responsible for interfacing with flickr. The tags
variable is passed in from the search handler and is sent to the PHP via a GET request.

public function loadSearchResults(tags:String):void
{

var urlVariables:URLVariables = new URLVariables();
urlVariables.tags = tags;

var urlRequest:URLRequest = new URLRequest(webServiceURL);
urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,
loadedResultsHandler);
urlLoader.load(urlRequest);

}

The PHP is set up to return an XML result set, which is a stripped-down version of what is
returned from flickr. This is very similar to the Amazon example, because Web services tend to
return a lot of information that isn’t needed for an application such as this one.

The XML data is first loaded into an XML object for proper parsing to be possible. Once the XML
object is created, it runs through a for..each loop to pull out each photo node.

public function loadedResultsHandler(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

for each(var item in xml..photo)
{

...
}

}

Using each photo node you need to create a PhotoItem instance, which is where the flickr image
is loaded. Think of this instance as a container for each image. This instance also is where the
image data is stored for future use.

var photoItem:PhotoItem = new PhotoItem();
photoItem.setValues(item..title, item..thumb);

328

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 328

When a new instance of the PhotoItem is created, it needs to be aligned in the container. This
position is determined by taking the length of the photos array and multiplying it by the height of
the new photoItem. That value is then increased by 50 pixels to allow spacing for the thumbnail.

photoItem.y = (photos.length * (photoItem.height + 50));

Another more elegant solution is to create an event handler that would align the photos once it is
loaded. This offers the ability to have multiple-sized images and be more dynamic.

The last task of this method is to add the new instance to the photos array and to finally display it.

photos.push(photoItem);
photosContainer.addChild(photoItem);

Each time a new search is performed, a call to the removeOldPhotos method is made. This
method is responsible for removing the existing images and ensuring the data isn’t crossed.

private function removeOldPhotos():void
{

if(photos.length > 0)
{

photos = new Array();
removeChild(photosContainer);
photosContainer = new MovieClip();
photosContainer.y = 75;
addChild(photosContainer);

}
}

This method is set to private so other code can’t accidentally remove the images. If you want to
allow external removal of the images you can create a delegator method that checks some authori-
zation level. If the request is valid, the images are allowed to be removed.

The next class to create, now that the Document class is completed, is the PhotoItem. This class
holds the information for each image that is loaded from flickr. It is also responsible for loading the
thumbnail positioning the instance on the stage.

package
{

import flash.display.MovieClip;
import flash.text.TextField;
import flash.display.Loader;
import flash.net.URLRequest;

public class PhotoItem extends MovieClip
{

private var title:String;
private var thumb:String;

public function BookItem() { }

329

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 329

public function setValues(t:String, i:String):void {}
public function loadThumb():void {}
public function getValues():Object {}

}
}

When a new instance of this class is created, a call to the setValues is made to store the image
data. This method accepts two arguments: title and thumbnail path. Both of these variables
are stored in private variables so they can’t accidentally be accessed and modified.

title = t;
thumb = i;

Once the data is loaded, the title is appended to the titleTxt component located in the
movieclip. The title is also moved out to make room for the thumbnail.

titleTxt.text = title;
titleTxt.x = 100;

The final piece is to make a call to the loadThumb method.

loadThumb();

The loadThumb method is responsible for loading the image that is found in the XML document.

public function loadThumb():void
{

var thumbLoader:Loader = new Loader();
var thumbURL:String = thumb;
var thumbURLRequest:URLRequest = new URLRequest(thumbURL);
thumbLoader.load(thumbURLRequest);
thumbLoader.x = 10;
addChild(thumbLoader);

}

The last method is responsible for passing back the image information.

public function getValues():Object
{

return {title:title};
}

You might have noticed the thumbnail loader is the same code that was used in the book searching
example. You may also have noticed that loader code across this entire book is very similar. What
this should tell you is a class should have been built to handle this one task, and a simple import
would replace that ten lines of code that have been duplicated across the applications.

This isn’t really noticeable for a smaller application but it would be if you were developing a larger-
scale project. Class reusability is explained in greater detail in Chapter 9. But basically, what it comes
down to is when you are able to make something modular, it is probably a good idea to do so.

330

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 330

Interfacing with the Web service
The next step in the photo gallery is to build the PHP code that will be responsible for connecting
to flickr and parsing the XML response.

The first step is to define the flickr API key that is provided from flickr.

<?php

define(“FLICKR_ACCESS_KEY”, “{FLICKR_API_KEY}”);

Flickr has a partially unique way of building image URLs. The easiest way to work with this format
is by using the sprintf function. This function accepts a string with placeholder variables that
are then filled in with real variables using values provided in the other arguments.

$flickrURLTemplate= “http://farm%s.static.flickr.com/
%s/%s_%s_s.jpg”;

To avoid erroneous requests, a simple if statement is used to make sure the tags variable that
comes from Flash in fact has a search term. If for some reason the variable is empty, the script exits
and no more code is run from that point.

if(empty($_GET[‘tags’]))
{

exit();
}

If a valid tag value is found, the next step is to pull in the tag data and make the call to flickr to
start the search process.

$apiMethod = “flickr.photos.search”;
$request = “http://api.flickr.com/services/rest/” .

“?method=” . $apiMethod .
“&tags=” . $searchTags .
“&api_key=” . FLICKR_ACCESS_KEY.
“&per_page=5”;

$rawXml = file_get_contents($request);

The photo service returns an XML document that is stored in the $rawXml variable. After the
XML is loaded, it is passed along to the simplexml_ load_string() method, which creates a
proper object that PHP can then parse.

$xmlResponse = simplexml_load_string($rawXml);

How many images to display are determined by loading the value that is located in the XML
document.

$nodeCount = getAttribute($xmlResponse->photos, “perpage”);

331

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 331

Building the custom XML document
The process of building the custom XML document is done using a for loop that grabs each
photo node and pulls in the required information.

$xml = “<?xml version=\”1.0\” ?>\n<photos>”;

for($i=0; $i < $nodeCount; $i++)
{

$farmID= getAttribute($xmlResponse->photos->photo[$i], “farm”);
$serverID= getAttribute($xmlResponse->photos->photo[$i],
“server”);
$photoID= getAttribute($xmlResponse->photos->photo[$i], “id”);
$secret= getAttribute($xmlResponse->photos->photo[$i],
“secret”);

$xml .= “\t<photo>”;
$xml .= “\t\t<title><![CDATA[“ . getAttribute($xmlResponse-
>photos
->photo[$i], “title”) . “]]></title>”;

$xml .= “\t\t<thumb>” .
sprintf($flickrURLTemplate,

$farmID,
$serverID,
$photoID,
$secret) .

“</thumb>”;
$xml .= “ </photo>”;
}

The first part of the loop is for building the image path, which is passed into the sprintf func-
tion. After the overall XML document is created, the last step is to output to the caller, which in
this case would be Flash.

header(“content-type: text/xml”);
print $xml;

Now that the PHP is completed and the overall application has been developed, you can test it, as
shown in Figure 12.5.

332

Developing ApplicationsPart IV

19_258248 ch12.qxp 3/28/08 1:42 PM Page 332

FIGURE 12.5

Here is the final application displaying the images from a search using the tag orange.

Summary
In this chapter you learned how to connect Flash to the PayPal Web services to develop a custom
shopping cart. Once you completed the PayPal development portion you learned how to develop a
custom shopping cart in Flash using Classes to simplify the development process.

You then learned how to develop a searching system that utilized the Amazon.com searching API
and gained an understanding of how third-party services return data.

In the last part of the chapter you developed an image application using the flickr API. In the
process, you learned some of the more robust features of PHP to drill down the data and build the
requests using sprintf.

The next step is to expand on this example and possibly build a photo gallery script with cate-
gories and the ability to add/edit photos. You could even integrate this little portion into a bigger
application while using flickr as the graphical frontend or photo storage point.

333

Developing Real-World Applications 12

19_258248 ch12.qxp 3/28/08 1:42 PM Page 333

19_258248 ch12.qxp 3/28/08 1:42 PM Page 334

R eal-world applications are meant to be complete products that have
been tested and are ready to be deployed for the general public to
enjoy them. This chapter focuses on building a series of applications

that do just that. The starting files have been provided so you can focus on
the core of the applications, which would be the development process.

Each example is broken into its individual classes, files, and packages
depending on what is required. If you have never worked with classes, I
strongly recommend that you read Chapter 10. This will ensure the exam-
ples and coding styles are easy to follow.

Building a Drawing Application
in Flash
This application takes the drawing (see Figure 13.1) and uses PHP to create
an exportable image format. The first portion of the code is responsible for
the drawing portion of the application.

335

IN THIS CHAPTER
Drawing application in Flash

Using GD library in PHP

Develop site monitor

Develop Video Player with Flash

Develop a poll application

Develop a simple file editor

Using Advanced Real-World
Applications

20_258248 ch13.qxp 3/28/08 1:42 PM Page 335

FIGURE 13.1

Here is the completed drawing application.

Drawing API in Flash
The drawing API that is included with Flash offers a wide range of tools, such as lines, circles,
squares, and gradients. This example focuses on the line to create a Flash-based drawing tool.

Once the starting file is opened {START_FILE}, you can begin to set up the initialization vari-
ables that hold the default pen color and size, as well as the container reference.

var penMC:MovieClip;
var isDrawing:Boolean = false;

var penTipSize:uint = 1;
var penColor:Number = 0x000000;

The drawing application will be set up to draw the line when the mouse button is held down and
stop when the mouse button is released. During the time the mouse button is down a persistent
call to a mouse move function occurs to place the pen point at a different location. The pen is pro-
grammed to draw the line wherever the mouse pointer is located.

336

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 336

The next step is to build the event handlers that will be used to determine the pen state and enable
or disable the drawing ability. The isDrawing variable is toggled to define the current state of the
application. This startDrawing() method is only called when the mouse is clicked. It is impor-
tant that a new line is created in case the color or size variables have changed.

function startDrawing(e:MouseEvent):void
{

trace(“Start Drawing”);
isDrawing = true;
penMC.graphics.lineStyle(penTipSize, penColor, 1.0);
penMC.graphics.moveTo(mouseX, mouseY);

}

After the drawing flag is set you can start drawing the actual pen stroke(s). The position of the pen
is determined by the current location of the mouse pointer.

function drawing(e:MouseEvent):void
{

if(isDrawing)
{

penMC.graphics.lineTo(mouseX, mouseY);
}

}

Now that the line is properly being drawn, it is a good idea to stop it once the mouse button is
released. That is done by attaching a handler to the mouse up event.

function stopDrawing(e:MouseEvent):void
{

trace(“Stop Drawing”);
isDrawing = false;

}

The last method in this example is fairly complex. It is responsible for building the Toolbox and
initializing the mouse event handlers.

function init():void
{

penMC = new MovieClip();
stage.addEventListener(MouseEvent.MOUSE_DOWN, startDrawing);
stage.addEventListener(MouseEvent.MOUSE_UP, stopDrawing);
stage.addEventListener(MouseEvent.MOUSE_MOVE, drawing);
addChild(penMC);
...

The Toolbox is built up of movieclips that are already on the Stage and conveniently found
within a container movieclip.

337

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 337

toolsMC.swatchPurpleMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x9999CC;
});
toolsMC.swatchBlueMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x0000FF;
});
toolsMC.swatchRedMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0xFF0000;
});
toolsMC.swatchGreenMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x00FF00;
});
toolsMC.swatchOrangeMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0xFF9900;
});
toolsMC.swatchBlackMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x000000;
});

toolsMC.brushSize1MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 1;
});
toolsMC.brushSize2MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 2;
});

toolsMC.brushSize4MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 4;
});

toolsMC.brushSize6MC.addEventListener(MouseEvent.CLICK,
function():void

338

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 338

{
penTipSize = 6;

});

When all of the tools are in place, the container swaps depths with the pen movieclip to ensure
you can’t accidentally draw on the tool interface.

swapChildren(toolsMC, penMC);
}

Now that the ActionScript for the drawing application is set, here is the completed code:

var penMC:MovieClip;
var isDrawing:Boolean = false;

var penTipSize:uint = 1;
var penColor:Number = 0x000000;

function init():void
{

penMC = new MovieClip();
stage.addEventListener(MouseEvent.MOUSE_DOWN, startDrawing);
stage.addEventListener(MouseEvent.MOUSE_UP, stopDrawing);
stage.addEventListener(MouseEvent.MOUSE_MOVE, drawing);
addChild(penMC);

toolsMC.swatchPurpleMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x9999CC;
});
toolsMC.swatchBlueMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x0000FF;
});
toolsMC.swatchRedMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0xFF0000;
});
toolsMC.swatchGreenMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x00FF00;
});
toolsMC.swatchOrangeMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0xFF9900;
});

339

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 339

toolsMC.swatchBlackMC.addEventListener(MouseEvent.CLICK,
function():void
{

penColor = 0x000000;
});

toolsMC.brushSize1MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 1;
});
toolsMC.brushSize2MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 2;
});

toolsMC.brushSize4MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 4;
});

toolsMC.brushSize6MC.addEventListener(MouseEvent.CLICK,
function():void
{

penTipSize = 6;
});
swapChildren(toolsMC, penMC);

}

function startDrawing(e:MouseEvent):void
{

trace(“Start Drawing”);
isDrawing = true;
penMC.graphics.lineStyle(penTipSize, penColor, 1.0);
penMC.graphics.moveTo(mouseX, mouseY);

}

function drawing(e:MouseEvent):void
{

if(isDrawing)
{

penMC.graphics.lineTo(mouseX, mouseY);
}

}

function stopDrawing(e:MouseEvent):void
{

trace(“Stop Drawing”);

340

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 340

isDrawing = false;
}

init();

That is all there is to a basic drawing application in Flash. You can expand upon this example by
providing different pen tips or maybe some varying colors to allow for shading and other painting
styles.

The next section builds from this example and uses PHP to render and save the image to the server.

Using GD Library in PHP
The GD library in PHP is a collection of functions that give you the ability to manipulate and create
images. GD also has text support provided you have the correct libraries installed. Working with
the GD library is fairly straightforward; you either create an image or open an existing image as a
base and modify that as needed.

One of the more common uses of the GD library includes the automatic creation of watermarks
that are applied to a gallery of images. Some use it to create dynamic thumbnails, similar to how
your local image editor would do.

http://www.php.net/manual/en/ref.image.php

The GD library offers a huge list of functions, but some of them require additional libraries. In fact,
it is a good idea to run some code, such as the following, to determine what is installed.

<?php var_dump(gd_info()); ?>

That code prints what the status of the different components of GD are, such as what is and isn’t
installed. This is a sample result from that var_dump call.

array(9)
{

[“GD Version”] => string(24) “bundled (2.0 compatible)”
[“FreeType Support”] => bool(false)
[“T1Lib Support”] => bool(false)
[“GIF Read Support”] => bool(true)
[“GIF Create Support”] => bool(false)
[“JPG Support”] => bool(false)
[“PNG Support”] => bool(true)
[“WBMP Support”] => bool(true)
[“XBM Support”] => bool(false)

}

The previous code lets you know that you don’t have FreeType (font) and JPG (image) support
enabled or installed. With this information, you can continue and install the necessary libraries.
Keep in mind that installing applications in a command-line environment isn’t as simple as a

341

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 341

double-click. It involves extensive building of tools and sometimes requires other libraries, which
means it can take a lot of work to get the complete GD kit working.

If you are pressed for time and are working locally you can take a look at the Quick Start options
available in Chapter 1, which come with a complete version of PHP and GD. If you’re running
from a remote system it may be best to contact your Web host for installation requests.

The GD library (core) doesn’t come with every version of PHP. Check with your Web
host or install it as needed.

From this point moving forward you should have GD installed with at least JPG support in order
to complete the examples. Before building the final application, it is best to get familiar with the
GD library by looking at a few examples.

Here is a simple GD example that creates a pink rectangle and outputs it to the browser as a JPG
(see Figure 13.2).

$image = imagecreate(250, 80);
$bgColor = imagecolorallocate($image, 255, 0, 120);
header(“Content-Type: image/jpeg”);
imagejpeg($image);

FIGURE 13.2

Here is the image that was generated by the GD library using the simple code.

CAUTION CAUTION

342

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 342

Here is a continuation of the previous example, but this time it saves the JPG file to the Web server.
By adding a second argument to the imagejpeg() function, which is a filename, the image is
saved with the filename sample.jpg instead of being output to the browser.

$image = imagecreate(250, 80);
$bgColor = imagecolorallocate($image, 255, 0, 120);
header(“Content-Type: image/jpeg”);
imagejpeg($image, ‘./sample.jpg’);

While these examples are fairly simple they should give you an idea of how to work with the GD
library. If you have the other libraries installed, you can render text on those images among many
other very interesting results. The GD library is a great feature of PHP and really has come in
handy for many tasks, no matter how large.

Now, let’s move on to the real application that was started in the previous section. The ActionScript
is letting the user draw an image and change settings, and it all works seamlessly; however, the
user is not able to save the image unless he prints it. The idea is to inspect the image and send that
data to PHP, which will be responsible for creating an image pixel by pixel and saving it to the Web
server.

Generating an image in the GD library
This section focuses on using PHP to render the image that is drawn in the Flash application.
Normally, you start with the PHP code first, but in this application the PHP is only used as a ren-
derer so it makes sense to start with the Flash portion.

The majority of the application was written in the previous section; you simply take that code and
expand upon it to add the necessary actions.

The PHP code is responsible for loading the passed-in XML into an object that is then used to gen-
erate, or render, the final image. The width, height, and XML are all passed using POST data
because a GET request would fail.

$width = $_POST[‘width’];
$height = $_POST[‘height’];

$points = simplexml_load_string($_POST[‘pointData’]);

When the data is properly loaded, you can set up the base for the rendered image. This is done
using the imagecreatetruecolor() function, which is part of the GD library.

$img = imagecreatetruecolor($width, $height);

The actual image is generated by looping through all of the XML data that is pulling out the color
values that were captured in Flash.

$limit = count($points->point);

for($j=0; $j < $limit; $j++)

343

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 343

{
$x = $points->point[$j]->x;
$y = $points->point[$j]->y;

$color = $points->point[$j]->c;
$color = hexdec($color);

imagesetpixel($img, $x, $y, $color);
}

The pixel data is placed in a grid pattern one line at a time; the $x and $y are the point each color
is to be placed. All of this data is passed to the imagesetpixel function on each pass of the
inner loop.

The last step of the PHP once the image is created is to render the image as a PNG, such as shown
in Figure 13.3, and save it to the file system.

header(‘Content-Type: image/png’);
imagepng($img, ‘render_’ . time() . ‘.png’);

FIGURE 13.3

A sample image rendered as a PNG

344

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 344

The process of building an image pixel by pixel is processor intensive and can take a
long time, depending on the size of the image.

Here is the completed PHP code:

<?php

$width = $_POST[‘width’];
$height = $_POST[‘height’];

$points = simplexml_load_string($_POST[‘pointData’]);

$img = imagecreatetruecolor($width, $height);

$limit = count($points->point);

for($j=0; $j < $limit; $j++)
{

$x = $points->point[$j]->x;
$y = $points->point[$j]->y;

$color = $points->point[$j]->c;
$color = hexdec($color);

imagesetpixel($img, $x, $y, $color);
}

header(‘Content-Type: image/png’);
imagepng($img, ‘render_’ . time() . ‘.png’);

?>

Gathering the pixel data in Flash
There are only a few updates necessary to the Flash code from the previous section, but for now
focus on gathering the image data using the BitmapData class.

The first step in this function is to determine the dimensions of the image.

var width:uint = penMC.width;
var height:uint = penMC.height;

The next variable to define is the PHP file reference.

var phpFile:String =
“http://localhost/ch12/DrawingGD/ImageGenerator.php”;

The next step is to build a new bitmap using the draw() method of the BitmapData class. The
draw method takes one argument, which is the target. This method takes the argument and copies
the pixel data to the new bitmap.

CAUTION CAUTION

345

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 345

var bmp:BitmapData = new BitmapData(width, height, true,
0xFFFFFF);

bmp.draw(penMC);

After the new bitmap is created, you can build a loop that will scan the bitmap and grab the color
of each pixel.

var xml:String = “<points>”;

for(var i:uint=0; i < width; i++)
{

for(var j:uint=0; j < height; j++)
{

var color:String = bmp.getPixel(i, j).toString(16);

if(color == “0”)
{

color = “FFFFFF”;
}

xml += “<point>”;
xml += “\t<x>” + i + “</x>”;
xml += “\t<y>” + j + “</y>”;
xml += “\t<c>” + color + “</c>”;
xml += “</point>”;

}
}

xml += “</points>”;

The color data is stored in a custom XML document that is sent off to PHP once the entire image is
scanned. The variables are stored in a new instance of the URLVariables object and are passed
to PHP in POST data format.

var urlVariables:URLVariables = new URLVariables();
urlVariables.width = width;
urlVariables.height = height;
urlVariables.pointData = xml;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.method = URLRequestMethod.POST;
urlRequest.data = urlVariables;
sendToURL(urlRequest);

The response is sent to PHP using the sendToURL method. This silently calls the Web server and
does not expect any response. The reason for using this method is because the request will be fairly
large if the rendered image has a lot of pixel data.

346

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 346

Using Flash to Develop a Site Monitor
When you own or operate a Web site it can sometimes go offline, but most likely you will never
know if it is down for just a brief moment unless you happen to be checking the site. What hap-
pens if you operate many Web sites and are busy working while your site goes down? Most likely
your site goes offline and you are not aware of it.

This section contains the explanation and development of a Flash-based site monitor that logs
failed attempts to reach the server. It can even be set up to e-mail the administrator if the system
encounters a site that has not responded after a certain point (configurable by the operator).

The MySQL table schema (outline) is as follows:

CREATE TABLE siteMonitor (
id INT NOT NULL AUTO_INCREMENT,
name VARCHAR(100) DEFAULT “” NOT NULL,
uri TEXT NOT NULL,
active VARCHAR(1) DEFAULT 1 NOT NULL,
PRIMARY KEY (id)

);

There are many ways that you can load the MySQL schema into your database. For an
explanation, see Chapter 2.

Developing the PHP for the site monitor
The first part of the PHP is loading in the connection information for the database. This is placed
in an external file, so it can be shared across projects. In fact, if you are using the same database as
previous examples in this book, you can reuse the old dbconn.php because it will not be
changed for this application.

If you haven’t already created the dbconn.php, here are the contents. You fill in the real informa-
tion for your server, which can be obtained from the Web server administrator if you are not the
owner, or your hosting provider if you do own your server.

<?php

$host = “localhost”;
$user = “USERNAME”;
$pass = “PASSWORD”;
$database = “DATABASE_NAME”;

$link = mysql_connect($host, $user, $pass);
mysql_select_db($database, $link);

unset($host);
unset($user);

CROSS-REFCROSS-REF

347

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 347

unset($pass);
unset($database);

?>

After the database connection is set you can continue the development of the monitor.php file.
The $action is passed along the URL, but needs to be valid in order for the script to know which
state it should be running in.

$action = (isset($_GET[‘action’])) ? $_GET[‘action’] : “”;

Assuming the action is valid and the value is getsites, which is set up to return a listing of the
sites that are being monitored. The process of retrieving the site list is accomplished using a loop
that loads in the information from the MySQL database. The site list is returned to Flash as an XML
object defining each of the sites and where they are located.

The SQL to retrieve the list is set up to load all entries where the active value is equal to 1.

SELECT * FROM siteMonitor WHERE active=1

After the SQL data is retrieved, it is passed to a while loop, which is responsible for grabbing
each row and building a line of XML defining the site information.

$result = mysql_query(“SELECT * FROM siteMonitor WHERE
active=1”);

$xml = “<?xml version=\”1.0\” ?>\n”;
$xml .= “<sites>\n”;

while($row = mysql_fetch_array($result))
{

...
}
$xml .= “</sites>”;

The line of XML is built using the $row data, which is passed into the sprint() function. The
sprintf is used to automatically fill in the necessary XML attributes using the SQL row data.

$xml .= sprintf(“\t<site name=\”%s\” uri=\”%s\” />\n”,
$row[‘name’],

$row[‘uri’]);

Now that the XML data is built, it is sent out to the browser and returned to Flash. This is done by
setting the content-type of the response to text/xml, which is the MIME type of XML. Then
the last step is to use a print statement to actually output the data.

header(“Content-type: text/xml”);
print $xml;

348

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 348

Here is a sample of the response that would be returned to Flash:

<?xml version=”1.0” ?>
<sites>

<site name=”Adobe” uri=”http://www.adobe.com” />
<site name=”AIRPlayground” uri=”http://www.airplayground.com”
/>
<site name=”mkeefeDESIGN” uri=”http://www.mkeefedesign.com” />
<site name=”Google” uri=”http://www.google.com” />

</sites>

Using PHP to e-mail the administrator
When a site has been unreachable for a certain amount of time, it is probably a good idea to notify
someone. The notification is sent using the built-in mail() function. The e-mail alerts the admin
of a server as to what site is experiencing the outage and at what time the report was sent, in the
rare case the e-mail is delayed or is just not noticed right away.

The first step is to verify the previous action is set to e-mail the admin. Otherwise, this entire block
of code would be ignored.

else if($action == “emailadmin”)
{

...
}

If the action is valid, the next step is to construct the e-mail message and retrieve the values passed
from Flash that define the site experiencing the outage.

$from = “sitemonitor@yoursite.com”;
$to = “admin@yoursite.com”;
$site = $_GET[‘site’];
$siteURI = $_GET[‘siteURI’];

$date = date(“F j, Y \\a\\t h:i a”, time()); // today’s date

The body of the e-mail is defined as a series of $emailInfo variables concatenated together using
the dot (.), which is used to let PHP know this variable is a continuation.

$emailInfo = “”;
$emailInfo .= “**This is an automated response**.\n\n”;
$emailInfo .= “The site status monitor has been informed\n”;
$emailInfo .= “ the following site is not responding:\n”;
$emailInfo .= “---\n”;
$emailInfo .= “Site: “ . $site . “ [“ . $siteURI . “]\n”;
$emailInfo .= “Date Sent: “ . $date . “\n\n”;
$emailInfo .= “---\n”;

349

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 349

The header of the e-mail needs to follow the specification that defines how e-mail is to be con-
structed and the $from value needs to be valid, even though the actual e-mail address used doesn’t.

// Mail headers, do not alter
$mailHeaders = “From: “ . $from . “ <> \n\n”;

When all of the variables and e-mail information have been created, the actual e-mail can be sent.
This is done by making a call to the mail() function, passing along the information that was built
in the previous steps.

if(mail(
$to,
“Automated response from Site Monitor”,
$emailInfo,
$mailHeaders))

{
print “result=success”;

}

The mail() function returns a success message if the function is properly called. The
function does not know the status of the actual sending of the e-mail.

Here is the completed PHP code for monitor.php:

<?php

require(‘dbconn.php’);

$action = (isset($_GET[‘action’])) ? $_GET[‘action’] : “”;

if($action == “getsites”)
{

$result = mysql_query(“SELECT * FROM siteMonitor WHERE
active=1”);

$xml = “<?xml version=\”1.0\” ?>\n”;
$xml .= “<sites>\n”;
while($row = mysql_fetch_array($result))
{

$xml .= sprintf(“\t<site name=\”%s\” uri=\”%s\” />\n”,
$row[‘name’],

$row[‘uri’]);
}
$xml .= “</sites>”;

header(“Content-type: text/xml”);

NOTENOTE

350

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 350

print $xml;
}
else if($action == “emailadmin”)
{

$from = “sitemonitor@yoursite.com”;
$to = “admin@yoursite.com”;
$site = $_GET[‘site’];
$siteURI = $_GET[‘siteURI’];

$date = date(“F j, Y \\a\\t h:i a”, time()); // today’s date

$emailInfo = “”;
$emailInfo .= “**This is an automated response**.\n\n”;
$emailInfo .= “The site status monitor has been informed\n”;
$emailInfo .= “ the following site is not responding:\n”;
$emailInfo .= “---\n”;
$emailInfo .= “Site: “ . $site . “ [“ . $siteURI . “]\n”;
$emailInfo .= “Date Sent: “ . $date . “\n\n”;
$emailInfo .= “---\n”;

// Mail headers, do not alter
$mailHeaders = “From: “ . $from . “ <> \n\n”;

print $emailInfo;
if(mail(

$to,
“Automated response from Site Monitor”,
$emailInfo,
$mailHeaders

))
{

print “result=success”;
}

}

?>

Developing the ActionScript for the site monitor
At this point, the PHP code has been completed, and the next section focuses on the ActionScript
development process. The Flash file has been provided for this example on the book’s Web site,
which has all of the design elements in place, as shown in Figure 13.4, so you can focus on the
development.

351

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 351

FIGURE 13.4

Here is the completed application with one of the sites indicating a failure.

Here is the class skeleton for the Document class.

package
{

import flash.display.MovieClip;
import flash.net.*;
import flash.events.*;

public class SiteMonitor extends MovieClip
{

public function SiteMonitor() {}
private function loadSites():void {}
private function loadSiteHandler(e:Event):void {}

}
}

The constructor in the Document class is responsible for assigning the siteContainer
movieclip, adding that movieclip to the display list and finally making a call to the
loadSites() method.

352

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 352

siteContainer = new MovieClip();
siteContainer.y = 80;
siteContainer.x = 20;
addChild(siteContainer);

loadSites();

The loadSites() method is responsible for loading the list of sites to watch. An event is
attached to the loading sequence, which is called when the site data is successfully retrieved.

var variables:URLVariables = new URLVariables();
variables.action = “getsites”;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, loadSiteHandler);
urlLoader.load(urlRequest);

The next method is called when the site data is successfully loaded. An event is passed as an argu-
ment that contains the response from PHP.

private function loadSiteHandler(e:Event):void
{

...
}

The response is XML, so you need to first create an XML object that will be looped through using a
for..each loop.

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

var i:uint = 0;
for each(var item in xml..site)
{

...
}

}

The contents of the for..each loop creates a new instance of the SiteMonitorItem class that
is attached to a movieclip in the Timeline of the same name.

var siteItem:SiteMonitorItem = new SiteMonitorItem();
siteItem.phpFile = phpFile;
siteItem.siteURI = item..attribute(‘uri’);
siteItem.siteNameTxt.text = item..attribute(‘name’);

353

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 353

siteItem.statusMC.gotoAndStop(2);

siteItem.y = (i * (siteItem.height + 10));

siteContainer.addChild(siteItem);
i++;

The siteItem variable holds the newly created class instance, which is used to assign the
phpFile, siteURI, and site name. The uri and site name are parsed from the XML object using
the attribute() method, which takes an argument that is the attribute name you are looking
for. The placement of the siteItem object is determined by a simple equation using the height of
the object and the value of the i variable, then taking that sum and adding a 10px padding.

At this point the document class is finished. Here is the completed code:

package
{

import flash.display.MovieClip;
import flash.net.*;
import flash.events.*;

public class SiteMonitor extends MovieClip
{

public var siteContainer:MovieClip;
public var phpFile:String =

“http://localhost/SiteMonitor/monitor.php”;

public function SiteMonitor()
{

siteContainer = new MovieClip();
siteContainer.y = 80;
siteContainer.x = 20;
addChild(siteContainer);

loadSites();
}

private function loadSites():void
{

var variables:URLVariables = new URLVariables();
variables.action = “getsites”;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,

loadSiteHandler);

354

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 354

urlLoader.load(urlRequest);
}

private function loadSiteHandler(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

var i:uint = 0;
for each(var item in xml..site)
{

var siteItem:SiteMonitorItem = new
SiteMonitorItem();

siteItem.phpFile = phpFile;
siteItem.siteURI = item..attribute(‘uri’);
siteItem.siteNameTxt.text =

item..attribute(‘name’);
siteItem.statusMC.gotoAndStop(2);
siteContainer.addChild(siteItem);

siteItem.y = (i * (siteItem.height + 10));

siteItem.checkSite();

i++;
}

}
}

}

The next class to focus on is the SiteMonitorItem, which is assigned to the movieclip in the
library of the same name. Here is the class skeleton for that class:

package
{

public class SiteMonitorItem extends MovieClip
{

public function SiteMonitorItem() {}
public function checkSite():void {}

private function noResponse(event:IOErrorEvent):void {}
private function siteResponsedHandler(e:Event):void {}
private function stopChecking():void {}

public function get attempts():uint {}
public function set attempts(num:uint):void {}

}
}

355

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 355

The constructor of this class is empty, so you can leave it out and continue to the next method,
which is checkSite(). This method is called by the Document class when the wait timer
expires. The purpose of this method is to begin the action of checking the site and the correct han-
dler depending on the response received.

public function checkSite():void
{

var urlRequest:URLRequest = new URLRequest(siteURI);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,
siteResponsedHandler);
urlLoader.addEventListener(IOErrorEvent.IO_ERROR, noResponse);
urlLoader.load(urlRequest);

}

The majority of that method is the same as previous examples, with the exception of the second
event listener. This event listener is assigned to the IO_ERROR, which occurs when a file is not
properly loaded or called. The noResponse() method will be called when the site cannot be
loaded, as shown here:

urlLoader.addEventListener(IOErrorEvent.IO_ERROR, noResponse);

The noResponse() method is responsible for incrementing the failedAttempts variable, but
using a setter method instead of accessing the variable directly.

private function noResponse(event:IOErrorEvent):void
{

attempts = attempts + 1;
}

If the site is loaded, a call to siteResponsedHandler() is made to clear the previous failed
attempts and basically reset the error count.

private function siteResponsedHandler(e:Event):void
{

failedAttempts = 0;
}

A call to stopChecking() occurs when a site fails to respond after a predetermined number of
times, set by the MAX_ATTEMPTS constant.

private function stopChecking():void
{

stopCheck = true;
}

The last two methods in this class are the getter and setters for the failedAttempts variable.
The getter simply returns the current value of the failedAttempts value. The setter not only

356

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 356

increments the failedAttempts variable, but also determines if all future checks should be
stopped based on the current failure count.

public function get attempts():uint
{

return failedAttempts;
}

public function set attempts(num:uint):void
{

if(num == undefined)
{

failedAttempts++;
}
else
{

failedAttempts = num;
}

if(failedAttempts == MAX_ATTEMPTS)
{

statusMC.gotoAndStop(1);
stopChecking();

}
}

If failedAttempts equals the MAX_ATTEMPTS constant, a call to stopChecking() is made
and the status indicator moves to the first frame displaying a red circle.

At this point the SiteMonitorItem class is now complete and the Flash movie can be tested to
ensure it works properly with the PHP code written before.

Following is the completed class file SiteMonitorItem that is attached to the movieclip of
the same name:

package
{

import flash.display.MovieClip;
import flash.net.*;
import flash.events.*;
import flash.text.TextField;

public class SiteMonitorItem extends MovieClip
{

public var phpFile:String;
public var siteURI:String;

private var stopCheck:Boolean = false;

357

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 357

private var failedAttempts:uint = 0;

private const MAX_ATTEMPTS:uint = 3;

public function SiteMonitorItem() { }

public function checkSite():void
{

var urlRequest:URLRequest = new URLRequest(siteURI);
var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,

siteResponsedHandler);
urlLoader.addEventListener(IOErrorEvent.IO_ERROR,

noResponse);
urlLoader.load(urlRequest);

}

private function noResponse(event:IOErrorEvent):void
{

attempts = attempts + 1;
}

private function siteResponsedHandler(e:Event):void
{

failedAttempts = 0;
}

private function stopChecking():void
{

stopCheck = true;
}

public function get attempts():uint
{

return failedAttempts;
}

public function set attempts(num:uint):void
{

if(num == undefined)
{

failedAttempts++;
}
else
{

failedAttempts = num;
}

if(failedAttempts == MAX_ATTEMPTS)
{

statusMC.gotoAndStop(1);

358

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 358

stopChecking();
}

}

}
}

Using Flash to Develop a Video Player
Video players, such as the one illustrated in Figure 13.5, are becoming more and more popular as
the Internet continues to get faster. The idea behind this section is to develop a video player that is
interfaced with PHP to load in the video list, as well as keep track of the play count.

Flash already ships with a pretty versatile video player component, but you can still expand upon
it, which is exactly what this section will help you achieve.

The application is constructed of a VideoPlayer and ComboBox component that has already
been placed on the Stage. The start file {START_FILE} is provided so you can focus on the devel-
opment and can quickly test as you go.

FIGURE 13.5

A video player with a video loaded and playing

359

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 359

You need an FLV video file in order to test this application. One is included with the
source material found on the book’s Web site.

Many of the applications you develop in Flash will consist of some ActionScript. The complexity of
the ActionScript will be determined based on what the application will be. In this example you will
be using an external class to develop the video player.

The first part of the application to be developed is the ActionScript code, which is broken up in
classes for greater scalability. The main ActionScript will be attached to the application using the
Document class.

To start, look at the class skeleton, which will give you a better idea of how the application will flow.

package
{

public class VideoPlayer extends MovieClip
{

public function VideoPlayer(){}
public function loadData():void {}

private function dataLoaded(e:Event):void {}
private function comboHandler(e:Event):void {}

}
}

The constructor method of the Document class is responsible for assigning the VideoPlayer
instance. It is also the point where the necessary event listeners are defined.

_player = this[‘player’];
this[‘videoListCombo’].addEventListener(Event.CHANGE,

comboHandler);

The last part of the constructor method is to call the loadData method and gather the XML
data.

loadData();

The loadData() method is for loading the video data, which is returned in XML format.

public function loadData():void
{

var urlVariables:URLVariables = new URLVariables;
urlVariables.a = “getvideos”;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, dataLoaded);
urlLoader.load(urlRequest);

}

NOTENOTE

360

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 360

Here is a sample of the XML response, which has the attributes populated instead of nodes.

<videos>
<video name=”Sample Video 1” src=”color1.flv” playCount=”7” />
<video name=”Sample Video 2” src=”color2.flv” playCount=”3” />
<video name=”Sample Video 3” src=”color3.flv” playCount=”5” />
<video name=”Sample Video 4” src=”color4.flv” playCount=”4” />
<video name=”Sample Video 5” src=”color5.flv” playCount=”1” />
<video name=”Sample Video 6” src=”color6.flv” playCount=”2” />

</videos>

After the XML data object is loaded, a call to dataLoaded() is made, which is responsible for
populating the ComboBox. A for..each loop is used to parse the video data, which is then
added to the ComboBox component.

this[‘videoListCombo’].addItem({label:’Choose Video...’, data:-
1});

for each(var item in xml..video)
{

var name:String = item..attribute(‘name’);
var src:String = item..attribute(‘src’);

this[‘videoListCombo’].addItem({label:name, data:src});
}

The last method of the Document class is an event handler for the ComboBox component.

private function comboHandler(e:Event):void
{

if(e.target.selectedItem.data == -1) return;
trace(“Load Video: “ + e.target.selectedItem.data);
_player.source = ‘videos/’ + e.target.selectedItem.data;

}

This event handler method is used to load the video file, but only if a valid data value is found. A
simple if statement is used to determine if the label is selected.

if(e.target.selectedItem.data == -1) return;

That is all there is to this class. Here is the completed Document class:

package
{

import flash.display.MovieClip;
import flash.events.*;
import flash.net.URLVariables;
import flash.net.URLRequest;
import flash.net.URLLoader;
import flash.media.Video;
public class VideoPlayer extends MovieClip
{

361

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 361

public var phpFile:String =
“http://localhost/ ch12/VideoPlayer/videoManager.php”;

private var _player:FLVPlayback;

public function VideoPlayer()
{

_player = this[‘player’];
this[‘videoListCombo’].addEventListener(

Event.CHANGE, comboHandler);
loadData();

}

public function loadData():void
{

var urlVariables:URLVariables = new URLVariables;
urlVariables.a = “getvideos”;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,

dataLoaded);
urlLoader.load(urlRequest);

}

private function dataLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

this[‘videoListCombo’].addItem({
label:’Choose Video...’, data:-1});

for each(var item in xml..video)
{

var name:String = item..attribute(‘name’);
var src:String = item..attribute(‘src’);

this[‘videoListCombo’].addItem({
label:name, data:src});

}
}

private function comboHandler(e:Event):void
{

362

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 362

if(e.target.selectedItem.data == -1) return;
trace(“Load Video: “ + e.target.selectedItem.data);
_player.source = ‘videos/’ +

e.target.selectedItem.data;
}

}
}

The next step is to develop the PHP code that is used to return an XML object. For this example,
the video data is a static array, but you can easily update it to use a MySQL database similar to the
previous examples.

$videos = array(
array(“Sample Video 1”, “color.flv”, 0),
array(“Sample Video 2”, “color.flv”, 0),
array(“Sample Video 3”, “color.flv”, 0),
array(“Sample Video 4”, “color.flv”, 0),
array(“Sample Video 5”, “color.flv”, 0),
array(“Sample Video 6”, “color.flv”, 0)

);

This example only has one action, which is to retrieve the video list and build an XML object to be
passed back to Flash.

if($action == “getvideos”)
{

$xml = “<videos>”;
for($i=0; $i < count($videos); $i++)
{

$xml .= “\t<video”;
$xml .= “ name=\”” . $videos[$i][0] . “\””;
$xml .= “ src=\”” . $videos[$i][1] . “\””;
$xml .= “ playCount=\”” . $videos[$i][2] . “\””;
$xml .= “ />\n”;

}
$xml .= “</videos>”;

After the XML object is created, a header type of XML is outputted; the last step is to output the
actual XML code.

header(“Content-type: text/xml”);
print $xml;

363

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 363

That is all the PHP code that is needed to develop this video application. Here is the completed PHP:

<?php

$action = (isset($_GET[‘a’])) ? $_GET[‘a’] : “”;

$videos = array(
array(“Sample Video 1”, “color.flv”, 0),
array(“Sample Video 2”, “color.flv”, 0),
array(“Sample Video 3”, “color.flv”, 0),
array(“Sample Video 4”, “color.flv”, 0),
array(“Sample Video 5”, “color.flv”, 0),
array(“Sample Video 6”, “color.flv”, 0)

);

if($action == “getvideos”)
{

$xml = “<videos>”;
for($i=0; $i < count($videos); $i++)
{

$xml .= “\t<video”;
$xml .= “ name=\”” . $videos[$i][0] . “\””;
$xml .= “ src=\”” . $videos[$i][1] . “\””;
$xml .= “ playCount=\”” . $videos[$i][2] . “\””;
$xml .= “ />\n”;

}
$xml .= “</videos>”;

header(“Content-type: text/xml”);
print $xml;

}

?>

Developing a Poll Application
A poll is a very common feature of any Web site, but a person will often use a service that manages
the poll instead of creating his or her own. The main problem with that approach is your data is
on someone else’s server. A less common issue is the lack of freedom with the design of the poll
application.

Building the PHP and MySQL
This application consists of the design, PHP development, and ActionScript to develop a full func-
tional polling application, such as the one shown in Figure 13.6. The initial focus is on the SQL
code that stores the poll data.

364

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 364

FIGURE 13.6

A completed poll application displaying some sample data

To offer more than one poll, a unique ID is assigned to each answer that determines which ques-
tion it is associated with.

CREATE TABLE poll (
id INT NOT NULL DEFAULT 0,
pollValue TEXT NOT NULL,
pollType VARCHAR(20) DEFAULT “” NOT NULL,
pollVotes INT(11) NOT NULL,
active VARCHAR(1) DEFAULT 1 NOT NULL

);

This table schema is placing the questions and answers in one table for simplicity. However, in a
more robust application you would want to place the question and answers in two separate tables
for better scalability. This is how you make a database more efficient.

After the SQL is written, you can move on to developing the PHP code. This application has two
actions: the ability to get poll data and to vote. In a more advanced application you would most
likely have an editor and removal system.

365

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 365

The action and poll ID are passed by the URL, so the first part of the code is responsible for storing
that information.

$action = (isset($_GET[‘a’])) ? $_GET[‘a’] : “”;
$pollID = (isset($_GET[‘id’])) ? $_GET[‘id’] : “”;

The next step is to load the poll data from the database using a simple SELECT statement.

$sql = “SELECT * FROM poll WHERE id=” . $pollID;
$query = mysql_query($sql);

When the SQL data is loaded, it is passed into a while loop that is responsible for constructing
the XML data. An if statement is used to determine if a valid vote is available; if it is, the xml
attribute is added.

$xml = “<poll id=\”” . $pollID . “\”>\n”;

while($row = mysql_fetch_array($query))
{

$xml .= “\t<element”;
$xml .= “ type=\”” . $row[‘pollType’] . “\””;
$xml .= “ value=\”” . $row[‘pollValue’] . “\””;

if($row[‘pollType’] == “answer”)
{

$xml .= “ votes=\”” . $row[‘pollVotes’] . “\””;
}

$xml .= “ />\n”;

The second action is to cast a vote using the poll ID and question value as a unique way to deter-
mine the correct poll value to update.

else if($action == “vote”)
{

$votes = (isset($_GET[‘v’])) ? $_GET[‘v’] : “”;
$question = (isset($_GET[‘q’])) ? $_GET[‘q’] : “”;

$votes = $votes + 1;

$sql = “UPDATE poll SET pollValue=” . $votes . “ WHERE id=” .
$pollID . “ AND pollValue=” . $question;

mysql_query($sql);
}

The last step of the PHP is to generate an XML header and output the created XML object to the
browser, where Flash will load it.

header(“Content-type: text/xml”);

print $xml;

366

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 366

Here is the completed PHP file that will be used in the poll application:

<?php

require ‘dbconn.php’;

$action = (isset($_GET[‘a’])) ? $_GET[‘a’] : “”;
$pollID = (isset($_GET[‘id’])) ? $_GET[‘id’] : “”;

if($action == “getpolldata”)
{

$sql = “SELECT * FROM poll WHERE id=” . $pollID;
$query = mysql_query($sql);

$xml = “<poll id=\”” . $pollID . “\”>\n”;

while($row = mysql_fetch_array($query))
{

$xml .= “\t<element”;
$xml .= “ type=\”” . $row[‘pollType’] . “\””;
$xml .= “ value=\”” . $row[‘pollValue’] . “\””;

if($row[‘pollType’] == “answer”)
{

$xml .= “ votes=\”” . $row[‘pollVotes’] . “\””;
}

$xml .= “ />\n”;
}

$xml .= “</poll>”;

header(“Content-type: text/xml”);

print $xml;

}
else if($action == “vote”)
{

$votes = (isset($_GET[‘v’])) ? $_GET[‘v’] : “”;
$question = (isset($_GET[‘q’])) ? $_GET[‘q’] : “”;

$votes = $votes + 1;

$sql = “UPDATE poll SET pollValue=” . $votes . “ WHERE id=” .
$pollID . “ AND pollValue=” . $question;

mysql_query($sql);
}

?>

367

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 367

Developing the ActionScript for the poll
The ActionScript for the poll application is broken into two pieces. The first piece is a Document
class that controls the majority of the polling application. The second is a PollItem that is dupli-
cated for each answer in the loaded poll.

The data that was loaded from PHP is returned in XML format. Here is a sample of that response:

<poll>
<element type=”question” value=”What is your favorite color?”
/>

<element type=”answer” value=”Black” votes=”0” />

<element type=”answer” value=”Blue” votes=”0” />

<element type=”answer” value=”Orange” votes=”0” />

<element type=”answer” value=”Red” votes=”0” />
</poll>

The first class to focus on is the PollItem because it will be loaded by the Document class, and
it is the next step to work in a logical order. Here is the class skeleton for the PollItem:

package
{

public class PollItem extends MovieClip
{

public function PollItem() {}
public function get data():Object {}
public function setData(i:uint, a:String, v:uint):void {}

}
}

The first portion of the class is the variables, which in this class are the id, answer, and vote
value for each poll item instance.

private var ID:uint;
private var answer:String;
private var votes:uint;

This class actually only had two methods. The first method is a getter that returns an object filled
with the item data.

public function get data():Object
{

return {id:ID, answer:””, votes:votes};
}

368

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 368

The second method is responsible for assigning the data to each poll item. The stored variables are
all set to private, which allows the developer to control the access and keep consistent through-
out the entire application process.

public function setData(i:uint, a:String, v:uint):void
{

ID = i;
answer = a;
votes = v;

}

That is all there is to the PollItem class, which is shown here complete:

package
{

import flash.display.MovieClip;
import flash.text.TextField;

public class PollItem extends MovieClip
{

private var ID:uint;
private var answer:String;
private var votes:uint;
public function PollItem() {}

public function get data():Object
{

return {id:ID, answer:””, votes:votes};
}

public function setData(i:uint, a:String, v:uint):void
{

ID = i;
answer = a;
votes = v;

}
}

}

The final class is the Document class, which is attached to the Stage by setting the value in the
Property inspector. Here is the class skeleton:

package
{

public class Poll extends MovieClip
{

public function Poll() {}
public function loadPollData():void {}
public function dataLoaded(e:Event):void {}

}
}

369

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 369

The first method is called from the constructor and is responsible for loading the poll data in XML
format based on the poll id that is passed in a GET request.

public function loadPollData():void
{

var urlVariables:URLVariables = new URLVariables;
urlVariables.a = “getpolldata”;
urlVariables.id = POLL_ID;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, dataLoaded);
urlLoader.load(urlRequest);

}

After the data is loaded, a call to the dataLoaded() method is made, which is responsible for
displaying the poll data using the PollItem instances.

The response from the server is sent in XML format, which is parsed and used to build the poll
graphics. Each element of the poll data is stored as an attribute rather than a node in an attempt to
keep the code lightweight.

var type:String = item..attribute(‘type’);
var value:String = item..attribute(‘value’);
var total:uint = uint(xml..attribute(‘total’));

The type variable is used to determine whether an element is a question or an answer.

if(type == “question”)
{

this[‘questionTxt’].text = value;
continue;

}

if(type == “answer”)
{

var votes:uint = uint(item..attribute(‘votes’));
}

The pollItem variable stores the instance of the PollItem class, which contains the graphics
for each poll element. The percentage is determined with some very basic math, which divides the
vote count by the total and multiplies that by 100 to generate a percentage.

var pollItem:PollItem = new PollItem();
pollItem[‘percentTxt’].text = Math.round(votes / total * 100) +

“%”;
pollItem[‘barMC’].width = (votes / total * 100) * 4;

370

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 370

The last step in the method is for aligning each pollItem, attaching the pollItem to the display
list, and finally adding it to the pollItems array.

pollItem.y = (pollItems.length * (pollItem.height + 20));

container.addChild(pollItem);
pollItems.push(pollItem);

At this point, the Document class is built, and is shown in its entirety here:

package
{

import flash.display.MovieClip;
import flash.events.*;
import flash.net.URLVariables;
import flash.net.URLRequest;
import flash.net.URLLoader;
import flash.text.TextField;

public class Poll extends MovieClip
{

public var POLL_ID:uint = 1;
public var phpFile:String =

“http://localhost/ch12/Poll/poll.php”;

public var container:MovieClip;
public var pollItems:Array;

public function Poll()
{

pollItems = new Array();
container = new MovieClip();
container.x = 15;
container.y = 100;

addChild(container);

loadPollData();
}

public function loadPollData():void
{

var urlVariables:URLVariables = new URLVariables;
urlVariables.a = “getpolldata”;
urlVariables.id = POLL_ID;

var urlRequest:URLRequest = new URLRequest(phpFile);

371

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 371

urlRequest.data = urlVariables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE,

dataLoaded);
urlLoader.load(urlRequest);

}

public function dataLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var xml:XML = new XML(urlLoader.data);

for each(var item in xml..element)
{

var type:String = item..attribute(‘type’);
var value:String = item..attribute(‘value’);
var total:uint =

uint(xml..attribute(‘total’));

if(type == “question”)
{

this[‘questionTxt’].text = value;
continue;

}

if(type == “answer”)
{

var votes:uint =
uint(item..attribute(‘votes’));

}

var pollItem:PollItem = new PollItem();
pollItem[‘percentTxt’].text =

Math.round(votes / total * 100) + “%”;
pollItem[‘barMC’].width =

(votes / total * 100) * 4;

pollItem.y =
(pollItems.length *
(pollItem.height + 20));

container.addChild(pollItem);
pollItems.push(pollItem);

}
}

}
}

372

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 372

Building a Simple File Editor
At this point you have seen a wide selection of real-world applications, but there is still one that
hasn’t been talked about. That of course would be a content management system. A complete con-
tent management system would be a massive project, but this section focuses on one aspect of the
application.

The file editor, which is used to add and edit files, is a crucial piece to any content management
system. It is likely that at some point the admin is going to need updates made. Rather than down-
load the source material, it is much more efficient to use a dynamic file editor.

The application for this section is just that — a dynamic file editor that is connected to PHP to
actually save and load the files. Normally you can use Flash to load the files, but PHP offers the
ability to load files that are not stored in the Web root. This is a good idea for template files,
because they never need to be directly accessed by a guest.

The design of the file editor is a basic TextArea, Submit button, TextField, and ComboBox.
Nothing that exciting for designing the file editor; instead, the real meat of the application is within
the ActionScript and PHP code.

Starting with the PHP code allows you to test the Flash portion as you begin to develop it. The
PHP is actually very simple for this example. First, check for a valid file because whether you are
saving or loading, you need a valid file.

if(!empty($_GET[‘file’]))
{

$file = ‘./files/’ . $_GET[‘file’];
...

}

After you determine there is a valid file, the next step is to check whether the action is blank. If the
action is blank, the code will automatically load the action; if the action contains a value it gets
compared using an inner if statement.

if($_GET[‘action’] == ‘save’)
{

...
}
else
{

...
}

This example only allows loading and saving the files. In a more robust application you would
most likely want to have a delete or move action as well.

373

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 373

The save action is responsible for loading the requested file, replacing the existing text, and
finally resaving the file. It is important to note that the example is overlooking a crucial piece to
any real-world application, which is escaping the data that is sent from Flash. You may also want to
add an access key so arbitrary code can’t be run on from the browser via a GET request.

The variable $fileContents is retrieved from the GET data sent by Flash.

$fileContents = $_GET[‘fileContents’];

The file is loaded using fopen with write access set to overwrite. This means the original content
is removed and only the new version is saved.

$handle = fopen($file, ‘w+’);

Once the file is loaded, a call to fwrite() is made, which actually writes the contents to the file and
saves the file. The last step of the save action is to close the file resource and free up the memory.

fwrite($handle, $fileContents);
fclose($handle);

The loading of a file is much easier. Basically, you reference the file and load the contents using
file_get_contents(), which returns the entire file as a string, as shown in Figure 13.7.

$loadedFile = file_get_contents($file);
print “fileContents=” . $loadedFile;

Here is the completed php file, which should be saved with the name fileManager.php:

<?php

error_reporting(0);

if(!empty($_GET[‘file’]))
{

$file = ‘./files/’ . $_GET[‘file’];
if($_GET[‘action’] == ‘save’)
{

$fileContents = $_GET[‘fileContents’];

$handle = fopen($file, ‘w+’);
fwrite($handle, $fileContents);
fclose($handle);

}
else
{

$loadedFile = file_get_contents($file);
print “fileContents=” . $loadedFile;

}

374

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 374

}

?>

The next step is to develop the ActionScript. The design portion has been previously created so
you can move right to the code.

The first step is to define the variables used for this example.

var
phpFile:String=”http://localhost/ch12/FileEditor/fileEditor.ph
p”;

var files:Array = [‘sample.txt’, ‘anotherfile.txt’,
‘readme.txt’];

var storedFileData:String;

FIGURE 13.7

The raw file contents passed from PHP as seen from a Web browser

375

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 375

After the variables are defined, you can move on to the functions. The first function is responsible
for populating the file list combo box.

function populateFileList():void
{
...
}

The addItem method of the combo box accepts an Object as an argument, which defines the data
for the label and data. For this application, the filename is used for both the label and data value.

for(var i:uint=0; i < files.length; i++)
{

fileListCombo.addItem({label:files[i], data:files[i]});
}

The method loadFile is called when the loadbtn is clicked. This handler sets up a file request
with a file variable that PHP uses to load the actual file.

function loadFile(e:MouseEvent):void
{

var variables:URLVariables = new URLVariables();
variables.file = fileListCombo.selectedItem.data;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, fileLoaded);
urlLoader.load(urlRequest);

}

After the requested file is loaded and PHP returns the contents, it is sent into the bodyTxt
TextArea and also to the storedFileData variable. This variable is used to cache the unmodi-
fied results. You can revert to these results later by clicking the Reset button.

function fileLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(urlLoader.data);

bodyTxt.text = unescape(variables.fileContents);
storedFileData = bodyTxt.text;

}

The reset method simply replaces the body content with the unmodified data that is stored as the
original file is loaded.

376

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 376

function resetHandler(e:MouseEvent):void
{

bodyTxt.text = storedFileData;
}

The last method needed in this application is responsible for saving the edited content. Before the
data is saved, it is cached, which eliminates the need to reload the data.

function saveHandler(e:MouseEvent):void
{

var body:String = bodyTxt.text;
storedFileData = body;
...

}

The variables passed to the PHP define the action, the name of the file, and raw contents that will
replace the existing file data. The name of the file is gathered from the ComboBox by accessing the
selectedItem object.

var variables:URLVariables = new URLVariables();
variables.file = fileListCombo.selectedItem.data;
variables.action = “save”;
variables.fileContents = body;

This particular URLRequest does not require an event listener because the saving process hap-
pens on its own and is completed once PHP receives all of the fileContents.

In a remote application it is a good idea to notify the user of the saving process because
a large file may take time to save.

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.load(urlRequest);

The last task of the ActionScript is to register the events for the buttons and make a call to the
populateFileList() function to prefill the file ComboBox.

// Register Events
loadFileBtn.addEventListener(MouseEvent.CLICK, loadFile);
saveBtn.addEventListener(MouseEvent.CLICK, saveHandler);
resetBtn.addEventListener(MouseEvent.CLICK, resetHandler);
populateFileList();

NOTENOTE

377

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 377

FIGURE 13.8

The completed file editor with a sample file loaded

The application, as shown in Figure 13.8, is now completed. The following is the full ActionScript
source code:

var
phpFile:String=”http://localhost/ch12/FileEditor/fileEditor.ph
p”;

var files:Array = [‘sample.txt’, ‘anotherfile.txt’,
‘readme.txt’];

var storedFileData:String;

function populateFileList():void
{

for(var i:uint=0; i < files.length; i++)
{

fileListCombo.addItem({label:files[i], data:files[i]});
}

}

function loadFile(e:MouseEvent):void

378

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 378

{
var variables:URLVariables = new URLVariables();
variables.file = fileListCombo.selectedItem.data;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.addEventListener(Event.COMPLETE, fileLoaded);
urlLoader.load(urlRequest);

}

function fileLoaded(e:Event):void
{

var urlLoader:URLLoader = URLLoader(e.target);
var variables:URLVariables = new URLVariables(urlLoader.data);

bodyTxt.text = unescape(variables.fileContents);
storedFileData = bodyTxt.text;

}

function resetHandler(e:MouseEvent):void
{

bodyTxt.text = storedFileData;
}

function saveHandler(e:MouseEvent):void
{

var body:String = bodyTxt.text;
storedFileData = body;

var variables:URLVariables = new URLVariables();
variables.file = fileListCombo.selectedItem.data;
variables.action = “save”;
variables.fileContents = body;

var urlRequest:URLRequest = new URLRequest(phpFile);
urlRequest.data = variables;

var urlLoader:URLLoader = new URLLoader();
urlLoader.load(urlRequest);

}

// Register Events
loadFileBtn.addEventListener(MouseEvent.CLICK, loadFile);
saveBtn.addEventListener(MouseEvent.CLICK, saveHandler);
resetBtn.addEventListener(MouseEvent.CLICK, resetHandler);

populateFileList();

379

Using Advanced Real-World Applications 13

20_258248 ch13.qxp 3/28/08 1:42 PM Page 379

Summary
In this chapter you learned how to develop advanced real-world applications, such as using Flash
and PHP to build a file editor, video player, and site monitor.

While developing the site monitor you learned new events that make it easier to work with bad
data, as well as tying PHP, MySQL, and Flash together. The application was enhanced by adding
custom actions, such as the process of e-mailing the administrator when a site doesn’t respond.

In the polling application you learned how to develop a complete application using Flash as the
display medium. The overall application was written to be very scalable and, in fact, changing the
one ID variable in the document class will load a totally different poll question (provided one
exists).

At this point you should fully understand how to develop real-world applications that are easy to
update and maintain. In fact, the majority of this chapter can be added together to create a man-
agement system or other module-based applications.

380

Developing ApplicationsPart IV

20_258248 ch13.qxp 3/28/08 1:42 PM Page 380

W hen building an application, it is almost certain that some ele-
ment will stop working or maybe never work from the begin-
ning. This can be a point when any bonus time a development

cycle may have disappears. The idea is to create your application with
debugging in mind. Adding comments actually can speed up debugging
down the line.

Of course, adding debugging as you go is similar to writing an outline. You
think about it just as you realize it’s too late. The key is not to let a project
get to this point. This chapter focuses on the best way to debug applications.
You start with the built-in tools and then progress to some external applica-
tions and practices that make it less painful.

Using Error Reporting in PHP
Let’s start with looking at debugging a PHP application. By default, PHP
ships with a certain level of debugging enabled. It is set up to report fatal
errors (program crashes) and warnings (missing files and arguments). This
level of error reporting is okay for a development server, but a major issue
with the default install is that the errors are printed to the screen and every
user can see them.

The alternative and safer option is to enable error logging to an error log file
similar to how Apache is set up. Enabling error logging is done by editing
the php.ini file. If you do not have administrator access available on your
server, you need to contact someone that has this access. The php.ini file
is usually located in the /etc/ directory on UNIX and C:\WINDOWS\,
which is generally only accessible by the server administrator.

381

IN THIS CHAPTER
Using error reporting in PHP

Using trace in Flash

Alternative debugging apps

Debugging Applications

21_258248 ch14.qxp 3/28/08 1:42 PM Page 381

The php.ini file is stored in various locations depending on the server configuration. However,
the nice thing is, PHP can tell you where it is stored. Simply create a new file, name it info.php,
and add the following code:

<?php
phpinfo();
?>

When you run this file in a browser you are presented with a wealth of information specific to your
current version of PHP. One of the first blocks of information is the ini path, which looks some-
thing like this:

Configuration File (php.ini) Path /usr/local/php5/lib/php.ini

Incorrectly altering the php.ini file can result in your server not functioning. Use cau-
tion when editing this file.

After you successfully find the php.ini file, open it in your favorite text editor or use vi if you’re
using command line. Using vi, a command to open a file, looks like this:

vi /usr/local/php5/lib/php.ini

With the file open, scroll through until you reach a section that looks like this:

; Log errors to specified file.
;error_log = filename

The lines that start with ; (semicolon) are comments in the ini files. As you can see, the
error_log is not defined and thus is not saving to any file. The method to enable this option is
to remove the semicolon (;) and replace filename with an actual file path and name, such as

error_log = /usr/local/debug/php_errors

After you make the changes and save the php.ini file, you need to restart your Web server in
order to allow PHP to read the ini file. This is necessary because the PHP only reads the ini
file(s) at startup to maximize performance.

After you start to generate errors the log file begins to fill. If you read the log file you should see
strings such as the following. Most likely, the errors you receive will actually tell you what is
wrong, because an error that provides incorrect information is really not that useful.

[18-Jul-2007 20:51:17] PHP Fatal error: file.php on line 30
[09-Aug-2007 21:23:37] PHP Fatal error: file.php on line 13
[03-Nov-2007 23:10:21] PHP Fatal error: file.php on line 56
...

A production server should only log errors, which means outputting errors should also be disabled
in the php.ini file. Open the ini file and change the output_errors value to Off and restart
Apache again.

display_errors = Off

CAUTION CAUTION

382

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 382

Displaying errors for debugging
With the server securely logging errors without displaying them to general users, you can look at
what error reporting in PHP can offer the developer. From the standpoint of debugging, error
reporting in PHP is very robust. There are the standard errors such as fatal errors, missing files,
warnings, and so on. Even more important is the ability to create your own error.

In order to create a custom error you simply call trigger_error(), which takes two argu-
ments. The first argument is the error string to display and the second (optional) argument is what
error level the error should be reported as. Here is a simple trigger_error call:

trigger_error(“Cannot load non-existent user data”,
E_USER_WARNING);

Debugging variables
Debugging code isn’t always about syntax errors; in fact, most times it isn’t. Oftentimes you find a
variable out of scope or not initialized, which will not cause an error. Of course, PHP does have
many functions and methods that are tailored to debugging.

You have probably used print or echo before, but believe it or not those functions are actually
very useful for debugging an application. Basically, you can trace out variables and get a better idea
of how a program is functioning.

Debugging arrays
Working with an array is a little different because a simple print will display Array. However, you
can use the print_r() function to view an array. It will even display an array within an array and
so on, also known as a multidimensional array. Here is a sample result displayed from the
print_r call:

Array
(

[0] => Array
(

[one] => 1
)

[1] => Array
(

[two] => 2
)

)

Understanding the error levels
While using trigger_error you may notice that the second parameter is a constant. This con-
stant defines a certain error level. PHP offers a wide range of error levels and even allows the devel-
oper to change the level as the code progresses.

383

Debugging Applications 14

21_258248 ch14.qxp 3/28/08 1:42 PM Page 383

Here is how to pragmatically change the error level, in this case making even NOTICES get
reported:

error_reporting(E_ALL);

Table 14.1 shows the error levels and a description of what the error level covers.

TABLE 14.1

Error Levels and Descriptions

Error Description

E_ERROR Fatal runtime errors. These indicate errors that cannot be recovered from, such
as a memory allocation problem. Execution of the script is halted.

E_WARNING Runtime warnings (nonfatal errors). Execution of the script is not halted.

E_PARSE Compile-time parse errors. Parse errors should only be generated by the parser.

E_NOTICE Runtime notices. Indicates that the script encountered something that could
indicate an error, but could also happen in the normal course of running a
script.

E_CORE_ERROR Fatal errors that occur during PHP’s initial startup. This is like an E_ERROR,
except it is generated by the core of PHP.

E_CORE_WARNING Warnings or nonfatal errors that occur during PHP’s initial startup. This is like
an E_WARNING, except it is generated by the core of PHP.

E_COMPILE_ERROR Fatal compile-time errors. This is like an E_ERROR, except it is generated by
the Zend Scripting Engine.

E_COMPILE_WARNING Compile-time warnings or nonfatal errors. This is like an E_WARNING, except
it is generated by the Zend Scripting Engine.

E_USER_ERROR User-generated error message. This is like an E_ERROR, except it is generated
in PHP code by using the PHP function trigger_error().

E_USER_WARNING User-generated warning message. This is like an E_WARNING, except it is
generated in PHP code by using the PHP function trigger_error().

E_USER_NOTICE User-generated notice message. This is like an E_NOTICE, except it is
generated in PHP code by using the PHP function trigger_error().

E_STRICT Runtime notices. Enable to have PHP suggest changes to your code that will
ensure the best interoperability and forward compatibility of your code.

E_ALL All errors and warnings, as supported, except of level E_STRICT in PHP < 6.

As you can see, PHP offers a lot of debugging options beyond the basic outputting and logging. In
fact, you can customize a lot of the error handling found in the php.ini file to further debug
your various applications.

384

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 384

If you want to get a serious level of debugging and code watching tools, then you might want to
take a look at the Zend Studio IDE (see Figure 14.1) built on top of the Eclipse framework. This
application is not freeware; however, it is the most robust PHP editor and debugger/profiler on the
market at the time of this writing. A license for Zend studio ranges from $150 to $300 depending
on the version you purchase.

Zend Studio is not the only PHP editor; however it has the most robust debugger.
Additionally you can use PHPEclipse which has similar features to Zend. However the

setup process is a little more involved.

FIGURE 14.1

The Zend Studio IDE with the debugging panels visible

Debugging in Flash
Similar to PHP, Flash offers a pretty useful set of tools for debugging. In fact, the Flash IDE has a
complete debugging system built right in where you can quickly inspect your code (see Figure
14.2), apply breakpoints, and step around a block of code to drill down and find a bug.

NOTENOTE

385

Debugging Applications 14

21_258248 ch14.qxp 3/28/08 1:42 PM Page 385

FIGURE 14.2

Here is the panel that is used to inspect an application.

Flash also has an Output panel (see Figure 14.3) that is used to view trace() statements called
from the code. A trace statement is a basic function that accepts a string as an argument. This is
then sent to the output panel and offers the ability to display elements of an application as it is
running.

trace(“Here is a very basic debug message”);

A common question with using trace statements is will they continue to output in a compiled
movie? They will, but you can select the “Omit trace actions” option in the Publish Settings dialog
box to disable it.

The simple trace method can be useful when debugging basic code examples. However, for more
complete applications, you will most likely want to build your own debug manager. This can be
done fairly simply.

386

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 386

FIGURE 14.3

This is an example of the Output panel as seen in Flash.

First, create a TextArea component on the stage with an instance name of debugTxt. Then cre-
ate a custom trace function that will populate that TextArea. Using the appendText method
will add to the existing text, rather than deleting it.

function tracer(debug:String):void
{

debugTxt.text.appendText(debug);
}

You could also create a custom class that any portion of your code is able to call. However, you will
quickly find that the standard trace isn’t perfect. For example, you can’t pragmatically clear the dis-
play or place priority on certain events.

In fact, debugging in Flash isn’t as advanced as the possibilities in PHP, but it still gets the job
done.

387

Debugging Applications 14

21_258248 ch14.qxp 3/28/08 1:42 PM Page 387

At this point, you have seen how Flash can be used to debug an application and how PHP can be
used for the same task. Now look at a few third-party options and libraries to make this process
even easier.

The majority of data passed back and forth in Flash is done so using remote calls, also known as
remoting or Flash remoting. This method of sharing data has become fairly popular but doesn’t
lend itself to being debugged or watched. Part of this is due to the fact an object is self-contained
and also the way Flash interacts with a remoting source.

Using a third-party tool named Charles or Charles Web Debugging Proxy, which can be down-
loaded from http://xk72.com/charles/, makes it very simple to look at this data as it is
passed around. Charles is not freeware, but does offer a full demo. At the time of this writing, a
license was $50. To me, it is worth it.

Figures 14.4 and 14.5 show remoting data and how it looks to Charles.

FIGURE 14.4

Here is the request that is sent out to the remoting service.

388

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 388

FIGURE 14.5

Here is the standard Charles interface showing an XML response from a remoting system.

Another great tool is a plug-in for the Firefox Web browser called LiveHTTPHeaders that watches
the network traffic. The partial downside to this application is it only watches browser traffic. If
you’re testing or debugging the application locally it will not see those calls.

More info about LiveHTTPHeaders can be found at http://livehttpheaders.
mozdev.org/.

Using an Alternative Trace
The last topic in this chapter will be building a new trace that allows colors as well as other fea-
tures. This trace alternative is built as a stand-alone SWF and can be called by any other SWF in
the same domain (local is your machine). The code behind this trace alternative is based upon the
LocalConnection class, which is a prebuilt class that allows multiple movies to share commu-
nications as long as they are in the same domain. The first part of the code is responsible for build-
ing the local connection object and registering the callback function.

389

Debugging Applications 14

21_258248 ch14.qxp 3/28/08 1:42 PM Page 389

var receivingLC:LocalConnection = new LocalConnection();
receivingLC.client = this;

function debug(str:String, level:String):void
{

var debugLevel:String =
((typeof(level) == ‘undefined’) ? ‘NORMAL’ : level);

var color:String = null;

switch(debugLevel)
{

case ‘NORMAL’:
color = ‘#000000’;
break;

case ‘ERROR’:
color = ‘#E60000’;
break;

case ‘NOTE’:
color = ‘#77C0FD’;
break;

case ‘WARNING’:
color = ‘#FBF400’;
break;

case ‘RESPONSE’:
color = ‘#27C201’;
break;

case ‘REGISTER’:
color = ‘#FC8AFF’;
break;

case ‘CLASS’:
color = ‘#FD779F’;
break;

case ‘ATTENTION’:
color = ‘#FF6600’;
break;

case ‘URGENT’:
color = ‘#FF0000’;
break;

case ‘STATUS’:
color = ‘#CCFF00’;
break;

}

if(color == null)
{

color = ‘#000000’;

390

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 390

}

debugTxt.htmlText += (“” + str +
“” + “\n”);

var scrollPos:uint = debugTxt.verticalScrollPosition
var maxScroll:uint = debugTxt.maxVerticalScrollPosition;
if(scrollPos + 5 > maxScroll)
{

debugTxt.verticalScrollPosition = maxScroll;
//debugTxt.scroll = max_scroll;

}

};

After the callback and local connection object are all built, it is time to start the connection. This is
done by calling the connect() method of the local connection object instance.

receivingLC.connect(“remoteDebug”);

The remainder of the code is purely for display of the debugging window and is not required for
functionality purposes.

function clearHandler(e:MouseEvent):void
{

debugTxt.htmlText = “”;
}

clearBtn.addEventListener(MouseEvent.CLICK, clearHandler);

// Resize Code
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;
stage.addEventListener(Event.RESIZE, function():void
{

debugTxt.width = stage.stageWidth - 25;
debugTxt.height = stage.stageHeight - 75;
clearBtn.x = (stage.stageWidth - 12) - clearBtn.width;
clearBtn.y = (stage.stageHeight - 12) - clearBtn.height;

});

That is all the code required to build a trace alternative, and using it requires very little code. The
call to the custom trace looks a little like this. The send() method requires four arguments,
which are the following. The first is the local connection object, the second is the method to call,
the third is string to trace, and the fourth is the error level.

var sendingLC:LocalConnection = new LocalConnection();
sendingLC.send(“remoteDebug”, “debug”, “Object Not Found!”,

“ERROR”);

391

Debugging Applications 14

21_258248 ch14.qxp 3/28/08 1:42 PM Page 391

Summary
You should now have a pretty solid knowledge of the tools and practices available to successfully
debug your applications in Flash and PHP. These are not the only tools and practices available to
debug an application. Developers are coming up with better ways all the time, partially because it
is an important task and also because it is the most dreaded in the development cycle.

In this chapter you learned how to create your own custom errors and how to work with the stan-
dard error types found in PHP. You also learned how to debug code within Flash using the Output
panel and trace statements.

The last section of the chapter focused on the development of a custom debug handler in
ActionScript, which displays the messages in a color-coded scrollbox to better identify your debug
messages.

392

Developing ApplicationsPart IV

21_258248 ch14.qxp 3/28/08 1:42 PM Page 392

Server, Application,
and Database
Maintenance

IN THIS PART
Chapter 15
Maintaining an Application

Chapter 16
Maintaining a Scalable and More
Efficient Server

Chapter 17
Building Complete Advanced
Applications

22_258248 pp05.qxp 3/28/08 1:42 PM Page 393

22_258248 pp05.qxp 3/28/08 1:42 PM Page 394

The process of maintaining an application is accomplished by simply
following some rules. These rules have been established over time as
applications continue to be developed daily.

This chapter focuses on these individual rules. By the end of the chapter, you
will understand not only how to follow them, but also how they can make
your job easier.

The last section focuses on working in a team environment, using common
note taking, commenting, and version control from the perspective of a sin-
gle developer. Even after an application is written, it isn’t uncommon to
come back and make changes. If you plan this during the original writing
process and follow some simple steps, it makes the updates a lot easier to
manage and implement moving forward.

Often, an attempted rewrite is made rather than correcting a few small
issues. This usually is due to poor planning in the beginning and results in
additional development time that can’t always be accounted for.

Commenting Code
Code commenting is more important as a project continues to grow, or as
additional developers are brought on to a project. The process of comment-
ing code is not a required part of writing an application, but it is helpful
when looking at a project that has been in development for some time.

Oftentimes the commenting style is either defined in a project outline or set
by the project lead.

395

IN THIS CHAPTER
Commenting code

Managing a ChangeLog

Managing multiple versions

Using custom libraries

Maintaining an Application

23_258248 ch15.qxp 3/28/08 1:43 PM Page 395

Commenting can even be beneficial when you write you own code because you can leave notes to
return to a piece of code at a later date. This is especially important if you ever intend to distribute
the code as an open source project or sell the application.

Commenting code also makes it easier to write or generate documentation with little or no addi-
tional modification needed by the developer.

Understanding styles for commenting code
Each language has its own style of code commenting. For example, a very common form of com-
menting is seen in HTML documents, which looks like this:

<!-- This is an HTML comment -->

HTML only offers one style of commenting, where other complete scripting languages have various
commenting styles. Here are some examples of the more common commenting styles found in
Flash, PHP, and MySQL.

Block comments
PHP, ActionScript (Flash), and MySQL allow block comments.

/*
*
* This is a block style comment,

* which can have any number of lines.
*
*/

Line comments in MySQL
MySQL allows line comments using a -- at the start of a line.

-- This is a MySQL comment; the database will not read this.

Inline comments
You can also use an inline comment to remove a certain section of code. This allows you to quickly
test a section of code and locate bugs more quickly. Here is an inline comment that removes the
WHERE clause section of an SQL query.

SELECT name, status FROM users/* WHERE id=1004 AND
status=’active’*/;

The previous comment results in the query returning all of the users in the database because the
conditional portion has been commented out.

Malformed line and inline comments can sometimes create hard-to-trace bugs unless
your code editor uses colored syntax highlighting.NOTENOTE

396

Server, Application, and Database MaintenancePart V

23_258248 ch15.qxp 3/28/08 1:43 PM Page 396

Compiler comments
Some development languages and applications use compiler comments. These specialized com-
ments tell an application compiler how to handle certain types of data. These comments should
not be removed by hand unless you intend to remove that functionality.

Comments in XML
Some of the various applications that have been developed in previous chapters deal with XML. It
is important to realize that XML can act in an unknown way when comments are used improperly.

This only becomes an issue when a -- is used within a comment such as the following:

<!-- Person, contains all info -- globally used -->
<person>

<name>Alex</name>
<age>27</age>
<gender>Male</gender>

</person>

As you can see, the -- mimics the ending tag and will confuse the XML parser to the point where
it thinks the XML is malformed and in some rare cases won’t load it.

Comments in Apache
Using comments in Apache is generally limited to the .htaccess files to determine site settings.
It is important to note that comments in Apache’s files can cause rendering issues. If for some rea-
son a directive is not working properly, look for comments as the first culprit of the issue.

Here is an example of a comment in an Apache .htaccess file.

Force PHP to render .html files
AddType application/x-httpd-php .html .htm

Mixing comments
You can mix various styles of comments as necessary. This is common when explaining a section of
code, such as a function or method definition. As you can see, a block comment is used to describe
the function and a line comment explains the code in the function.

/*

@num1: first number
@num2: second number
@return: sum of two arguments

@author: developer’s name
@description: static function that multiplies two numbers

*/

397

Maintaining an Application 15

23_258248 ch15.qxp 3/28/08 1:43 PM Page 397

static function multiplyBy(num1:Number, num2:Number):Number
{

// return the sum of num1 & num2
return (num1 * num2);

}

Properly commenting your code can have obvious advantages. More popular code editors offer fea-
tures that can hide or collapse comments so they only are in the way when you want them to be.

You will even find some editors that syntax highlighted comments. Some professional editors use
your comments to create inline help files called code hints (see Figure 15.1).

These code hints are inline boxes that pop up as you begin to type. They provide the possible
items available based on the code entered so far.

A more advanced ActionScript editor, such as FDT by PowerFlasher, has the ability to learn your
code and displays your custom comments within its version of code hints.

FIGURE 15.1

Example of a code hint displayed in Flash CS3 for the MovieClip properties

398

Server, Application, and Database MaintenancePart V

23_258248 ch15.qxp 3/28/08 1:43 PM Page 398

Removing comments and debug helpers
Comments are often removed due to file size, which can be a valid concern on a large program.
However, most of the time, comments are automatically removed when an application is compiled
or built.

Depending on the application you use, debug statements should also be removed. For example,
the native Flash IDE that ships with CS3 has a configuration option in the Publish Settings dialog
box. If you select Omit Trace Actions, which is located on the Flash tab of the Publish Settings,
trace calls are removed from the application.

If Omit Trace Actions is enabled during debugging you will not see any trace calls dis-
played in the Output window.

If you decide to use a custom Class or package for debugging, then you could use Find and
Replace to remove those instances. However, be careful to not accidentally remove application-spe-
cific code.

As you can see, comments can be beneficial from the standpoint of code readability. You also now
know that properly commenting your code has additional advantages when using some of the
more robust code editors available today.

Managing a ChangeLog
A ChangeLog is a formatted block of records or log entries placed in a custom file. These files
generally have the name CHANGES or UPDATES. This section is used to take notes on the features
of an application or to communicate progress with the rest of a development team.

An advantage to using a ChangeLog is that some applications can read this formatted log and
automatically display it, as shown in Figure 15.2. This, of course, depends on the application you
are using but can be very beneficial as an application begins to grow.

Bug tracking
Many developers use this dynamic ChangeLog format to track bugs. This is a process that many
commercial and freeware applications, such as Jira and Bugzilla, use to create a more graphical
alternative to the basic text file.

Using bug tracking with teams
Bug tracking becomes especially important when teams are involved. For instance, many open
source technologies consist of developers around the world. Imagine how tedious it would be to
track bugs in e-mails or phone calls across all these developers. This is where bug tracking
becomes especially important. That doesn’t mean a single developer can’t benefit from the same
system.

NOTENOTE

399

Maintaining an Application 15

23_258248 ch15.qxp 3/28/08 1:43 PM Page 399

FIGURE 15.2

Here is a Web page displaying a ChangeLog that was dynamically generated.

Additional uses
A ChangeLog isn’t limited to a few lines of text. Realistically, as you can see, it can contain bug
fixes, notes to other developers, and information regarding a specific element. For example, if you
decide to use a bug tracking application, it is a good idea to include the bug ID within the
ChangeLog entry or let the application for tracking handle this.

Properly documenting bug IDs makes it easier to follow up on a bug later during application devel-
opment, or if you return to a project once it is completed.

Dynamic creation of changes
Version control applications, which are discussed in the following section, even have the ability to
automatically generate a ChangeLog. The advantage to this approach is the developer doesn’t
have to spend project time editing or updating the log. However, a disadvantage to this is the file
becomes less personalized and sometimes makes it harder to fully understand.

400

Server, Application, and Database MaintenancePart V

23_258248 ch15.qxp 3/28/08 1:43 PM Page 400

Managing Multiple Versions
Version control is the management of multiple versions of code or files for an application. These
applications often are used in development teams, but can easily be used by a single developer.

The advantage to using version control is the tracking and backup code that is stored as you
develop or maintain an application. This added level of security on a project can allow the devel-
oper to experiment with an idea and still have the ability to revert to a stable version.

It also allows a developer to keep code consistent across development platforms. This feature is a
very common use for solo developers who travel and code on a mobile system. They simply con-
nect to the development server, download the latest version, and are ready to go. When they
return, a simple update is made to the same server and the application is back in sync.

Version control applications
There are various version control applications available for your development environments today.
Selecting which version control application to use is determined by looking at the features and
requirements of your development process.

The more common version control application is SVN (SubVersion). Another popular application
is CVS (Concurrent Versions System). Support for version control is often built directly into a code
editor, such as the open source Eclipse editor.

Version control support in CS3
New to Adobe Flash CS3 is the ability to use Version Cue directly within Flash. Version Cue (see
Figure 15.3) is Adobe’s version control application that was found within its other applications.

Using Version Cue in Flash CS3
You will find a menu item “Check In...” under the File menu. This item is used to bring up the
Version Cue management dialog and is where you are able to save versions of your application.

You will find an entry of Check In... located in the File menu.

The advantage to using Version Cue is it ships with CS3 and is integrated into the suite of applica-
tions. This is especially important if you are developing assets in one application, code in another,
and managing the site in a third.

You can even allow your team to log in to the Version Cue server remotely and make changes. This
means, for instance, your developer can be virtually in the same office as the rest of your team.

401

Maintaining an Application 15

23_258248 ch15.qxp 3/28/08 1:43 PM Page 401

FIGURE 15.3

Screenshot of Version Cue, which ships with the Creative Suite 3 programs

Setting up version control
The process of setting up version control depends on the system your development environment
runs. A more complete installation guide would be included with the application that you decide
to use. Basic installation would include unpacking the contents of the version control application,
modifying the configuration file, and alerting Apache to the existence of that application.

Using version control
Normally, the process of using version control is integrated into your code editor. However, there
are applications available to use version control directly within your operating system.

Two version control managers for Windows and Mac OS X are shown in Table 15.1.

TABLE 15.1

Version Control Managers for Windows and Mac OS X

Name URL OS

TortoiseSVN http://tortoisesvn.tigris.org/ Windows

SCPlugin http://scplugin.tigris.org/ Mac OS X

402

Server, Application, and Database MaintenancePart V

23_258248 ch15.qxp 3/28/08 1:43 PM Page 402

For a more secure and final development setup, it is best to install your version control
application on a separate machine.

Backing up version control
The more popular version control systems offer integrated backup solutions, but oftentimes you
will find that backing up the application you are writing will include the version control data.
Normally, these files are set as hidden and should never be edited manually if for some reason they
do become accessible.

Editing a version control file manually can result in corrupt backups and even harm the
integrity of the code of your application.

Additional use of version control
Additional use of version control is the ability to publish the file structure to the Web for sharing.
This isn’t always the intended result, but you will find companies such as Adobe, Google, and
Microsoft that take this approach.

Using version control cuts down on the amount of extra work necessary to publish your applica-
tion’s source code and allows others to keep code updated just by connecting to your version con-
trol system remotely.

Using Custom Libraries
Custom libraries can make your code easy to maintain. In older versions of ActionScript (before
AS3), packages didn’t really exist, so it was hard to properly maintain and share an application’s
source code.

ActionScript 3 introduced a more common coding practice called packages. This offers the ability
to create one instance of your class and share it across projects all contained within a single folder
or file.

A more thorough look into custom libraries can be found in Chapter 9.

Using custom libraries with version control
If you create a separate install for your version control system you can use this same machine to
store your custom libraries and then include them remotely in your Flash file(s).

The advantage to this approach is the ability to update a package and have all applications that use
that package update as well.

CROSS-REFCROSS-REF

CAUTION CAUTION

NOTENOTE

403

Maintaining an Application 15

23_258248 ch15.qxp 3/28/08 1:43 PM Page 403

Publishing an SWC
You can create an SWC in Flash, which allows you to distribute components and ActionScript
classes. To publish an SWC, select the Export SWC option in the Publish Settings dialog box.

The SWC file contains a compiled clip and the ActionScript class files that support it.

It is a good idea to document class and package changes because existing applications
could stop working.

The process of using custom libraries may not seem like a very important aspect of application
development. However, once you begin to develop larger-scale applications that share common
attributes you will notice how much time is saved by not having to rewrite code.

Summary
In this chapter you learned how to comment your code and why it makes for a better application
overall. You also learned how this becomes especially important when developing an application
with others.

You got an introduction on how to incorporate a ChangeLog into your development and how some
third-party applications can use this information to display more detailed bug tracking.

In the last section you learned how to use version control and were introduced to Version Cue,
which is a new addition to Flash CS3.

NOTENOTE

404

Server, Application, and Database MaintenancePart V

23_258248 ch15.qxp 3/28/08 1:43 PM Page 404

This chapter focuses on the best practices for maintaining your server
while also introducing more advanced application improvement tech-
niques such as caching, efficient databases, backups, and scalable code.

After you learn and apply this information to your applications, you will
quickly notice that they run more efficiently. If you keep these steps in mind
at the beginning of the application development process, you will not have
to rework the application later.

Running an Updated Server
One of the simplest but most ignored methods for maintaining a more effi-
cient server is keeping your libraries and core server-side code updated.
Oftentimes these programs that are responsible for running your applications
are updated as the developers continue to find ways to speed them up or
make them more efficient. This updating process is not referring to your per-
sonal code, but the libraries and services your code depends on.

Updating your server not only provides performance enhancements, but also
can ensure your Web server is more secure. PHP, for example, is updated fre-
quently as more enhancements and coding changes are introduced. This is
due to new security concerns being discovered, which results in a stronger
application overall.

Before updating your system, ensure your applications will be compatible.
For example, applications developed in PHP 4 are not always compatible
with PHP 5. You will find some instances where another piece of software on
your server may require a specific version. A good example of this is mail

405

IN THIS CHAPTER
Keeping the server updated

Caching and optimizing

Handling backups

Maintaining a Scalable and
More Efficient Server

24_258248 ch16.qxp 3/28/08 1:43 PM Page 405

clients, such as a specific version of Horde (a popular e-mail application) requires PHP 4 and will
simply fail on a newer version.

This doesn’t mean you should never update; quite the opposite actually. It just takes a little home-
work and research prior to installing new versions.

Using automatic updates
As you know, installing new versions of applications on your server is not always the best option.
You need to be more aware of this with automatic updaters. For example, you will find automatic
updates are more likely to provide brand-new functionality but at the same time they also provide
code that hasn’t been tested as thoroughly.

You will find that not all of your server-side applications offer automatic updates, but it is best to
check beforehand and ensure that those options are disabled.

Some hosting providers perform periodic security updates, sometimes without your permission or
even informing you of the update. This is one of the many reasons I prefer to run a self-managed,
dedicated server as opposed to paying a little less and letting the hosting provider handle security
and version updates.

Zend Platform
The exception to not installing automatic updates is when you use the Zend Platform. This toolkit
ensures your system is properly up to date with all the latest security enhancements, while making
sure your existing script will still work properly.

The cost of Zend Platform can cause a dilemma for smaller organizations and single developers,
but the overall time saved in the long term is a valid reason to purchase it.

Working with Development Installs
Installing new applications or libraries is not good practice when working with a live server.
However, this doesn’t mean you can’t experiment with new code by installing a development
system.

You can build or purchase hosting on a new server to get a development system setup, but this
may not be the most cost-effective solution, especially if you are a one-man shop.

Building another version of Apache on
the same system
The alternative is to install a separate version of Apache on your live server. By default, Apache can
only have one version running because every version tries to share the same server port.

406

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 406

However, you can modify this setting by editing the httpd.conf file. You will find this configu-
ration file in the conf/ directory of your new Apache install.

Open this file in your favorite text editor or vi, if you are running a remote server, and modify the
following block:

Change this to Listen on specific IP addresses as shown below
to

prevent Apache from glomming onto all bound IP addresses
(0.0.0.0)

#
#Listen 12.34.56.78:80
Listen 80

The majority of that block of code is a comment explaining what this parameter is responsible for.
You can modify the port on which your development system can be found by changing this num-
ber to something similar to the following:

...
#
#Listen 12.34.56.78:80
Listen 9004

After you save and restart Apache, you can access this new install by visiting http://local
host:9004.

Applications on your machine use different ports, so it is best to check the port before
choosing a new one.

Working with bleeding-edge technology
When you have the new system installed, you can begin to experiment with new bleeding-edge
technology without harming your live setup. Bleeding-edge software as shown in Figure 16.1 is
newly released versions that have not been tested as much as stable releases would be. This allows
you to work with more advanced and newer features, but also means you could run into bugs and
development issues when using these versions. As you continue to test this new technology you
can determine whether it should be used in a live environment and move it over when it is ready.

Dependencies
Many libraries and tools that you will use on your Web server depend on other libraries. For exam-
ple, PHP’s GD library for image manipulation requires the libjpeg library in order to properly
edit images.

When you update your server, you need to be aware of these dependencies because updating one
portion can result in broken or incomplete installations. Oftentimes you will find information on
the developer’s site regarding specific update information or you can consult php.net in the com-
ments section. There you will find other developers reporting their results in various development
situations.

NOTENOTE

407

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 407

FIGURE 16.1

An example of bleeding-edge releases from php.net

Caching and Optimizing
Keeping your server up to date is only one way to run an efficient server. In fact, there are much
more important practices to follow first. One of these more important practices is optimizing your
server-side code and the system it runs on. Not only should you follow best practices when devel-
oping your applications, you should also maintain your server to be optimized based on your spe-
cific needs.

Optimizing PHP
Following the steps to optimizing your installation of PHP will allow you to run a better server
overall. These optimization steps are fairly simple to follow and can easily be repeated as you work
on more servers.

408

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 408

Processor versus RAM
Unlike most applications that require more memory, PHP relies more heavily on the processor in
your server. This means a dual-processor system is more efficient than a single processor with more
memory. That does not mean memory is not important, because certain portions of PHP use a con-
siderable amount of memory.

The output buffer and database plug-ins require more memory as they are accessed because they
tend to store a majority of the information for quicker access next time. This means the first
request is slow but requests following that are faster if you have enough memory to properly han-
dle the requests to be stored.

This doesn’t mean you should run out and immediately purchase more memory or even more
processors because there are ways to optimize your server without spending any money on addi-
tional software or hardware.

Ten tips for optimizing your code
The following is a list of ten tips to follow that will produce better performance in your code, as
well as limit the strain on the Web server. They appear here in order from least important to most
important.

1. Limit the amount of error handling your applications manage. Less error handling means
better overall performance, unless you are experiencing bottlenecks already. Then error
handling may be important.

2. Use the included functions; don’t create your own. Whenever possible, try to use the pro-
vided functions in PHP because they are precompiled and are optimized to run more effi-
ciently. They have also been tested over and over to ensure they work.

3. Use a select instead of multiple if/else statements. Not only will using a select pro-
duce cleaner code, it will also result in better performance when PHP executes that por-
tion of your code.

4. Avoid myths like echo is faster than print. As with most programming languages, PHP
has various myths, such as all code should be on one line. One of the most common
myths is that echo is faster than print when sending code to the output buffer or
screen. This is simply not true. You can use either statement. I personally prefer print
because it is printing to the display or buffer.

5. Close database connections using functions such as mysql_close (for mysql) when not
being used. Database connections end when the script completes, but this is not always
the best way. For example, if you have a program that makes database calls and modifies
these results, the database connection stays active (unless you close it) the entire time
your script is working on the result set.

409

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 409

6. Use unset() to remove variables when they are no longer being used. Deleting vari-
ables, especially large arrays and objects when no longer in use, results in better perform-
ance overall.

7. Try to limit regular expressions and use standard string functions whenever possible.
Regular expressions, while more robust, can consume a considerable amount of memory.
Oftentimes you will find a simple string function (for example, strstr) produces the
same result and with a significant performance increase in most cases.

8. Be smart about class usage. Simple tasks will suffer from unnecessary OOP code. You will
find simpler tasks consume more memory when developed using OOP practices. It is
important to not only know which techniques exist, but also when they should be used.

9. Monitor your applications to determine bottlenecks. Slowdowns in code performance can
be traced back to one specific location, known as a bottleneck. Think of an actual bottle,
where the neck slows down the flow of liquid as it groups to pass through the narrow top
of the bottle. The same is true for code as most libraries and scripts have one point where
they all meet.

A bottleneck in your application may exist in your code, but could also be in a database
call or file system interaction. Monitoring your application will expose the issues and
allow you to fix the performance problem.

10. Cache your PHP code, whenever possible.

After you optimize your code, but still need to improve more, caching may be an option. You can
develop a custom solution or use an existing system, such as memcached, which is examined in
the next section. You can also cache the actual PHP script by precompiling it, which speeds up
subsequent requests.

PHP by default compiles your .php files every time they are requested. Caching avoids this by
storing the precompiled code. This is much more efficient and means faster performance.

These ten tips are not the only ways to optimize your code, but provide a list of common slow-
downs and myths when developing your applications. As you can now see, with a few code modi-
fications and attention to how the Web server handles your scripts, you can ensure better
performance while maintaining ultimate functionality.

I have seen some applications remove features when the program begins to expand, and this is
simply the wrong approach. Removing features from a slow application is similar to throwing wild
amounts of new hardware to solve a performance problem.

Zend Optimizer
The Zend Optimizer is one product that is used to optimize and cache your code, but also provides
a secure result because your code is compiled and encrypted. The encryption is achieved by run-
ning your source code through the Zend Guard, as shown in Figure 16.2, which obfuscates your
open code.

410

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 410

This tool is not free, but as you continue to develop more robust applications, you will learn that
the cost is outweighed by the increase in performance you achieve.

FIGURE 16.2

Zend Guard with an active project loaded

Zend Studio
A more optimized server can be traced back to the application development process. Zend offers a
development studio that can profile and debug your code, allowing you to locate bottlenecks
before you deploy your code.

The Zend Studio, as shown in Figure 16.3, even allows remote debugging, which allows you to test
your applications on the live server while still being able to monitor and debug when needed.

You can find more information about these tools on the Zend Web site at www.zend.com/
en/products/guard/optimizer/ and www.zend.com/en/products/studio/.

411

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 411

FIGURE 16.3

Code editor found in the Zend Studio IDE

Optimizing Apache
The process of optimizing Apache is broken up into four pieces. This allows the developer to focus
on each specific step rather than forcing them to modify every aspect of the server. In rare cases
you will only see minimal performance updates, but will notice it more as the application and
demand continue to grow.

Hardware
The first place to look when attempting to optimize Apache is the hardware it runs on. For exam-
ple, Apache consumes a lot of memory over time. More memory can be a benefit here because it
will be able to properly maintain itself.

Dedicated server
Make sure Apache is running on a dedicated server. This technically includes the development
install that you learned about in the previous section. It is important to understand the develop-
ment install version of Apache doesn’t consume that many resources, being a single-user product.
It is best to let Apache have the entire server to run more efficiently. Enterprise (large) applications
will oftentimes run a stand-alone server to handle the Web traffic.

412

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 412

Configuration files
Modifying the configuration files (*.conf) can produce a performance increase if you remove
directives that are not being used. As you learn the configuration layout, you can remove the com-
ments, which will make it easier to look at in the long run.

Apache provides a series of configuration starter files, but try to avoid the high-performance ver-
sion because it actually becomes less efficient in the long run. The reason is because this version
overly optimizes Apache, which forces it to run less efficiently unless you are experiencing very
high traffic.

Logging and errors
Whenever possible try to limit the amount of log usage. You can either disable logging altogether
or limit the amount of information that is written to the logs. Errors are harder to trace because
Apache does not inform you of these issues. In most cases, however, when a server is functioning
properly this is not a problem.

If you choose to enable logging, make sure you edit those files on a different machine because the
process of opening and parsing these sometimes large files can have a performance impact.

MaxClients
You can modify the MaxClients directive in the httpd.conf configuration file to increase per-
formance, but be aware that any client attempting to connect after the limit is hit will be unable to
view your site. In rare cases, this may not be a bad thing because it will preserve the performance
for the existing users.

<IfModule prefork.c>
StartServers 8
MinSpareServers 5
MaxSpareServers 20
MaxClients 150
MaxRequestsPerChild 1000
</IfModule>

The MaxClients directive only applies when the prefork module is configured and
enabled.

There are other ways to optimize Apache, but short of adding additional hardware and cost to your
organization, this list will have your server running much more efficiently.

Optimizing MySQL
Now that you have optimized PHP and the Apache Web server, the next logical place to optimize is
MySQL. You can optimize MySQL after it is installed, but there are some good practices to keep in
mind prior to installing it, when possible.

NOTENOTE

413

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 413

Better performance from installation
Choosing the best compiler for your system when you build MySQL can usually get you 10 to 30
percent better performance. Compile MySQL with only the character sets and options you intend
to use. Oftentimes a quick evaluation of your intended use can result in better performance,
because at a glance you can determine which features you will and will not use.

The MySQL documentation has various tips on better performance, and as you continue to imple-
ment more of them you will want to run the compiled binary using the MySQL benchmark test to
truly determine if the modifications will result in better performance.

MySQL is a long road application. This means you want better performance overall and not just for
very quick actions. For example, assume you have a table with 100,000 rows, which is not that
uncommon in large applications. Performing a search on this table will take some time, so a tuned
MySQL with fast access in mind will actually be the bottleneck. It is better to have MySQL tuned
with long-term processes in mind to work with data in these volumes.

Logging slow queries
One of the best ways to locate bottlenecks in your MySQL database is to enable logging when
needed. It is important to understand that logging in itself is a performance killer, but sometimes is
necessary to fix other issues.

MySQL logs slow queries to a log file. If you tail this file, which is used to actively watch the flow,
you will be informed of slow queries. You can also let this log fill and then test it later, depending
on how active your system is.

tail -f /var/lib/mysql/192-168-1-107-slow.log

The path of this slow query log file will be different depending on your environment.

Windows does not offer a “tail” command by default, but you can install the Server
Tools available from Microsoft.

You may need to enable “slow query logging” in the configuration files of MySQL.

Checking tables
Another way to ensure a database is running properly is to check the table health, by issuing the
following command in the prompt. Replace table_name with the actual name of the table that
you want to check.

CHECK TABLE table_name

For example:

mysql> check table poll;
+-----------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |

NOTENOTE

NOTENOTE

414

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 414

+-----------+-------+----------+----------+
| book.poll | check | status | OK |
+-----------+-------+----------+----------+
1 row in set (0.00 sec)

Limit startup options
Another way to get better performance out of MySQL is to limit the options that load when started.
MySQL ships with various options for each and every use case, but it is safe to say you will not use
all of them. Similar to Apache, if you modify the configuration files in MySQL, you will notice bet-
ter performance.

Additional tools
The MySQL development group provides many free profiling and administration tools. These tools
can be downloaded from the main MySQL Web site and will help you optimize and monitor your
databases remotely. The advantage to using these tools is not having to monitor your server using
basic command-line tools. These GUI-enabled tools allow you to understand what your Web
server is doing from a visual perspective, as shown in Figure 16.4.

FIGURE 16.4

The MySQL Query Browser

415

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 415

Caching
The topic of caching is normally looked at once you experience bottlenecks in an application, but
you can install caching solutions before a problem occurs.

Working with memcached
One of the bottlenecks in server-side scripts is the database. You have the ability to tweak the con-
figuration, which you did in the previous section. Sometimes this can only go so far as a system
continues to grow.

The answer to this problem is to install software to help deal with database slowdowns, such as
memcached, which is a high-performance memory object caching system. This system is built
with the intent to speed up dynamic Web applications by removing database load, which is
encountered more often as the system continues to grow. You can download the latest version of
memcached from danga.com at www.danga.com/memcached/.

Installing memcached on Linux
The following section will cover the installation process of memcached on a Linux Web server. This
version requires another library to be installed, which will also be covered.

Installing libevent
Before you install memcached, you need to install a dependency library. This is libevent, which
can be downloaded at www.monkey.org/~provos/libevent/.

Unpack the archive and perform the same installation steps you have seen in the previous exam-
ples when installing applications.

$ tar -xvf libevent-1.3b.tar.gz

Change the current directory to the newly created libevent to continue the installation process.

$ cd libevent-1.3b

The last step to setting up the dependency is to configure and build the necessary install files and
install the libevent library.

$./configure
$ make
$ make install

Installing memcached
Once libevent is installed, you can continue with the installation of memcached.

$ gunzip memcached-x.x.x.tar.gz

416

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 416

Start by unpacking the archive that you just downloaded.

$ tar -xvf memcached-x.x.x.tar

Next, change the current directory to continue the installation.

$ cd memcached-x.x.x

The last step of the installation process is to create the installer script and install the application.

$./configure
$ make
$ make install

With memcached installed, start it up and move on to the PHP extension.

$./memcached -d -m 2048 -l 127.0.0.1 -p 11211

Downloading the memcached extension for PHP
At this point, the next step is to install the PHP extension that is used to interact with memcached.

The first step is to download memcached from the PECL package repository.

$ wget http://pecl.php.net/get/memcache-x.x.x.tgz

The version number has been removed to ensure you download the correct version,
rather than force a version on the reader. It is best to read the documentation before

downloading a version.

Installing the memcached PHP extension
Once the file is downloaded, unzip and untar the archive file.

$ gzip -df memcache-x.x.x.tgz
$ tar -xvf memcache-x.x.x.tar

Change to the directory that the memcached archive has created.

$ cd memcache-x.x.x

A call to phpize is made to build the unpacked files into a compatible PHP extension.

$ phpize

The next step is to configure the install, make the install files, and finally install the application
using the following three commands:

$./configure
$ make
$ make install

NOTENOTE

417

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 417

When the installation is complete, you need to modify the php.ini file and add the new extension.

extension=memcache.so

Installing memcached on Windows
The first step to installing memcached is to download the binary version directly from
http://jehiah.cz/projects/memcached-win32/

1. Unzip the binaries in your desired directory (e.g., c:\memcached).

2. Install the service: ‘c:\memcached\memcached.exe -d install’ from the
command prompt.

3. Start the server from the Microsoft Management Console.

4. Use the server, by default listening to port 11211.

Now that you have memcached installed and started, the next step is to configure PHP. Start by
checking the PHP extensions directory (C:\php\ext) for the memcached extension
(php_memcache.dll).

If you do not see the extension in that directory you can visit the PECL repository and download it
from there: http://pecl4win.php.net/ext.php/php_memcache.dll

The next step is to open the php.ini file and add the memcached extension to the existing list of
extensions.

extension=php_memcache.dll

The last step is to restart Apache.

Wrapping up installation for Linux and Windows
The last step is to restart PHP by restarting Apache and running the phpinfo function to see if
memcached has been successfully added.

Saving data to the cache
The power of memcached cannot be explained in a little section, but the following is a good
overview of how to load and save data into the caching system.

The first step is to create a new instance of the Memcache library object.

$cache = new Memcache;

After you create the object, create a new connection. For this example, everything is running on
the same server, but memcached really shines when installed on multiple servers. The second
argument in the connect method is the port number on which memcached is running.

$cache->connect(“localhost”, 11211);

418

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 418

After you make the new connection, you can create some sample data, which would probably be a
more advanced block of data in a real-world application.

$sampleData = array(“apples”, “oranges” “bananas”, “waffles”);

After you create the sample data, which in this example is a basic array, you need to send the data
to the caching system. This is done by making a call to the set method of the Memcached class.

The first argument is the name of the key, which should be unique because this is the way you will
retrieve this information.

$cache->set(“uniquekey”, $sampleData, false, 86400);

The second argument is the sample data to store in the cache.

$cache->set(“uniquekey”, $sampleData, false, 86400);

Memcached has the ability to store the data in a compressed form, which is set by the third argu-
ment. This option is a true or false flag.

$cache->set(“uniquekey”, $sampleData, false, 86400);

The fourth and final argument determines how long the cached data should stay alive in seconds.
In this example, the data would stay alive for 24 hours.

$cache->set(“uniquekey”, $sampleData, false, 86400);

The expire option of memcached data cannot exceed 2592000 (30 days).

$cache->set(“uniquekey”, $sampleData, false, 86400);

As you can see, the code required to save data to the cache is fairly simple and makes it very easy
to adapt into existing applications.

Here is the complete example script for saving data to the cache.

<?php

$cache = new Memcache;
$cache->connect(“localhost”, 11211);

$sampleData = array(“apples”, “oranges” “bananas”, “waffles”);

$cache->set(“uniquekey”, $sampleData, false, 86400);

?>

NOTENOTE

419

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 419

Loading cached data
Once you store information in the cache, the process for retrieving that information is a matter of
calling one method of the Memcache class. This method accepts one argument, which is the key
that you used to save the data in the cache.

$result = $memcache->get(“uniquekey”);

That is all there is to loading the cached information. As you can see, loading data from the cache
is very similar to the overall process of working with the database. This means it is not hard to
seamlessly integrate into your existing code.

Managing servers
The memcached caching system can be installed on the same machine your Web server runs on.
However, it performs better if it is added to an array of other machines. These additional machines
do not have to be on the same domain, location, or even be all that powerful from a hardware
perspective.

Adding new servers
You can use connect() to add new servers but there is a better function, addServer(), which
does not use as many resources and only establishes a network connection when required. You can
add as many servers as you want, but they will only be used when required by the system.

Closing a connection
The process of closing a cached server connection is done by making a call to the close()
method. This method will not close persistent connections. These connections are closed only
when the Web server is shut down or restarted.

$cache = new Memcache;
$cache->close();

Deleting an item in the cache
Items will automatically be deleted from the cache when they expire, but it is not uncommon that
you may want to remove data immediately. The delete() method accepts two arguments. The first
argument is the key to match and delete. The second argument is a timeout delay where the
caching service will wait this amount of time before removing the value.

You can use this method to speed up the deletion process of certain elements by setting the time-
out to a few minutes or hours in the future.

Moving forward with memcached
Now that you have an understanding of how to install, modify, and use memcached you should
see a substantial performance increase. The advantage to working with memcached is you can add
more servers as the load becomes more demanding. This continues to remove the stress from the
database and makes your applications more responsive.

420

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 420

The Memcached class offers a few other methods that you may find useful, depending on your
intended use. You can also use this memcached caching system with multiple programming lan-
guages, but the focus in this section has been PHP 5.

Handling Backups
Backing up your data is not only a best practice to ensure your data is stored securely; backups can
also be used to periodically clean your system and limit the files that are available on the system.
Oftentimes you will have many Oldfilename.php or test.php files throughout your server as
you test more code concepts. The problem with these extra files is it slows down directory scans
and makes it harder to manage the files that matter.

File management
Running a more efficient server can include minimizing what is installed on your server. In the
next section you will learn how to exclude non-used files to limit overhead.

Managing necessary files
If you limit your server to only have active code and leave the experimentation for a development
server or section, you will notice a directory scanning and searching performance increase.

This doesn’t mean those unneeded files should be deleted. In fact, that is the exact opposite of
what you should do. The best practice is to set up timed backups that look for these files or simply
have a backup system that backs up the entire server and moves it to a remote location.

Limit larger files
Try to limit the use of larger files whenever possible. These files take longer to open and require
more memory when opened. If not excluded, they also slow down the backup process, which gets
a more in-depth look in the following section.

Don’t store backup data on the same drive because you will have an even larger
resource issue.

Backup management
Running backups on your system will ensure you don’t lose necessary files. This can include user
uploaded files or core server configurations.

Timed backups
UNIX Web servers offer a service called cron, which can be set up to run at a predetermined time
based on the setup information. You can find more information about the cron service by looking
up the manual page for it.

man cron

NOTENOTE

421

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 421

Here is the format of a crontab file, where you repeat the last line for each new command.

+---------------- minute (0 - 59)
| +------------- hour (0 - 23)
| | +---------- day of month (1 - 31)
| | | +------- month (1 - 12)
| | | | +---- day of week (0 - 6) (Sunday=0 or 7)
| | | | |

* * * * * command to run

All cron jobs are located in the same file, which is normally loaded by typing the following
command:

crontab -e

In Windows, you can use the Task Scheduler, which can provide the same basic functionality.

Backup directories using PHP
With the cron system, which can run a command at a given time, at your disposal you can build
an automated backup system that is called by the cron. These backups can be run at any time, but
unless you have a special requirement, it is best to run them when your server encounters the least
amount of stress.

The first part to the backup script is defining the directory to backup. This portion is built as an
array, which is used to allow more than one directory to be backed up.

$dirs = array(“/var/www/vhosts/example.org/myfiles”);

The backupDir defines where the archive file is saved after it is created.

$backupDir = “/var/www/vhosts/example.org/backups”;

A date is stored that is used as the archive filename. You can modify the archive name to include
the hours and minutes if you decide to create more than one backup per day.

$date = date(‘m-d-y’);

The core of the backup script is within a foreach loop. This loop is responsible for backing up
each directory defined in the array. For this example, there is only one directory defined, so this
loop will only run once.

foreach($dirs as $dir)
{
...
}

Continuing with the script, the next section is located all within the foreach loop. The first part
is to use preg_replace to remove all but the directory name from the $dir variable. This is
passed through another preg_replace to define the archive name.

422

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 422

$dir = preg_replace(‘/\/$/’, ‘’, $dir);
$archiveName = preg_replace(‘/^(.*)\/.*?/’, ‘’, $dir);

After you define the archive name, the next step is to build the command that will create the
archive file.

$tgzName = “{$archiveName}-{$date}.tgz”;
$tgzFile = “{$backupDir}/{$tgzName}”;
$backupCmd = “tar czf {$tgzFile} {$archiveName}”;

The $backupCmd variable is passed into the system command, which informs PHP to run the
passed-in command at the system level of your Web server. This would be the same as executing
the command in the command prompt or terminal.

$result = system($backupCmd . “ 2>&1”);

For debugging purposes you may want to output the command in case an error occurs, as well as
the original command to ensure the structure is properly defined.

print “Command: “ . $backupCmd . “
”;
print “Result: “ . $result;

That is the end of the file backup script. As you can see, the structure of this script is straightfor-
ward and the only important aspect is the system function, which could be disabled in some
environments.

Here is the completed script, which you reference in the crontab file to automate the process.

<?php

// File Backup

$dirs = array(“/var/www/vhosts/example.org/myfiles”);
$backupDir = “/var/www/vhosts/example.org/backups”;

$date = date(‘m-d-y’);

foreach($dirs as $dir)
{

$dir = preg_replace(‘/\/$/’, ‘’, $dir);
$archiveName = preg_replace(‘/^(.*)\/.*?/’, ‘’, $dir);

$tgzName = “{$archiveName}-{$date}.tgz”;
$tgzFile = “{$backupDir}/{$tgzName}”;

$backupCmd = “tar czf {$tgzFile} {$archiveName}”;

$result = system($backupCmd . “ 2>&1”);

print “Command: “ . $backupCmd . “
”;

423

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 423

print “Result: “ . $result;
}

?>

Backing up your important files is one way to maintain an efficient system. However, the database
is another aspect that should be periodically cleaned. You never want to accidentally remove
important information so it is a good idea to set up a backup system for this as well.

With the exception of a few commands, the database backup script is very similar to the file
backup script and can be combined into one backup script which is explained in the next section.
If you choose to combine the two scripts you may want to limit the backup directories. Otherwise,
the backups could result in slower performance.

Using PHP to back up databases
As you learned in the previous section, you can assign automated backup scripts to the crontab
file. Another common backup script is one that handles your databases. Just like the file backup,
you should then move them to a remote directory to ensure the added file size doesn’t affect your
live server.

You will find that as your system begins to grow you may want to invest in a backup server that
doesn’t need many resources because it would be used purely for storage. This isn’t a required ele-
ment, but it gives you an added level of protection with your data, as well as makes your live server
more efficient.

The first part of the database backup script is to define the MySQL connection details.

$dbHost = “localhost”;
$dbUsername = “root”;
$dbPassword = “pass”;

The database for this example is a book store application, but you could modify the database to
match any of the many databases you will mostly likely have in your system.

$dbName = “bookStore”;

If you have defined these variables in another part of your application, you can simply load that
configuration file to ensure the values only need to be updated once. You replace the previous four
lines with a simple include or require call.

require “/path/to/configuration/dbConnection.php”;

The backup storage directory $backupDir is defined as a string in this example, but you could
modify it to an array as you did in the file backup script. This is important if you have more than
one database, as most systems do.

$backupdir = ‘/var/www/vhosts/example.org/dbBackups’;

424

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 424

Define the backup directory outside of the public path whenever possible to ensure the
Web browser cannot access the backups.

The filename of the archive needs to be unique to ensure the archives do not overwrite each other.
You can create a random hash using the time, which would be unique, but it would make it impos-
sible to determine which archive you created.

A much more elegant solution is to append pieces of the date to the archive name, which creates
a readable and unique filename. Rather than make multiple calls to date you can use the
getdate() function, which returns an array of date information that you can then reference by
the key names.

$today = getdate();

To ensure the date is readable in the best way possible, a series of if statements is used to ensure
the date values are always two digits. This is not a programming requirement, but more impor-
tantly a consistency that makes it easier to read the date in the filename.

$month = $today[mon];

if($month < 10)
{

$month = “0” . $month;
}

$day = $today[mday];

if($day < 10)
{

$day = “0” . $day;
}

$year = $today[year];

The actual archive creation is broken into three parts, but all in the same command. The first part
makes a call to the database by passing in the necessary login information.

$mysqlCommand = “mysqldump --opt -h %s -u %s -p%s %s”;

The second part of the command accepts the MySQL data and pushes it into the gzip function,
which is where the actual archive is created.

$gzipCommand =”gzip > %s/%s-%s-%s-%s.gz”;

The third and final part of the command takes the variables defined in the previous sections and
creates the command string using sprintf to cleanly create the command. The sprintf func-
tion uses placeholders and accepts additional arguments to fill those placeholders. This is the same
as creating an inline string, but it creates a cleaner and easier string.

NOTENOTE

425

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 425

$run_command = sprintf($mysqlCommand . “ | “ . $gzipCommand,
$host, $user, $pass, $db,
$backupdir, $db, $month, $day, $year);

The pipe | character is a special command that tells the system to capture the output of the com-
mand to the left of the pipe and pass it into the function defined on the right side of the pipe.

In this example, the MySQL data is captured and passed into the gzip call.

The last step in the database backup script is to actually make the system call, which gathers the
MySQL data and creates the archive file.

system($run_command);

The system() command is not available if disabled in the php.ini file or if
safe_mode is enabled.

Here is the complete script, which you can quickly modify and add to your existing crontab. You
can even combine the two backup scripts and add in more functionality. The previous examples
are meant to get you started.

<?php

#!/usr/bin/php

//require ‘connectfile.php’;

$dbHost = “localhost”;
$dbUsername = “root”;
$dbPassword = “pass”;
$dbName = “bookStore”;

$backupdir = ‘/var/www/vhosts/example.org/dbBackups’;

$month = $today[mon];

if($month < 10)
{

$month = “0” . $month;
}

$day = $today[mday];

if($day < 10)
{

$day = “0” . $day;

NOTENOTE

426

Server, Application, and Database MaintenancePart V

24_258248 ch16.qxp 3/28/08 1:43 PM Page 426

}

$year = $today[year];

$mysqlCommand = “mysqldump --opt -h %s -u %s -p%s %s”;

$gzipCommand =”gzip > %s/%s-%s-%s-%s.gz”;

$run_command = sprintf($mysqlCommand . “ | “ . $gzipCommand,
$host, $user, $pass, $db,
$backupdir, $db, $month, $day, $year);

system($run_command);

?>

Summary
In this chapter, you learned various techniques on how to maintain a scalable and more efficient
Web server. This covered the topics of modifying the Apache configuration files, limiting what gets
loaded, and disabling error logging to improve overall performance.

You then learned how to optimize MySQL, which can account for a large majority of bottlenecks in
an application and can even bubble up to consume the resources of the Web server.

In the final part of the chapter, you were introduced to memcached, which was used to build a
high-performance caching system that eliminated the majority of the overhead from the database.

Using each of these techniques on any of your development projects will result in better perform-
ance. New hardware doesn’t need to be the only solution if you properly optimize your Web server
using these techniques.

You also learned about new tools that can assist you in optimizing your system using a graphical
approach instead of the traditional command prompt.

427

Maintaining a Scalable and More Efficient Server 16

24_258248 ch16.qxp 3/28/08 1:43 PM Page 427

24_258248 ch16.qxp 3/28/08 1:43 PM Page 428

R ather than have the book end with a basic overview, I thought a fully
developed video player application would allow you to fully under-
stand the process of building an application.

This chapter utilizes various concepts and technologies learned in the previ-
ous chapters. I recommend reading those first unless you are just curious
about the types of applications you can develop using Flash and PHP or
already have some familiarity with Flash and PHP.

This chapter is divided into five parts, each building on the previous section
and resulting in a complete, PHP-driven video player. You can also take the
concepts and components developed in this chapter and use them in your
own projects. For example, the login component will be developed as a
stand-alone module, which allows you to drop it into another application
with very little modification.

Building a Basic Video Player
Flash offers a large array of functionality. The possibilities of what you can
develop using Flash are only limited by your time and imagination.

Video is a very valuable asset on the Internet with the advancement of high-
speed broadband connections. Flash is the best way to deliver video because
of the wide availability of the Flash Player for all of the most popular Web
browsers.

Flash allows developers to build a video player and be assured that the
widest audience possible will be able to view it. It also doesn’t hurt that

429

IN THIS CHAPTER
Using a basic video player

Building a video player in Flash
and PHP

Working with video tracking

Building a user login component
in Flash

Finalizing the video player

Building Complete
Advanced Applications

25_258248 ch17.qxp 3/28/08 1:43 PM Page 429

Adobe has developed a fully functional single video player that allows developers to easily incorpo-
rate it in an existing project.

In fact, building a basic video player in Flash, as shown in Figure 17.1. requires very few lines of
code.

Start by dragging a FLVPlayback component from the Components pane to the Stage. Give this
new player an instance name of myPlayer and open the Actions pane.

For simplicity, use one of the sample video files that Adobe provides for testing:

www.helpexamples.com/flash/video/water.flv

FIGURE 17.1

FLVPlayback video component displayed on the Stage

The next step is to set the source property of the video player by pointing it to the sample FLV file:

myPlayer.source = “http://helpexamples.com/flash/video/
water.flv”;

Test the movie and you should see the sample video load, then automatically start playing.
Congratulations, you have played an FLV in Flash, using the prebuilt video player component.

The video player has a fairly large collection of methods and properties, but some of the more
common are related to playback control. For example, remember how the video played once it was
loaded? This may not be the desired result all the time, so the video player allows you to modify
this behavior by setting the autoPlay property to false.

430

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 430

myPlayer.source = “http://helpexamples.com/flash/video/
water.flv”;

myPlayer.autoPlay = false;

Now when the video loads, it waits for a call to the play method before it starts playing. This
functionality is most commonly used on interactive Web sites to ensure the video or sound doesn’t
get anyone in trouble while viewing a site. Normally started by the user clicking a button or some-
thing similar, let’s enhance the functionality and add a simple mouse event to start the video.

You can start by adding a button to the Stage and giving it an instance name of myPlayBtn. Then
modify the code and add the mouse handler function:

myPlayer.source = “http://helpexamples.com/flash/video/
water.flv”;

myPlayer.autoPlay = false;

myPlayBtn.addEventListener(MouseEvent.CLICK,
beginPlaybackHandler);

function beginPlaybackHandler(e:MouseEvent):void
{

myPlayer.play();
}

You also want your users to be able to stop the playback of a video. This is nearly identical to the
process of playing a video.

Start by adding another button to the Stage, with the instance name myStopBtn. Then add the
new event handler and assign it to the Stop button, such as:

myPlayer.source =
“http://helpexamples.com/flash/video/water.flv”;

myPlayer.autoPlay = false;

myPlayBtn.addEventListener(MouseEvent.CLICK,
beginPlaybackHandler);

function beginPlaybackHandler(e:MouseEvent):void
{

myPlayer.play();
}

myStopBtn.addEventListener(MouseEvent.CLICK,
stopPlaybackHandler);

function stopPlaybackHandler(e:MouseEvent):void
{

myPlayer.stop();
}

431

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 431

For simplicity, the video player component has the ability to be skinned, which means you don’t
have to design a custom interface. This custom skin loads in a default set of playback controls.

In fact, Adobe offers a large list of skins, each in different colors or with various selections of but-
tons and functionality. For example, here is the most common example used. This skin is a full set
of controls that is placed underneath the video player component. Seeing as this skin has basic
playback controls, you can replace the existing mouse handler and use the internal version:

myPlayer.source = “http://helpexamples.com/flash/video/
water.flv”;

myPlayer.autoPlay = false;
myPlayer.skin = “SkinUnderPlayStopSeekMuteVol.swf”;

The video player skin must be in the same directory as your SWF. You can also set the
skin using the Component Inspector.

The skin can be found in the same directory as your Flash movie once you select at least one skin
from the Property inspector.

As you can see, the functionality of the video player component allows you to build a basic player
fairly quickly. The problem with this component is encountered when you want to play more than
one video or even add categories of videos.

Fortunately, Adobe developed a wonderful component and even made it easy to use on you own
custom development projects, which you learn to do later in this chapter. You will create and add
the additional functionality you want.

Building a Video Player in Flash and PHP
In the previous section you learned how to develop a basic video player, with a hard-coded source
file, and it worked well enough. The problem is, this result is not scalable and really doesn’t offer
any re-usability, which is crucial when building an application.

Getting started
The video player application that you develop in this section has already been designed, as shown
in Figure 17.2, so that you can focus on the development portion.

The prebuilt video player is available on the book’s Web site, where you can also find the com-
pleted application to get an idea of what you will be building as a finished product.

This video player is broken up into three parts. The first part is the MySQL component that stores
the video references and the categories.

NOTENOTE

432

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 432

FIGURE 17.2

Example of the video player design you will be working with in this chapter

Building the database and MySQL tables
Start by opening your favorite database editor and create a new database for this project. You can
name this database anything you prefer. I used book_videoplayer, but that is only a suggestion.

After the database is created, you can start adding the table schema structure for the videos and
categories data. For this application the tables have already been defined, but feel free to look them
over to gain a better understanding of what they are responsible for.

The tables in this application are split up to ensure they are optimized and to easily understand
which table is responsible for each task. It is best to split functionality in multiple tables, also
referred to as normalizing. Doing so ensures your database will be the most efficient and allows it
to expand.

The table structure in this application is straightforward. For example, the video name, description,
and source references are found in the videos table, which is constructed similar to the following:

433

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 433

CREATE TABLE `videos` (
`id` int(11) NOT NULL auto_increment,
`catId` int(11) default NULL,
`name` varchar(200) default NULL,
`src` varchar(200) default NULL,
`description` text,
`count` int(11) default 0,
`active` varchar(1) default ‘1’,
PRIMARY KEY (`id`)

) ENGINE=MyISAM;

As you can see, this table is nothing special, but it handles the core of the application management.
You can add more columns if you decide you want to expand on the original application.

A database is not the only storage option. You can use an XML file or even hardcode the video
paths in Flash, but the idea is to develop an expandable application. This means that the database
is the most logical option to store the video and category data. The database also offers the ability
to expand and grow as you add more features to your application.

The second table you need to add is the categories table, which stores an id used in the PHP in the
next section and the name of the category that is displayed in the Flash application.

CREATE TABLE `categories` (
`id` int(11) NOT NULL auto_increment,
`name` varchar(100) default NULL,
`active` varchar(1) default ‘1’,
PRIMARY KEY (`id`)

) ENGINE=MyISAM;

Adding sample data to the tables
You can now prefill the tables to test it all, as shown in Figure 17.3. You can use your favorite data-
base editor and add the sample data by hand, or use the following sample INSERT statements that
add a few categories and videos:

INSERT INTO categories (name) VALUES (‘Category 1’);
INSERT INTO categories (name) VALUES (‘Category 2’);

INSERT INTO videos (catId, name, src, description)
VALUES (1, ‘Sample Video 0:1’, ‘sample.flv’, ‘Cool Video
Here’);

INSERT INTO videos (catId, name, src, description)
VALUES (2, ‘Sample Video 0:2’, ‘sample.flv’, ‘Cool Video
Here’);

434

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 434

FIGURE 17.3

Sample table data displayed in the MySQL query browser

Testing the database
After you load the data into the database you can test it. This can be done by building a simple
PHP file that connects to the database and runs a very simple query. You have learned how to con-
nect to the database in the previous chapters. For this example, you need to define the connection
details and make a call to the mysql_connect function.

<?php

$link = mysql_connect(‘localhost’, ‘root’, ‘password’);
mysql_select_db(‘book_videoplayer’, $link);

?>

When the connection is established, the next step is to build the SQL query.

<?php

$link = mysql_connect(‘localhost’, ‘root’, ‘password’);

435

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 435

mysql_select_db(‘book_videoplayer’, $link);

$catID = 1;
$query = sprintf(“SELECT * FROM categories where id=%d”, $catID);

?>

The last step is to return something. For simplicity, let’s display one of the category names.

<?php

$link = mysql_connect(‘localhost’, ‘root’, ‘password’);
mysql_select_db(‘book_videoplayer’, $link);

$catID = 1;
$query = sprintf(“SELECT * FROM categories where id=%d”, $catID);

$result = mysql_query($query, $link);
$row = mysql_fetch_array($result);

print “Category Name: ” . $row[‘name’] . “”;

?>

Save this file as sqltest.php in your Web server home directory and call it up using your favorite
Web browser. When you execute the PHP file, you should see output similar to the following:

Category Name: Category 1

If you see anything else, make sure you check the connection details. If for some reason you get a
blank page, place the following line at the top of your file to force PHP to display all potential
errors:

error_reporting(E_ALL);

Now that you have seen a simple MySQL query run using the date for this application, try calling
two tables and testing the functionality the final application will have. The only two lines of code
that need to be modified are the SQL query and the output.

<?php

$link = mysql_connect(‘localhost’, ‘root’, ‘password’);
mysql_select_db(‘book_videoplayer’, $link);

$catID = 1;
$query = sprintf(“SELECT v.name FROM videos v, categories c WHERE

v.catId=c.id AND c.id=%d”, $catID);

$result = mysql_query($query, $link);

while($row = mysql_fetch_array($result))

436

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 436

{
print “Video Name: “ . “” . $row[‘name’] . “”;

}

?>

When you run this code, you should be presented a list of videos for that specific category. This
code searches the category and video tables and returns all videos that share the same ids. This is
the most basic join of MySQL tables, but it works perfectly for this application.

Remoting integration
The next step is to build the actual PHP that will be called by Flash using remoting. In fact, this
section is similar in the fact you will be using AMFPHP. But the actual development portion
beyond this is different.

More information on remoting can be found in Chapter 8.

The advantage to building this application using remoting is it gives you the ability to test it more
easily. This is because you can build the AMFPHP classes and then test them using standard PHP
code or the included browser viewer that ships with AMFPHP.

You also have the ability to reuse these classes in other projects or with HTML portions of the same
project. For example, assume you want to build a user panel that can display the latest movies
from a specific category. You can do this by building a very basic HTML page and calling the
remoting class to return the necessary data, just like you would in Flash.

Database connector class
The classes in this application are dependent on the database. Rather than define the connection
details in every class, it is better to build a database connector class that is responsible for making
the initial connection and storing the connection credentials.

The connector class has five private variables. The first four define the connection information.

<?php

class DatabaseConnector
{

private $host = “localhost”;
private $user = “root”;
private $pass = “password”;
private $dbName = “book_videoplayer”;

}

?>

CROSS-REFCROSS-REF

437

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 437

The fifth variable is used to store the database link resource id.

private $link = null;

The constructor for this class is empty because the private variables are defined previously.

function DatabaseConnector() { }

The private connect method is only called when an existing connection is not found. This
method passes in the private connection details and stores the resource id in the $this->link
property, which is only visible to this class.

private function connect()
{

$this->link = mysql_connect($this->host, $this->user, $this-
>pass);
mysql_select_db($this->dbName, $this->link);

}

The second method, getConnection, is set as public so other classes have access to it. However,
the comments define it as private to ensure remoting classes cannot access it. This method first
checks for an existing connection resource and if one isn’t found, a call to the connect method is
made.

The last step of this function is to return the active connection resource, which is used in other
classes.

/**
* Get database connection
* @access private
* @returns database link, to be used in other sql calls
*/
public function getConnection()
{

if($this->link == null)
{

$this->connect();
}

return $this->link;
}

As you can see, this class is very handy because it takes care of storing the database connection.
Additionally, if one isn’t found, it creates one.

Here is the completed class, which should be saved as DatabaseConnector.php in your proj-
ect directory so it can be accessed by the other classes.

438

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 438

<?php

class DatabaseConnector
{

private $host = “localhost”;
private $user = “root”;
private $pass = “password”;
private $dbName = “book_videoplayer”;

private $link = null;

function DatabaseConnector() { }

private function connect()
{

$this->link = mysql_connect(
$this->host,
$this->user,
$this->pass

);
mysql_select_db($this->dbName, $this->link);

}

/**
* Get database connection
* @access private
* @returns database link, to be used in other sql calls
*/
public function getConnection()
{

if($this->link == null)
{

$this->connect();
}

return $this->link;
}

}

?>

Video class
Now that the database connector class is completed, the next class to develop is for managing the
videos. This class returns the video list based on video or category id.

439

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 439

The first part of this class is to load in the database connector file, which this Videos class will
extend.

<?php

require_once ‘DatabaseConnector.php’;

?>

You may remember extends from the ActionScript classes you developed in previous examples.
The syntax in PHP is identical. Basically, define the class and whichever class it will extend, similar
to the following:

<?php

require_once ‘DatabaseConnector.php’;

class Videos extends DatabaseConnector
{

}

?>

The Video class has one method, getVideos. This method accepts a video and category id as
separate arguments to determine which videos to return.

/**
* get videos
* @access remote
* @returns array of videos
*/
function getVideos($categoryID=-1, $videoID=-1)
{

...
}

The first part of this method needs to check for valid ids to ensure the SQL will not be compro-
mised. This step is not required, but ensures your application is more secure.

if($categoryID == -1 || strlen($categoryID) == 0)
{

trigger_error(“Category ID required to return video list”);
}

This statement calls trigger_error if an invalid or missing category id is passed in. The reason
for using the trigger_error is because AMFPHP gracefully halts all further process and returns
the desired error to the calling script, in this case that will be ActionScript.

440

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 440

The next step is to assign the variables for this method and create an array that will hold the video
data that is passed back to ActionScript.

$vidSQL = “”;
$rows = array();

Once the basics have been defined, the next step is to determine if the script should be looking for
one single video or a list of them. This assigns the correct SQL if the code should only be looking
for one video.

// look for specific video?
if($videoID != -1 && strlen($videoID) != 0)
{

$vidSQL = “ AND v.id=” . $videoID;
}

The database link can be defined by simply making a call to the getConnection method of the
DatabaseConnector class because the Video class is extending that. The local $link variable
is assigned the active connection to be used in the remainder of the MySQL interaction within this
function.

$link = $this->getConnection();

The database query is fairly complex because it checks two tables for data and returns one video
list based on that check. This query is similar to the one you built when testing out the database at
the beginning of this section. This query uses the $vidSQL, which will either be a valid addition
to the SQL or a blank string when not looking for a specific video.

$query = sprintf(“SELECT
v.name,
v.src,
v.id as ‘vid’,
c.name as ‘cat’,
v.description,
v.count

FROM categories c, videos v
WHERE v.catId=c.id
AND v.catId=%d
AND v.active=1 “ . $vidSQL, $categoryID);

The special portion of this SQL query is the modification of the column names, such as

v.id as ‘vid’

This is done because the result set has the name id in both tables and only one name can be
returned. If you keep the standard naming you will only have access to one table of id info.
Knowing which one will be returned is a matter of which order they are called in. The renaming
only modifies the resultset, so you don’t have to worry about the original data being affected.

441

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 441

The next step is to run the MySQL query and retrieve the results, which are then looped through
and passed out of the function as a multidimensional array.

$result = mysql_query($query, $link);

Before the loop is run, it is a good idea to ensure some rows were returned from the query. Failure
to do this simple check could result in an endless loop. This can harm the Web server because you
will most likely not realize it is occurring.

This simple check is done by checking the number of rows returned using the mysql_num_rows
function. This function returns a numerical value representing the number of rows returned in the
query.

if(mysql_num_rows($result) == 0)
{

trigger_error(“No videos found”);
return false;

}

Assuming that a valid resultset was found, the next step is to loop through the results and fill
the array variable that was previously defined.

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}

The last step of this function is to return the array of video data. This method will not get to this
point unless valid video data is ready to be passed back.

return $rows;

That is all there is to the Video class. This file should be saved as Videos.php. Here is the com-
pleted class, which can also be found in the book’s code on the Web site.

<?php

require_once ‘DatabaseConnector.php’;

class Videos extends DatabaseConnector
{

/**
* get videos
* @access remote
* @returns array of videos
*/
function getVideos($categoryID=-1, $videoID=-1)
{

442

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 442

if($categoryID == -1 || strlen($categoryID) == 0)
{
trigger_error(“Category ID required to return video list”);
}

$vidSQL = “”;
$rows = array();

// look for specific video?
if($videoID != -1 && strlen($videoID) != 0)
{

$vidSQL = “ AND v.id=” . $videoID;
}

$link = $this->getConnection();

$query = sprintf(“SELECT
v.name,
v.src,
v.id as ‘vid’,
c.name as ‘cat’,
v.description,
v.count

FROM categories c, videos v
WHERE v.catId=c.id
AND v.catId=%d
AND v.active=1 “ . $vidSQL, $categoryID);

$result = mysql_query($query, $link);

if(mysql_num_rows($result) == 0)
{

trigger_error(“No videos found”);
return false;

}

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}

return $rows;
}

}

?>

The second class for this example is the Category class, which also has one method. This method is
responsible for returning all of the active categories to the video player.

443

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 443

Before the method is created, you must load in the Database connection, exactly like you did in the
Video class.

require_once ‘DatabaseConnector.php’;

The first part of the getCategories method is responsible for creating a new $rows variable
that will hold the categories returned from the database. The link variable is filled with an active
database connection, which will be used in the following SQL calls.

$rows = array();
$link = $this->getConnection();

The SQL query basically pulls in all the categories that are active, meaning the active column is set
to a value of 1. This SQL query is then passed into mysql_query which is responsible for actu-
ally executing the SQL call.

$query = “SELECT id, name FROM categories WHERE active=1”;
$result = mysql_query($query, $link);

The if statement checks for at least one valid row before continuing and will throw an error if no
valid rows are found. Assuming valid rows are found, a while loop is used to fill the $rows vari-
able and once the loop is complete the $rows variable is returned.

if(mysql_num_rows($result) == 0)
{

trigger_error(“No categories found”);
return false;

}

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}

return $rows;

That is all there is to the Category class, and as you can see the structure of the Category class is
fairly similar to the Video class in the previous section.

Here is the completed Category class:

<?php

require_once ‘DatabaseConnector.php’;

class Categories extends DatabaseConnector
{

/**
* get categories

444

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 444

* @access remote
* @returns array of categories
*/
function getCategories()
{

$rows = array();

$link = $this->getConnection();

$query = “SELECT id, name FROM categories WHERE active=1”;

$result = mysql_query($query, $link);

if(mysql_num_rows($result) == 0)
{

trigger_error(“No categories found”);
return false;

}

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

array_push($rows, $row);
}

return $rows;
}

}

?>

Testing the classes
At this point both AMFPHP service classes have been written. You can quickly test the usage of
them or move on to the ActionScript development portion of this application. Testing the class is
very simple: you basically create a new PHP file, call the video or category method, and print
the result.

For example, here is a simple test, also referred to as unit testing:

<?php

include ‘amfphp/services/Videos.php’;

$videos = new Videos();

$list = $videos->getVideos(1);

print_r($list);

?>

445

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 445

If you run this example in your browser you should see output similar to the following example:

Array
(

[0] => Array
(

[name] => Sample Video 1:1
[src] => sample.flv
[vid] => 1
[cat] => Category A
[description] => Really Cool Video Here
[count] => 0

)

...
)

You should now have two complete classes that can be used in your ActionScript to interact with
the database contents. The next step is to build the ActionScript portion of the application, which
is handled by external classes for reusability.

Advanced video player development
In the previous sections of this example you developed the database and tables. Then you built the
PHP services that interact with the database tables. The next step is to develop the ActionScript
that is responsible for displaying and managing the video player.

If you look at the video player, as shown in Figure 17.4, on the Flash Stage you will notice there
are four parts: the main video player component, info box, video list, and drop-down menu that
will store the video categories. If you deselect everything by clicking on the Stage or pressing Esc, a
document class with the name VideoPlayer appears.

This class is where most of the video player is managed from, rather than having code directly on
the Timeline. This also gives you the option to develop in an external editor such as FDT, or you
can use the stand-alone editor that ships with Flash.

Creating the document class
Start by creating a new ActionScript file using the ActionScript editor in Flash and name it
VideoPlayer.as. Save this file in the application directory where your FLA is located to ensure
the file will be loaded. You can also use the ActionScript file that is provided in the book’s source
on the Web site.

446

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 446

FIGURE 17.4

A video player that has already been designed for you

After this new ActionScript file is created and saved, it is time to begin developing the core script-
ing that handles the video player. Start by building the class outline and extend the class by the
MovieClip class, which is required for a document class.

package
{

import flash.display.MovieClip;

public class VideoPlayer extends MovieClip
{
}

}

Now that the core class outline is constructed, you can begin to build the actual functionality. In
addition to the MovieClip class, you need to import two more classes. The Event class will be
used for all basic event handling, and the net.* package will contain all of the classes necessary
for communicating with the remoting service.

import flash.events.Event;
import flash.net.*;

447

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 447

This VideoPlayer class will need to have a few properties defined, which will be stored as pri-
vate to ensure they are protected and cannot accidentally be modified by external classes. The sec-
ond property will store the active NetConnection, which is used to interact with the remoting
service. You will work with this in the next section of code.

private var gatewayURL:String;
private var gateway:NetConnection;
private var selectedCatID:Number;

VideoPlayer constructor
The constructor function is responsible for initializing a few properties, modifying the visual por-
tion of the video player display, and calling the category method.

function VideoPlayer()
{

gatewayURL = “http://localhost/amfphp/gateway.php”;
getCategories();

videoPlayer.visible = false;
videoListCombo.enabled = false;

}

getCategories method
The next method in the VideoPlayer class is getCategories(), which is called from the
constructor when the application initializes. This method starts by creating a new instance of the
Responder, which handles the response from the remoting service.

public function getCategories():void
{

var responder:Responder = new Responder(
categoryResponseHandler,
onFault

);
}

Once the responder is defined, the next step is to assign the gateway to a new instance of the
NetConnection class. This is where the actual call to remoting service begins.

public function getCategories():void
{

var responder:Responder = new Responder(
categoryResponseHandler,
onFault

);

gateway = new NetConnection();
}

448

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 448

After the gateway has been properly assigned, the next step is to connect to the remoting service,
passing the gateway path as the single argument.

public function getCategories():void
{

var responder:Responder = new Responder(
categoryResponseHandler,
onFault

);

gateway = new NetConnection();
gateway.connect(gatewayURL);

}

The last step in the getCategories method is to make the remoting call. This defines the serv-
ice you want to connect to, as well as passes along the responder to handle both success and failure
responses.

public function getCategories():void
{

var responder:Responder = new Responder(
categoryResponseHandler,
onFault

);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Categories.getCategories”, responder);

}

categoryResponseHandler method
Now that the getCategories method is completed, the next method to develop is the
categoryResponseHandler, which was defined in the Responder instance. This method is
called when a valid recordset is returned from the remoting service.

private function categoryResponseHandler(response:Object):void
{

...
}

The contents of this class handle the data response from the remoting service and populate the
ComboBox using this video reference data. The first step is to enable the ComboBox, otherwise
you won’t be able to add new contents to it.

videoListCombo.enabled = true;

449

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 449

Once the ComboBox is enabled, the next step is to add the first item, which informs the user to
select an option. This default option will have a value of –1 to alert that it is not a valid id. You
could use 0, aside from the fact that is a valid ID in the database.

videoListCombo.addItem({label:’Choose a Category...’, data:-1});

A for each loop is constructed to handle all of the response items. This will handle any number
of video items, which is essential because the remoting service does not return the same number
each time, as not every category has the same amount of videos.

for each(var item in response)
{

videoListCombo.addItem({label:item.name, data:item.id});
}

This loop takes each item in the response object and assigns the name and id to the ComboBox
values. This populates the ComboBox and allows the user to select a video category.

The last step of the categoryResponseHandler method is to assign the event listener to the
ComboBox. This event fires whenever the selected item of the ComboBox component changes.

videoListCombo.addEventListener(Event.CHANGE, categoryHandler);

categoryHandler method
The categoryHandler method is called whenever the user selects a different item in the
ComboBox component instance.

private function categoryHandler(e:Event):void { ... }

This method handles the process of validating the selected category id. The actual category id is
found in the selectedItem property of the passed-in event.

var id:Number = e.currentTarget.selectedItem.data;

This category id is validated using a basic conditional statement that checks for a value of –1,
which was assigned to the default item.

if(id == -1) return;

If that value is not found, then you know the id is valid, and the category id is assigned to the
selectedCatID property allowing easy access to the current category id.

selectedCatID = id;

Last, a call to the getVideos method is made to load in the video list based on the current id.

getVideos();

450

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 450

getVideos method
The getVideos method is called when a valid category is found. This method is used to make
the initial call to the remoting service, which will load the correct list of videos based on the cate-
gory stored in the previous method.

The only part of this method that is different from the getCategories method is the parameters
passed in to the call method and the success function assigned to the Responder.

public function getVideos():void
{

var responder:Responder = new Responder(
videosResponseHandler,
onFault

);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Videos.getVideos”, responder, selectedCatID, ‘’);

}

You could create a master connection handler and pass in these different properties, but for sim-
plicity, multiple methods are used.

videosResponseHandler method
One of the largest methods in this application would have to be the videosResponseHandler.

private function videosResponseHandler(response:Object):void
{

...
}

This is because that method is responsible for loading the video list and populating the
ScrollPane component with the custom VideoListItem assets. These assets can be found in
the Flash library for this project as they have been completed for you. Later in this project you
develop the ActionScript that is attached to those assets.

The first part of this method is to define the nextY variable that offsets each video list item and
creates an empty MovieClip, which is assigned to the source property of the ScrollPane
instance.

var nextY:uint = 5;

var listItem:MovieClip = new MovieClip();
videoList.source = listItem;

The majority of this method is found within the for..each loop. This loop runs through each
item in the video list response.

451

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 451

for each(var item in response)
{

...
}

Each pass of the loop creates a new VideoListItem instance. These instances get an event han-
dler assigned to them and a unique placement in the list using the nextY variable previously
defined.

var videoListItem:MovieClip = new VideoListItem();
videoListItem.y = nextY;
videoListItem.x = 2;

videoListItem.addEventListener(VideoListItem.ITEM_CLICK,
listItemHandler);

The next portion of the loop sets custom properties of the videoListItem that defines the title,
description, and video to load when the item is clicked on.

videoListItem.title = item.name;
videoListItem.desc = item.description;
videoListItem.videoObj = item;
videoListItem.setItem(item.vid, ‘’, item.src);

Now that the VideoListItem instance has been completed, the next step is to add it to the
listItem display list, which makes it visible in the ScrollPane.

listItem.addChild(videoListItem);

Each pass of the loop increments the nextY variable to ensure each video item is placed at a
unique position. This value is determined by adding the height of the current video item plus a
slight padding to the existing nextY variable.

nextY += videoListItem.height + 2;

The last step of the videosResponseHandler method is to refresh the ScrollPane compo-
nent by calling the update method. If you do not call this method, the scrollbar in the
ScrollPane would not reflect the added video items.

videoList.update();

As you can see, the videosResponseHandler method is responsible for a lot of the functional-
ity in the video listing even though it is only part of the overall application. It did require a lot of
custom code to properly create.

listItemHandler method
The listItemHandler method is called whenever one of the video items in the ScrollPane
is clicked.

452

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 452

private function listItemHandler(e:Event):void
{

...
}

This method updates the current video information in the videoMetaInfo MovieClip found
below the video player.

videoMetaInfo.titleTxt.text = e.currentTarget.videoObj.name;
videoMetaInfo.categoryTxt.text = e.currentTarget.videoObj.cat;
videoMetaInfo.viewsTxt.text = e.currentTarget.videoObj.count;
videoMetaInfo.descTxt.text =

e.currentTarget.videoObj.description;

It is also responsible for replacing the source of the video player and playing the new video.

videoPlayer.visible = true;
videoPlayer.source = e.currentTarget.source;
videoPlayer.play();

Handling errors in remoting responses
The last method of the VideoPlayer class is a handler for errors in the remoting service. This
method does not need to be unique unless you prefer to handle each error differently. I prefer to
display the contents of the error during development because, as you may remember, the trig-
ger_error calls in the PHP, which returns a user error message.

private function onFault(responds:Object):void
{

trace(“Debug::Error”);
for(var i in responds)
{

trace(“ “ + responds[i]);
}

}

For this application, the error message is traced during development and completely ignored when
running the real world. Later in this chapter, you create a realistic error handler that is similar to
those found on popular video-sharing Web sites.

You have now completed the entire VideoPlayer class, which is the majority of the video appli-
cation, at least for the ActionScript portion of the project.

Here is the VideoPlayer class in its entirety so you can easily look over how each of the meth-
ods interacts with each other. This source code is also available on the book’s Web site for you to
cut and paste.

453

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 453

package
{

import flash.display.MovieClip;
import flash.events.Event;
import flash.net.*;

public class VideoPlayer extends MovieClip
{

private var gatewayURL:String;
private var gateway:NetConnection;
private var selectedCatID:Number;

function VideoPlayer()
{

gatewayURL = “http://localhost/amfphp/gateway.php”;
getCategories();

videoPlayer.visible = false;
videoListCombo.enabled = false;

}

public function getCategories():void
{

var responder:Responder =
new Responder(categoryRespHandler, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Categories.getCategories”, responder);

}

private function categoryRespHandler(response:Object):void
{

videoListCombo.enabled = true;
videoListCombo.addItem(

{label:’Choose a Category...’, data:-1}
);
for each(var item in response)
{

videoListCombo.addItem(
{label:item.name, data:item.id}

);
}
videoListCombo.addEventListener(Event.CHANGE,

categoryHandler);
}

private function categoryHandler(e:Event):void
{

var id:Number = e.currentTarget.selectedItem.data;

454

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 454

if(id == -1) return;

selectedCatID = id;

trace(“Load Category ID: “ + id);
getVideos();

}

public function getVideos():void
{

var responder:Responder =
new Responder(videosResHandler, onFault);

gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Videos.getVideos”,

responder,
selectedCatID,
‘’

);
}

private function videosRespHandler(response:Object):void
{

var nextY:uint = 5;

var listItem:MovieClip = new MovieClip();
videoList.source = listItem;

for each(var item in response)
{

var videoListItem:MovieClip =
new VideoListItem();

videoListItem.addEventListener(
VideoListItem.ITEM_CLICK,
listItemHandler

);
videoListItem.y = nextY;
videoListItem.x = 2;

videoListItem.title = item.name;
videoListItem.desc = item.description;
videoListItem.videoObj = item;
videoListItem.setItem(item.vid,’’, item.src);

listItem.addChild(videoListItem);

nextY += videoListItem.height + 2;

videoList.update();

455

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 455

}
}

private function listItemHandler(e:Event):void
{

var info:Object = e.currentTarget.videoObj;
videoMetaInfo.titleTxt.text = info.name;
videoMetaInfo.categoryTxt.text = info.cat;
videoMetaInfo.viewsTxt.text = info.count;
videoMetaInfo.descTxt.text = info.description;

videoPlayer.visible = true;
videoPlayer.source = e.currentTarget.source;
videoPlayer.play();

}

// Error Handler
private function onFault(responds:Object):void
{

trace(“Debug::Error”);
for(var i in responds)
{

trace(“ “ + responds[i]);
}

}
}

}

Building the VideoListItem class
The next step before you can test the application is to build the VideoListItem class. If you
attempt to run the application in its current form you would not only get errors, but you would
also not be able to load any videos because the items are not clickable at the moment.

The first step is to create a new ActionScript file in your favorite editor. Save this file as
VideoListItem.as to the same directory where your FLA is located. After the file is created,
you need to build the skeleton of the class file, which needs to extend the MovieClip class
because it is attached to a MovieClip instance in the library.

package
{

import flash.display.MovieClip;
public class VideoListItem extends MovieClip
{
}

}

In addition to the MovieClip class being imported, you must also import a few other classes in
order to properly develop this class. These other classes handle the text, events, and mouse por-
tions of the video item instances.

456

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 456

import flash.display.MovieClip;
import flash.text.TextField;
import flash.events.Event;
import flash.events.MouseEvent;

The class also needs to have some default properties defined, which will be modified later in the
class. Most of the properties are basic string definitions. However, the last property, ITEM_CLICK,
is a special public constant that is used in the event handler. This is made public so that the vari-
able can be accessed outside of the class.

public var videoObj:Object;

private var _id:uint;
private var _title:String;
private var _desc:String;
private var _thumb:String;
private var _src:String;

public static const ITEM_CLICK:String = “onItemClick”;

VideoListItem constructor
The constructor in this class simply sets the alpha of the item to 50 percent, but because alpha
is a 0 to 1 value, the 50 percent is actually 0.5.

function VideoListItem()
{

alpha = 0.5;
}

setItem method
The first custom method in this class is setItem. This method is called on the creation of a new
instance and sets the id, thumb, and video source parameters. For this example, the thumb option
is not used, but you can expand the example because it has already been added.

function setItem(id:uint, thumb:String, src:String)
{

_id = id;
_thumb = thumb;
_src = src;

}

The second part of the setItem method assigns the event listeners for the mouse object. This is
also where you enable the mouse pointer icon when the user rolls the mouse over the video item.

function setItem(id:uint, thumb:String, src:String)
{

_id = id;
_thumb = thumb;

457

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 457

_src = src;

buttonMode = true;
useHandCursor = true;
addEventListener(MouseEvent.ROLL_OVER, overHandler);
addEventListener(MouseEvent.ROLL_OUT, outHandler);
addEventListener(MouseEvent.CLICK, clickHandler);

}

Mouse handler methods
The mouse handler methods are used to modify the alpha value of the video item. In this exam-
ple, they basically set the alpha to fully visible or partially visible. You could easily add a tween to
this property and have the alpha property smoothly change.

private function overHandler(e:MouseEvent):void
{

e.currentTarget.alpha = 1.0;
}

private function outHandler(e:MouseEvent):void
{

e.currentTarget.alpha = 0.5;
}

The clickHandler method fires the ITEM_CLICK event that alerts any listening objects of the
click. In this case, the event would notify the VideoPlayer and that specific video would be
loaded.

private function clickHandler(e:MouseEvent):void
{

dispatchEvent(new Event(ITEM_CLICK));
}

The remaining methods in the VideoListItem class are for getting and setting the properties
previously defined. For example, the title can be retrieved by calling get title, such as:

public function get title():String
{

return _title;
}

You can also set the title property by calling set title and passing in the title of the video.

public function set title(val:String):void
{

_title = val;
titleTxt.text = val;

}

458

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 458

Defining the getter and setter methods
The remaining getter/setter methods appear in the following code and also are in the completed
class available in the book’s source code:

public function get id():uint
{

return _id;
}

public function get source():String
{

return _src;
}

public function get desc():String
{

return _desc;
}
public function set desc(val:String):void
{

_desc = val;
descTxt.text = val;

}

That is all there is to the VideoListItem class. As you can see, it is mostly self-contained, which
makes this little object reusable in other applications. In this example, you are building a video
player, but you could easily change that to a product viewer, document viewer, or anything else
you can think of.

Here is the completed VideoListItem class, which you can study or simply copy and paste it
from the book’s Web site.

package
{

import flash.display.MovieClip;
import flash.text.TextField;
import flash.events.Event;
import flash.events.MouseEvent;

public class VideoListItem extends MovieClip
{

public var videoObj:Object;

private var _id:uint;
private var _title:String;
private var _desc:String;
private var _thumb:String;

459

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 459

private var _src:String;

public static const ITEM_CLICK:String = “onItemClick”;

function VideoListItem()
{

alpha = 0.5;
}

function setItem(id:uint, thumb:String, src:String)
{

_id = id;
_thumb = thumb;
_src = src;

buttonMode = true;
useHandCursor = true;
addEventListener(MouseEvent.ROLL_OVER, overHandler);
addEventListener(MouseEvent.ROLL_OUT, outHandler);
addEventListener(MouseEvent.CLICK, clickHandler);

}

private function overHandler(e:MouseEvent):void
{

e.currentTarget.alpha = 1.0;
}

private function outHandler(e:MouseEvent):void
{

e.currentTarget.alpha = 0.5;
}

private function clickHandler(e:MouseEvent):void
{

dispatchEvent(new Event(ITEM_CLICK));
}

public function get id():uint
{

return _id;
}

public function get source():String
{

return _src;
}

public function get title():String
{

460

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 460

return _title;
}
public function set title(val:String):void
{

_title = val;
titleTxt.text = val;

}

public function get desc():String
{

return _desc;
}
public function set desc(val:String):void
{

_desc = val;
descTxt.text = val;

}
}

}

At this point you have completed the Flash and PHP video player. You can now test the applica-
tion, and you will see the same interface you started with. The difference is, if you select a category,
the ScrollPane will be populated with the videos from that category.

You can then click on a video item and that video will begin to play. As it stands, the video player
is a pretty robust application that can be expanded.

In the next section you will do just that by adding some basic tracking. Then, in a later section,
you add a user login component that results in a truly real-world application while maintaining the
original functionality the player has now.

Working with Video Tracking
In the previous section, you built a complete Flash-based video player that has PHP allowing for a
dynamic result. This application allows the owner to simply update the database, and the Flash
application reflects those updates the next time it loads.

A problem comes in when the owner wants to know which videos are popular. You want the
project to help him determine which video content is popular so he can add more of that similar
content.

The solution is to develop video tracking that logs how many times a video has been viewed. This
is done by having a column in the database that holds the active count. You then add the necessary
support to the PHP classes and finally update the Flash to display the count.

461

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 461

The database does not need to be updated because the count column was added in the previous
section even though it wasn’t used. Adding more columns than you will use to start is common so
the application has the ability to grow. Extra columns may also be a result of temporarily removing
a feature from an application after the database schema is created.

Updating the video class
The videos service class was created in the previous section. All you have to do now is add the new
method used to modify the video count:

public function updatePlayCount($vid)
{

$link = $this->getConnection();
...

}

This method accepts one parameter, which is an id referencing the video that should be updated.
The first part of this method creates a link to the database using the existing database class you
built in the previous section. This $link variable is passed into all future SQL actions in this
method.

The second part of the method is to create an SQL query that grabs the current play count of the
desired video.

public function updatePlayCount($vid)
{

$link = $this->getConnection();

$query = sprintf(“SELECT count FROM videos WHERE id=%d”, $vid);
$result = mysql_query($query, $link);

}

Checking for valid records
After the value is loaded, the next step is to check for a valid record using the familiar
mysql_num_rows function.

public function updatePlayCount($vid)
{

$link = $this->getConnection();

$query = sprintf(“SELECT count FROM videos WHERE id=%d”, $vid);
$result = mysql_query($query, $link);

if(mysql_num_rows($result) > 0)
{

...
}

}

462

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 462

The contents of that conditional statement are where the value is updated, based on the count
determined in the previous SQL query.

$row = mysql_fetch_row($result);
$count = $row[0];
$count++;
$queryUpdate = sprintf(“UPDATE videos SET count=%d WHERE id=%d”,

$count, $vid);
mysql_query($queryUpdate, $link);

The SQL query that updates the database is built using sprintf to cleanly pass in the count and
video id, rather than building a hard-to-read string, which is more common. The use of sprintf
is all the more important when you come back to a project later.

At this point, you have made all of the changes to the Videos.php file and can continue with the
modifications necessary to the ActionScript classes.

Adding video tracking to ActionScript
The video tracking feature can be added in one of two places. You can add the update so that it
runs when the video starts to play, or you can add it so the count is only updated after the video
has been fully viewed.

Each option has advantages. For this example, the tracking call is made when a new video is
requested, rather than waiting for the video to complete. This action is similar to a hit counter on a
Web site, with the exception that it will not be unique in this application. However, you can add
the necessary code from the previous examples to ensure the update is unique.

updateVideoTracking method
The new tracking methods can be added at any point in the VideoPlayer class, but a logical
place is above the onFault method. The first part of this new method is to create a new instance
of the Responder class, passing the response handler method as the first parameter.

private function updateVideoTracking(vid:uint):void
{

var responder:Responder = new Responder(
updateTrackingHandler,
onFault

);
...

}

After the new Responder instance is created, the next step is to create the gateway connection
using a new instance of the NetConnection class. This process is identical to the other remoting
calls you made in the previous section.

private function updateVideoTracking(vid:uint):void
{

463

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 463

var responder:Responder = new Responder(
updateTrackingHandler,
onFault

);
gateway = new NetConnection();
gateway.connect(gatewayURL);

}

The final update to the updateVideoTracking method is where the call to the remoting service
is made. This call passes along the video id to update and the response should be the new count
or an error if something goes wrong.

private function updateVideoTracking(vid:uint):void
{

var responder:Responder = new Responder(
updateTrackingHandler,
onFault

);
gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“Videos.updatePlayCount”, responder, vid);

}

Once the count is updated, the new count is returned to Flash. Just like the previous remoting
calls, a response handler is needed in order to capture this response. In this example, the new
count is sent to the TextField located within the videoMetaInfo MovieClip to reflect the
current count.

private function updateTrackingHandler(response:Object):void
{

videoMetaInfo.viewsTxt.text = response.count;
}

The last step to adding the tracking feature is to modify the existing listItemHandler method
and add in the call to the update method, such as the following:

private function listItemHandler(e:Event):void
{

...
updateVideoTracking(e.currentTarget.videoObj.vid);

}

At this point the tracking addition is complete. As you can see, the original creation process in the
first section really allows the ability to introduce new functionality with minimal updates.

Now your video player can properly track the videos and inform you as to which videos are more
popular than others. You could easily develop an admin panel where all of this data could be
viewed, or you can log in to your SQL editor and look at the videos table for the active count on
each video.

464

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 464

Building a User Login Component in Flash
Now that the video player is pretty much packed full of features, it is pretty safe to assume the Web
site should require registration in order to use the player. Adding the registration is a matter of cre-
ating a basic form and updating a database table, nothing that a few lines of code can’t accomplish.

The more advanced portion of this feature is Flash’s need to interact with the user login. To start,
the Flash application needs to display a login pane when the application starts and also needs to
disable the interface until the user successfully logs in.

Keeping with the idea of making the code reusable, let’s develop the login component in a new
Flash file and then simply drop it in place when it is completed.

Start by opening the login component starter file, which already has the design completed for you, as
shown in Figure 17.5. All you need to be concerned with is the code behind the login component.

FIGURE 17.5

The login component that has been previously designed

When the component is open you will notice the MovieClip in the library is assigned to a class
with a name of LoginWindow. You cannot customize that class so you need to create a new
ActionScript file and save it in the project folder with the FLA.

465

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 465

Developing the LoginWindow class
Now that the file is created you can begin to build the login code. The first step is to construct the
class skeleton and extend the MovieClip, which is the same process you have been following in
the previous sections.

This class not only needs to import the standard MovieClip class, but also is going to require
some new ones. These new classes will be used to create the actions for disabling the interface and
handling the mouse interaction.

package
{

import flash.display.MovieClip;
import flash.geom.Rectangle;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.net.*;

public class LoginWindow extends MovieClip
{

function LoginWindow()
{

...
}

}
}

The properties for this class are responsible for event handling and creating references to the
MovieClips created at runtime.

public var data:Object;

private var _visible:Boolean = false;
private var container:MovieClip;
private var blocker:MovieClip = null;

public static var LOGIN_ATTEMPT:String = “onLoginAttempt”;

LoginWindow constructor
The constructor of the LoginWindow class is where the container property is set. This is also
where the event handlers for the buttons are placed. This is done to ensure the buttons are
assigned once visible to ensure the code is stable.

function LoginWindow()
{

container = this;

loginMC.resetBtn.addEventListener(MouseEvent.CLICK,
resetHandler);

466

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 466

loginMC.loginBtn.addEventListener(MouseEvent.CLICK,
loginHandler);

}

redraw method
The redraw method is called whenever the interface changes. This is mostly a concern when the
user has the ability to resize the Stage, although most Web site applications have a fixed size. This
method needs to have some logic regarding the blocking clip to ensure it isn’t drawn more than
once. The blocking clip is a movieclip that removes interaction from the application which forces
the user to log in by “blocking” the mouse clicks.

public function redraw():void
{

if(blocker == null)
{

...
}
else
{

...
}
...

}

The contents of the conditional for when the blocker clip is null draws the actual blocking
MovieClip using the built-in drawing API.

blocker = new MovieClip();
blocker.alpha = 0.5;
blocker.graphics.beginFill(0x000000);
blocker.graphics.drawRect(0, 0, stage.stageWidth,

stage.stageHeight);

Once the clip has been drawn, the next step is to assign fake event handlers to the blocking clip.
Flash doesn’t have a native interface that you can disable because the code could be customized.
The way around this is to build a pseudo-disabler. This is nothing more than a MovieClip placed
on the stage that traps all the mouse interaction and cancels it. This prevents the underlying inter-
face and application from being used until this blocking clip is removed.

blocker.addEventListener(MouseEvent.ROLL_OVER, dummyHandler);
blocker.addEventListener(MouseEvent.ROLL_OUT, dummyHandler);
blocker.addEventListener(MouseEvent.CLICK, dummyHandler);

After the first time the display is redrawn, the blocker will have already been created. A simple width
and height adjustment is the only necessary update. In fact, if you call the standard redraw method
without the conditional, each time you would see another blocking clip as they begin to stack up.

blocker.width = stage.stageWidth;
blocker.height = stage.stageHeight;

467

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 467

Regardless of whether this is the first pass of the redraw method or not, the blocking clip needs
to be repositioned. The login window is placed dead center, which means you can calculate the
padding around it, multiply this to create a negative number, and place the blocking clip using that
calculation.

// reverse the offset to position blocker
blocker.y = y * -1;
blocker.x = x * -1;

When all the calculations are complete, you can add the blocker MovieClip to the
DisplayList, which makes it visible in the application.

addChild(blocker);

Making all the position-based calculations before the clip is added to the display list
minimizes flickering and jumping objects in your application.

Swapping placement of two MovieClips
ActionScript 3 does not have any depth management like what is found in ActionScript 2 and its
predecessors. The equivalent is taking the id of a clip and swapping it with another clip. This
appears to be depth management, except for the very important fact that ActionScript takes care of
the reordering when the children are swapped.

In this example, you want to make sure the login box is above the blocking clip because if it is
placed below it, the user is not able to interact or log in to the application:

container.swapChildren(loginMC, blocker);

Centering a MovieClip
The last step of the redraw method is to center the login box on the Stage to ensure it is always in
the middle. This is constantly updated when the redraw method is called because resizing the
stage would make the login box sit at a noncentered position.

loginMC.x = (stage.stageWidth / 2) - (loginMC.width / 2);
loginMC.y = (stage.stageHeight / 2) - (loginMC.height / 2);

The calculation uses the stage dimensions and login box dimensions to determine the middle
point. This is where the loginMC MovieClip is placed when the calculation is completed.

close method
The close method has one task: to remove the current login box and allow the application to be
used once again. The removal process is achieved by removing the container child, which con-
tains the login box and blocking MovieClip.

public function close():void
{

container.parent.removeChild(container);
}

NOTENOTE

468

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 468

resetHandler method
The resetHandler method is called whenever the Reset button is clicked. This method clears all
of the status messages and empties the login and password fields.

private function resetHandler(e:MouseEvent):void
{

loginMC.username.text = “”;
loginMC.password.text = “”;
loginMC.responseTxt.text = “”;

}

loginHandler method
The loginHandler method is attached to the CLICK event of the loginBtn. This method is
called whenever the loginBtn is clicked by the mouse.

private function loginHandler(e:MouseEvent):void
{

...
}

This method is responsible for checking the username and password fields for valid data. If one of
these fields is empty, the function is exited and a response message is displayed below the pass-
word field.

loginMC.responseTxt.text = “”;

if(loginMC.username.text == “” || loginMC.password.text == “”)
{

loginMC.responseTxt.text = “username & password required”;
return;

}

If the username and password fields are found to have acceptable values, those values are stored in
the data property, which will be read by the calling script in a custom event handler.

data = {
username:loginMC.username.text,
password:loginMC.password.text

};

The last part of this method is to fire off a custom event, alerting the calling script that a username
and password have been captured and need to be validated.

dispatchEvent(new Event(LOGIN_ATTEMPT));

This component has been developed to separate the display and security logic, which means the
component can be reused because nothing is hardcoded into the actual login logic.

469

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 469

The last real method is a setter, which is used to externally set the response string. This would be
called from the loginHandler if the validation failed and you want to show the user so that he
or she can attempt another password or username.

public function set responseString(s:String):void
{

loginMC.responseTxt.text = s;
}

The dummyHandler method does not have any functionality. It is used to block any mouse events
that occur on the blocking MovieClip. This method is required because an event handler needs a
valid function, and if you define an anonymous one, it creates a slow memory leak.

private function dummyHandler(e:MouseEvent):void
{

// no action
}

At this point you have completed the LoginWindow class and can move to the next step, which is
to create some simple ActionScript to test the component. When that is properly tested you can
create the PHP service and make the login component interact with the database to actually look
for real users attempting to log in.

Here is the complete LoginWindow class.

package
{

import flash.display.MovieClip;
import flash.geom.Rectangle;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.net.*;

public class LoginWindow extends MovieClip
{

public var data:Object;

private var _visible:Boolean = false;
private var container:MovieClip;
private var blocker:MovieClip = null;

public static var LOGIN_ATTEMPT:String = “onLoginAttempt”;

function LoginWindow()
{

container = this;

loginMC.resetBtn.addEventListener(MouseEvent.CLICK,
resetHandler);

470

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 470

loginMC.loginBtn.addEventListener(MouseEvent.CLICK,
loginHandler);

}

public function redraw():void
{

if(blocker == null)
{

blocker = new MovieClip();
blocker.alpha = 0.5;
blocker.graphics.beginFill(0x000000);
blocker.graphics.drawRect(

0,
0,
stage.stageWidth,
stage.stageHeight

);
blocker.addEventListener(

MouseEvent.ROLL_OVER,
dummyHandler

);
blocker.addEventListener(

MouseEvent.ROLL_OUT,
dummyHandler

);
blocker.addEventListener(

MouseEvent.CLICK,
dummyHandler

);
}
else
{

blocker.width = stage.stageWidth;
blocker.height = stage.stageHeight;

}

// reverse the offset to position blocker
blocker.y = y * -1;
blocker.x = x * -1;

addChild(blocker);

container.swapChildren(loginMC, blocker);

loginMC.x = (stage.stageWidth / 2) -
(loginMC.width / 2);

loginMC.y = (stage.stageHeight / 2) -

471

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 471

(loginMC.height / 2);

_visible = true;
}

public function close():void
{

container.parent.removeChild(container);
}

private function resetHandler(e:MouseEvent):void
{

loginMC.username.text = “”;
loginMC.password.text = “”;
loginMC.responseTxt.text = “”;

}
private function loginHandler(e:MouseEvent):void
{

loginMC.responseTxt.text = “”;

if(
loginMC.username.text == “” ||
loginMC.password.text == “”)

{
loginMC.responseTxt.text =

“username & password required”;
return;

}

data = {
username:loginMC.username.text,

password:loginMC.password.text
};
dispatchEvent(new Event(LOGIN_ATTEMPT));

}

public function set responseString(s:String):void
{

loginMC.responseTxt.text = s;
}

private function dummyHandler(e:MouseEvent):void
{

//
}

}
}

472

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 472

Testing the login component
The next step is to test the login component to make sure everything is working properly. The first
step is to create a new instance of the LoginWindow component in a stand-alone FLA, or you can
use the sample file found with the book’s source code.

var login:LoginWindow = new LoginWindow();

Once the instance is created, the next step is to assign an event handler for the custom
LOGIN_ATTMEPT event that is called when the user types data into both the username and pass-
word fields and then clicks the Login button.

login.addEventListener(LoginWindow.LOGIN_ATTEMPT, loginHandler);

After the Login window component loads and the proper event handler is assigned, the next step is
to add it to the display list, which makes it visible.

addChild(login);

Assigning a stage event handler
You want to make sure any modification to the stage redraws the login component, or items that
are being blocked can accidentally reposition themselves beyond the blocking MovieClip.

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.addEventListener(Event.RESIZE, stageResizeHandler);

After the event is assigned to the stage object, you need to create the function that is being refer-
enced in the event listener. For this application, the handler simply makes a call to the redraw
method of the login component. In a real-world application you may have more functionality in
this event, but for now this is fine for testing.

function stageResizeHandler(e:Event):void
{

login.redraw();
}

Handling the login attempt
The next function is used to handle login attempts. For simplicity, this function has a predefined
username and password that is later replaced with a remoting service in the next section.

If a valid login is reached, the close method of the login component is called. This removes the
Login box and enables the application for that session.

function loginHandler(e:Event):void
{

if(login.data.username == “guest” && login.data.password ==
“pass”)

473

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 473

{
login.close();

}
}

This application does not store logins, which means the valid login is only for the active
session. Users will have to log in each time they visit the application.

The loginHandler function is handling successful logins, but does not notify the user of an
incorrect login attempt. This can be fixed by adding an else statement that updates the response
box in the Login box.

function loginHandler(e:Event):void
{

if(login.data.username == “guest” && login.data.password ==
“pass”)
{

login.close();
}
else
{

login.responseString = “username and password incorrect”;
}

}

The last step is to make the initial call to the resize event to draw the login component for the
first time. You can also call the redraw method directly, rather than going through the resize
event.

stage.dispatchEvent(new Event(Event.RESIZE));

Here is the completed code for this test. The majority of the login component is handled internally
but it still offers ultimate usability.

var login:LoginWindow = new LoginWindow();
login.addEventListener(LoginWindow.LOGIN_ATTEMPT, loginHandler);

addChild(login);

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.addEventListener(Event.RESIZE, stageResizeHandler);

function stageResizeHandler(e:Event):void
{

login.redraw();
}

function loginHandler(e:Event):void
{

trace(“Do Login”);

NOTENOTE

474

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 474

trace(“Username: “ + login.data.username);
trace(“Password: “ + login.data.password);

if(login.data.username == “guest” && login.data.password ==
“pass”)
{

trace(“user logged in”);
login.close();

}
else
{

login.responseString = “username and password incorrect”;
}

}

stage.dispatchEvent(new Event(Event.RESIZE));

Now that you have completed the ActionScript necessary for the sample, you can test the login
component. You should be presented with the login screen immediately and not be able to interact
with any portion of the movie, excluding the login screen, as shown in Figure 17.6, until you type
the correct login.

FIGURE 17.6

Sample application displaying the login component

475

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 475

Building the PHP login manager class
The next step in building the login system is to connect it to the database of users, because a hard-
coded login and password is not very practical and certainly not secure.

Creating the user’s MySQL table
The first step is to create the user’s table in the existing database:

CREATE TABLE `users` (
`id` int(11) NOT NULL auto_increment,
`username` varchar(25) default NULL,
`password` varchar(40) default NULL,
`active` varchar(1) default ‘1’,
PRIMARY KEY (`id`)

) ENGINE=MyISAM;

Then you can prefill the table with some sample logins for testing purposes:

INSERT INTO users (username, password) VALUES (‘guest’,
MD5(‘pass’));

INSERT INTO users (username, password) VALUES (‘timmy’,
MD5(‘bird’));

A distinct difference from the predefined logins in Flash is that these logins have encrypted pass-
words as an added level of security.

Before you can add the logic for connecting to the service, you need to create the PHP class. This
class will check for valid users, and if one is found, it will return a true, which means the user is
valid and the Login box can be removed.

Building the user class
The User.php class is just like the other service classes in that it extends the
DatabaseConnector class for all database communication. Here is the skeleton of user class:

<?php

require_once ‘DatabaseConnector.php’;

class User extends DatabaseConnector
{

function User()
{

...
}

}

?>

476

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 476

login method
The first and only method in this class is login. This method accepts two arguments: the user-
name and password to validate. The first part of this method is to create a new connection to the
database:

/**
* Check user auth
* @access remote
* @returns status of user login attempt
*/
function login($user, $pass)
{

$link = $this->getConnection();
}

When the database connection is established, you can mark the user as not logged in. This pre-
vents any possible hacking attempts that could accidentally make a user log in.

$loggedIn = false;

Next is the SQL query that attempts to validate the username and password combo. The password
is passed into the md5 function because Flash sends the password in clear text, but the database
stores the md5 result.

$query = sprintf(“SELECT * FROM users WHERE
username=’%s’ AND
password=MD5(‘%s’)”, $user, ($pass));

The next step is to make the database call and store the response in the $result variable, as
shown in the following code:

$result = mysql_query($query, $link);

Once the response is stored, a conditional statement is used to determine if any rows were
returned. If a row is returned, it means the data is valid and the user has been authenticated based
on the credentials he or she passed along.

When a valid response is found, the $loggedIn variable is set as true to inform Flash that the
user is, in fact, valid and has now successfully logged in.

if(mysql_num_rows($result) > 0)
{

$loggedIn = true;
}

The last step is to return the result so Flash can act accordingly.

return array(‘response’ => $loggedIn);

477

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 477

Now that you have completed the PHP class, the next step is to test it. For this test you can use the
service browser that is included with AMFPHP. You will find that browser at a URL similar to the
following, depending on where you installed the source:

http://localhost/flashphp/amfphp/browser/

Last, here is the complete User class, which should be saved as User.php in the services direc-
tory of your AMFPHP installation if you haven’t already done so:

<?php

require_once ‘DatabaseConnector.php’;

class User extends DatabaseConnector
{

/**
* Check user auth
* @access remote
* @returns status of user login attempt
*/
function login($user, $pass)
{

$link = $this->getConnection();

$loggedIn = false;

$query = sprintf(“SELECT * FROM users WHERE
username=’%s’ AND
password=MD5(‘%s’)”, $user, ($pass));

$result = mysql_query($query, $link);

if(mysql_num_rows($result) > 0)
{

$loggedIn = true;
}

return array(‘response’ => $loggedIn);
}

}

?>

Adding remoting to the login component
Now that you have completed the PHP User class, the next step is to modify the existing login
component to use this new service class.

The first step is to add the gateway variable and URL where the gateway.php file can be found
on your development server.

478

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 478

var gateway:NetConnection;
var gatewayURL:String = “http://localhost/amfphp/gateway.php”;

The original example did the username validation directly within the Flash file. While this was
functional, it wasn’t very practical because only one login or password can be used.

loginHandler method
This new system modifies the existing loginHandler function by adding a remoting service call,
sending the username and password that was captured by the login window component.

function loginHandler(e:Event):void
{

trace(“Do Login”);
trace(“Username: “ + login.data.username);
trace(“Password: “ + login.data.password);

var responder:Responder = new Responder(loginRespHandler,
onFault);
gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“User.login”, responder,

login.data.username,
login.data.password

);
}

The Responder class needs a response handler defined, so the next function handles this service
response. For this example, the service will either return a Boolean for whether the user is logged
in or not, or an error if something goes wrong.

function loginRespHandler(o:Object):void
{

...
}

A simple conditional statement is used to determine if the user is logged in based on the response
from the remoting service.

Handling the login response
If the user is logged in, a call to the close method of the login component is made to hide the
login window and enable the application interface.

function loginRespHandler(o:Object):void
{

if(o.response == true)
{

login.close();
}

}

479

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 479

An else option is added to handle the incorrect login attempts by updating the response message
of the login component.

function loginRespHandler(o:Object):void
{

if(o.response == true)
{

login.close();
}
else
{

login.responseString = “username and password incorrect”;
}

}

Handling response errors
The last function required for the login system is the onFault, which handles errors in the service
calls. For example, if the script managed to attempt a login check with no username or password,
the SQL would fail. This error will be raised by the PHP class and sent back to Flash, assuming it is
properly handled.

function onFault(responds:Object):void
{

trace(“Debug::Error”);
for(var i in responds)
{

trace(“ “ + responds[i]);
}

}

Now that the remoting code has been added to the previous example login component, you can
test it, and you really shouldn’t notice any difference. The only change would be the ability to use
more than one username, as long as it is found in the users table that you created at the beginning
of this section.

Here is the login component example with the proper remoting code included:

var gateway:NetConnection;
var gatewayURL:String = “http://localhost/amfphp/gateway.php”;

var login:LoginWindow = new LoginWindow();
login.addEventListener(LoginWindow.LOGIN_ATTEMPT, loginHandler);

addChild(login);

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.addEventListener(Event.RESIZE, stageResizeHandler);

function stageResizeHandler(e:Event):void

480

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 480

{
login.redraw();

}

function loginHandler(e:Event):void
{

trace(“Do Login”);
trace(“Username: “ + login.data.username);
trace(“Password: “ + login.data.password);

var responder:Responder = new Responder(loginRespHandler, onFault);
gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“User.login”, responder,

login.data.username,
login.data.password

);
}

function loginRespHandler(o:Object):void
{

trace(“Response: “ + o.response);

if(o.response == true)
{

trace(“user logged in”);
login.close();

}
else
{

login.responseString = “username and password incorrect”;
}

}

function onFault(responds:Object):void
{

trace(“Debug::Error”);
for(var i in responds)
{

trace(“ “ + responds[i]);
}

}

stage.dispatchEvent(new Event(Event.RESIZE));

Finalizing the Video Player
The last section of this chapter is finalizing the video player. You will implement the login compo-
nent you built in the previous section and learn how to use an external library.

481

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 481

Using an external library
The advantage to using an external library is you only have to update one location and all instances
of that library usage are also updated.

For example, imagine you have a logo with a specific color on it and suddenly the company
decides that it wants to recolor the logo. Rather than opening every instance of that logo and edit-
ing it, you can open the master FLA, edit that, and then update the instances, which automatically
reflect the changes.

You can use this concept for much more than a simple logo, because you will be loading the login
component from the example file you built in the previous section.

Adding the login component
Start by opening the VideoPlayer.fla file if it isn’t already opened. Then choose File ➪

Import ➪ Open External Library.

In this dialog box, you can navigate to the directory where the login component is stored and
select that file. With the file selected, click Open.

Drag the LoginWindowMC from this library into the library of the VideoPlayer FLA. You
should now see two new MovieClips in the library of your VideoPlayer file. This is because
the LoginWindowMC has a supporting file that contains all of the design, which is automatically
copied when you drag the parent.

Now that the login component is added, you can modify the existing VideoPlayer class file to
add this new functionality. To start, add the component creation, but forget about the login logic.

The new code should be added to the constructor function, similar to the following:

function VideoPlayer()
{

gatewayURL = “http://localhost/amfphp/gateway.php”;
getCategories();

videoPlayer.visible = false;
videoListCombo.enabled = false;

var login:LoginWindow = new LoginWindow();
login.addEventListener(LoginWindow.LOGIN_ATTEMPT,
loginHandler);

addChild(login);
login.redraw();

}

482

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 482

Before you test the code, add the loginHandler method to avoid any runtime errors. You can
add this method at any point in the code. I recommend somewhere toward the bottom of the class
to maintain the overall flow of the file.

private function updateTrackingHandler(response:Object):void
{

...
}

private function loginHandler(response:Object):void
{

...
}

The last step is to import the LoginWindow class so the static property can be loaded for the
event handler.

package
{

import flash.display.MovieClip;
import flash.events.Event;
import flash.net.*;
import LoginWindow;

public class VideoPlayer extends MovieClip
{

...
}

}

When you test the application you should immediately see the login window. Because you didn’t
add any logic at this point, there is no way to close the login window, but you can see it is working,
so you can continue.

The logic, which is responsible for calling the remoting service, needs to be added to the existing
loginHandler method.

function loginHandler(e:Event):void
{

var responder:Responder = new Responder(loginRespHandler,
onFault);
gateway = new NetConnection();
gateway.connect(gatewayURL);
gateway.call(“User.login”, responder,

login.data.username,
login.data.password

);
}

483

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 483

The next step is to copy the loginRespHandler and add it below the loginHandler in the
VideoPlayer class.

function loginRespHandler(o:Object):void
{

trace(“Response: “ + o.response);

if(o.response == true)
{

trace(“user logged in”);
login.close();

}
else
{

login.responseString = “username and password incorrect”;
}

}

The proper code has now been added to the VideoPlayer class; however, there is one final mod-
ification needed before the login component will function properly.

The login variable that is defined in the constructor needs to be a global property, because as it
stands right now, no other method in this class has access to it.

package
{

...
public class VideoPlayer extends MovieClip
{

...
private var selectedCatID:Number;
private var login:LoginWindow;

function VideoPlayer()
{

...
login = new LoginWindow();

}
}

}

Now that the login variable is properly defined, you can test the application, as shown in Figure
17.7. You should be able to type a valid username and password, and the login component should
disappear when you do so.

484

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 484

FIGURE 17.7

Final video player with login box visible

As you can see, the login component being built this way really makes it possible to add it to any
existing project. To extend on this example, you could add a shared object that would preserve the
session and make it so the user doesn’t need to log in each time.

You should now have a great understanding of building and working with advanced, real-world
applications. I am sure you are thinking of many various applications to build after seeing how
they function in depth.

The following is a table outlining the names of files and where they should be stored for this com-
plete application. The path is based on the project directory which should be in your Apache home
directory in order for the application to run properly.

Application Source File Locations

File Name Save Path

LoginWindow.swf /

LoginWindow.fla /

LoginWindow.as /

VideoListItem.as /

VideoPlayer.as /

SkinOverPlayStopSeekMuteVol.swf /

continued

485

Building Complete Advanced Applications 17

25_258248 ch17.qxp 3/28/08 1:43 PM Page 485

Application Source File Locations (continued)

File Name Save Path

color.flv /videos

Categories.php /amfphp/services

DatabaseConnector.php /amfphp/services

Videos.php /amfphp/services

Tracking.php /amfphp/services

User.php /amfphp/services

Summary
In this chapter, you started by building a very basic video player and expanded upon that concept
to build a multicategory video player. Using PHP to handle the data between Flash and the data-
base made the application more dynamic.

Once you had the video player completed, you began to expand on that by adding video tracking.
You learned how easy it was to implement new features into the existing code based on the way the
original video player application was developed in the previous section.

The fourth part of the chapter introduced the process of developing custom components that could
be reused in your future projects. For this example, you developed a login component that would
disable an application until the user logged in.

The fifth and final part was bringing all of these techniques together to develop a final real-world
video player application with a login module and video tracking from the previous sections. All
you have to do now is populate the database with real data and you will have a fully expandable,
multicategory, tracking, secure video player application.

486

Server, Application, and Database MaintenancePart V

25_258248 ch17.qxp 3/28/08 1:43 PM Page 486

Symbols and Numerics
* wildcard, 145
; (semicolon), 382
| (pipe), 426
' (single quote), 133

A
absolute global classpath, 195
act variable, 123
Action Message Format (AMF), 198
_action variable, 234
action variable, 293
$action variable, 348
ActionScript

adding video tracking to, 463
and AMFPHP, 195, 216–218
chat client applications

handling XML response, 248–251
overview, 242–245
stop caching with dynamic data, 245–248

dynamic banner ad
developing PHP, 283
opening browser window, 281–282
overview, 279–281
random selection, 283–284

dynamic data, 85
hit counter, 286
photo gallery, 261–266
and PHP cookies, 121
poll applications, 368–372
site monitors, 351–359
static data, 85
video player applications

basic, 360–364
categoryHandler method, 450
categoryResponseHandler method, 449–450
constructor function, 448
creating document class, 446–448
getCategories method, 448–449
getVideos method, 451
handling errors in remoting responses, 453–456

listItemHandler method, 452–453
overview, 446
videosResponseHandler method, 451–452

ActionScript editors, 60–61
ActionScript panel, 60, 81–83
ActionsScript 3 (AS3), 198–201
active sandbox

running applications in local sandbox, 147–150
unloading application, 150–151

Add to Cart button, 303
addChild function, 233, 265, 324
addDataToObject function, 121
addEventListener call, 263
addItem() function, 217, 275, 376
addItemHandler function, 306
addProduct method, 301
addServer() function, 420
addslashes() function, 133, 134, 137
administrators, e-mailing site, 349–351
ads.php file, 283
advertisements, dynamic banner

developing PHP, 283
opening browser window, 281–282
overview, 279–281
random selection, 283–284

Album class, 214
allFields variable, 108
allowDomain() function, 145, 164
alpha values, 457–458
alternative traces, 389–391
Amazon search applications

overview, 317
simplifying XML response, 319–326
using AWS, 317–319

AMF (Action Message Format), 198
AMFPHP

ActionScript for integration, 216–218
AS3 and PHP developers

debug gateway, 200–201
debugging tools, 199
installing, 198–199
service browser, 200

487

26_258248 bindex.qxp 3/28/08 1:43 PM Page 487

AMFPHP (continued)
in Flash, 205–210
real-world application, 210–218
testing with custom service, 201–205

Anchor tag, 247
AND condition, 58
anonymous functions, 263–266
answer variable, 368
Apache

adding to Web servers
UNIX, 9–13
Windows, 4–9, 13

building another version of on same system, 406–407
comments in, 397
default Welcome Screen, 8
determining modules installed, 40–42
determining version, 40
modifying custom error documents, 43
optimizing, 412–413
starting and stopping, 40

Apache Configuration Directory, 29–31
apachect1 application, 11
appendText method, 208, 387
Application Programming Interface (API), 289
applications

Amazon search
overview, 317
simplifying XML response, 319–326
using AWS, 317–319

chat client
Flash portion, 242–251
overview, 242
PHP code, 252–260
PHP socket server for, 168–175

debugging
alternative trace, 389–391
error reporting in PHP, 381–385
in Flash, 385–389
overview, 381

drawing
in Flash, 336–341
overview, 335–336

dynamic banner ads
developing PHP, 283
opening browser window, 281–282
overview, 279–281
random selection, 283–284

elements of, 239–242
ensuring exlusive use, 151–152
hit counters, 285–286

maintenance
ChangeLog, 399–400
commenting code, 395–399
custom libraries, 403–404
overview, 395
version control, 401–403

overview, 239
PayPal cart

overview, 290–291
POST data, 293–294
sendToURL method, 294
setting up communication, 294–295
signing up for PayPal Premier, 291–293

photo gallery
developing ActionScript, 261–266
developing using flickr, 326–333
navigation, 266–270
overview, 260–261
PHP for, 270–274

poll
building PHP and MySQL, 364–368
developing ActionScript, 368–372
overview, 364

real-world
Amazon search application, 317–326
developing photo gallery using flickr, 326–333
drawing application, 335–341
GD library, 341–346
overview, 289–290, 335
PayPal cart, 290–295
poll application, 364–372
simple file editor, 373–379
site monitors, 347–359
video player, 359–364

RSS readers
importing classes, 275
loading PHP, 275–279
overview, 274–275

running in local sandbox, 147–150
scalable, 219, 242
shopping cart

building PHP, 298–315
developing ShoppingCartItem class, 298–306
developing StoreItem class, 296–298
overview, 295–296

unloading, 150–151
video player

adding sample data to tables, 434–435
advanced development, 446–456
basic, 429–432

488

IndexA

26_258248 bindex.qxp 3/28/08 1:43 PM Page 488

building database and MySQL tables, 433–434
building VideoListItem class, 456–461
finalizing, 481–486
overview, 429, 432
testing database, 435–437
user login component, 465–481
using Flash to develop, 359–364
video tracking, 461–464

arguments, 50, 130
Array type, 297
arrays, 48, 383
array_search function, 175
array_shift function, 171
AS3 (ActionsScript 3), 198–201
as3CoreLib library, 192, 196
attribute() method, 354
attributes, 118
auto play option, 430–431
auto_increment function, 255
automatic updates, 406
AWS_ACCESS_KEY access id, 318

B
$backupCmd variable, 423
$backupDir directory, 424
backupDir file, 422
backups

server
backup management, 421–424
file management, 421
using PHP, 424–427

version control, 403
banner ads, dynamic

developing PHP, 283
opening browser window, 281–282
overview, 279–281
random selection, 283–284

$bannerAds array, 283
basic authentication, 38–39
binding, socket, 154
BitmapData class, 345
bleeding-edge technology, 407
block comments, 396–397
bodyTxt TextArea function, 376
Bold tag, 247
BookItem class, 323–324
BookSearch class, 321
booleans, 48
break control, 53

Break tag, 247
breaks, 54
browser windows, opening, 281–282
bug tracking, 399–400
Button component, 242–243
Button Encryption, 292
Buy Now button, 295

C
cache busters, 244–246, 249
caching

with memcached system
installing on Linux, 416–418
installing on Windows, 418–420
managing servers, 420–421
overview, 416

PHP codes, 410
saving data, 418–419

Call button, 202
call method, 451
callback function, 87, 141, 389
callDatabase method, 221
callPaypal function, 294
callServer method, 234
camel-case, 91
cart applications

PayPal
overview, 290–291
POST data, 293–294
sendToURL method, 294
setting up communication, 294–295
signing up for PayPal Premier, 291–293

shopping cart
building PHP, 298–315
developing ShoppingCartItem class, 298–306
developing StoreItem class, 296–298
overview, 295–296

cartContents array, 301
cartItemCount class, 301
categories.php file, 270
$categories variable, 270
Category class, 443–444
category method, 445, 448
categoryHandler method, 450
categoryResponseHandler method, 449–450
CHANGE event, 180
ChangeLogs, 399–400
Charles Web Debugging Proxy, 133, 388

489

Index C

26_258248 bindex.qxp 3/28/08 1:43 PM Page 489

chat client applications
Flash portion, 242–251

handling XML response, 248–251
overview, 242–245
stop caching with dynamic data, 245–248

overview, 242
PHP code, 252–260

connecting to MySQL, 256–259
creating database table, 259–260
overview, 252–255

PHP socket server for, 168–175
ending connection, 175
excluding master server from communication, 171
handling errors, 174–175
master client connection, 172–173
notifying all clients, 174
notifying specific client, 173–174
properties, 168–171
server monitoring, 175
special parameters, 171–172

ChatServer class, 176
Checkout button, 300
checkSite() method, 356
child socket resource id, 157
$childSocket variable, 157–158
Class imports, 299
class variables, 258
classes. See also individual classes by name

basic socket, 165–166
custom, 231–235
defined, 220–221
in Flash, 229–231
for loading data in Flash, 86–87
in PHP, 225–228
remoting, 205–210
RSS reader applications, 275
securely writing to file, 137–138

Class.method, 223
clean URLs, 38
clear() method, 119
clearButtonHandler function, 180
clearIndicators function, 108
CLI (command-line version), 155–156
CLICK event, 294
clickHandler method, 458
client connections, 154, 157–158
close() method, 420, 468, 473, 479
closeHandler function, 182

closing
cached server connections, 420
MySQL connections, 75–76

CMSs (content management systems), 373–379
code commenting, 395–399
code editor, 60. See also ActionScript panel
code fragments, 51
code hints, 398
code skeleton, 106–107
ComboBox component, 359, 361, 373, 377, 449
command-line version (CLI), 155–156
commenting code, 395–399
commercial Flash libraries, 192–193
communication, PayPal, 294–295
communicator class, 233
compiler comments, 397
COMPLETE event, 275
Component Inspector, 432
Components pane, 430
concatenating data, 71
Concurrent Versions System (CVS), 401
conditions, MySQL

AND, 58
OR, 59
WHERE, 58

conf/ directory, 407
configuration files, 256, 413
configuration variables, 256
connect() method, 206, 213, 391, 420, 438
connectHandler function, 163
connecting

in Flash
connection types, 65–69
determining status of PHP, 64–65

Flash to PHP
concatenating data, 71
multiple pieces of data, 71–73

PHP to MySQL
bringing all together, 77–84
closing connection, 75–76
determining status of MySQL, 73–74
persistent connection, 75
selecting database, 74, 76

connection method, 212
_connection private variable, 212
connections

client, 157–158
closing cached server, 420

490

IndexC

26_258248 bindex.qxp 3/28/08 1:43 PM Page 490

database, 257
master, 154
master client, 172–173
MySQL, 75–76
parameter, 213
persistent, 75
remote socket, 163–164

constructor method
chat properties, 169
defined, 221
developing ActionScript, 360
LoginWindow class, 466–467
static method, 223
VideoListItem, 457
VideoPlayer class, 448
XML response, 322

constructors. See constructor method
contact form

calling PHP, 103
event handlers, 103–105
mailing in PHP, 105–106

container child, 468
container property, 466
content management systems (CMSs), 373–379
continue control, 53–54
control structures, PHP

break control, 53
continue control, 53–54
else statements, 51–52
elseif statements, 52
foreach loop, 53
if statements, 51
include statement, 55
include_once statement, 56
for loop, 52–53
require statement, 54–55
require_once statement, 55
switch control, 54
while loop, 52

$_COOKIE variable, 114
cookieName variable, 123
cookies

Flash
bringing all together, 119–122
deleting shared objects, 119
loading shared objects, 118
saving shared objects, 118–119

overview, 113

PHP
assigning multiple, 117–118
deleting, 116
expiring, 116
loading, 114–115
saving, 115

sharing, 114
createMasterClient method, 172–173
createNewTextField method, 233
cron service, 421
crontab file, 422–424
crossdomain.xml file, 164
crypto package, 196
CS3, 401–402
currentID variable, 261
currentImage variable, 265–266
custom authentication system, 38–39
custom classes, 231–235
custom error documents

dynamic error documents, 43–46
modifying Apache, 43
overview, 42

custom file extensions, 38
custom libraries, 403–404
Custom option, 6–7
custom playback handlers, 431
custom URLs, 38
custom variable definitions, 71
custom XML documents, 332–333
CVS (Concurrent Versions System), 401

D
data

loading
in Flash, 85–87
one-way, 88
two-way, 88–89
XML in Flash, 89–92
XML in PHP, 92–93

PHP, 95–97
returning, 143–144
sending to server, 67–68
storing

passwords, using PHP, 141–142
securely writing to file, 137–141

user
HTML data, 136
sanitizing, 133–135

XML in PHP, 93–95

491

Index D

26_258248 bindex.qxp 3/28/08 1:43 PM Page 491

data object, 118
data property, 275, 469
database connection, 257
database editor, 434
database plug-ins, 409
database slowdowns, 416
DatabaseConnector class, 437–439, 441, 476
DatabaseConnector.php file, 438
databases

backing up with PHP, 424–427
video player applications, 433–434

DataGrid component, 216–217
dataLoaded() method, 370
date table, 255
dateAdded row, 255, 259
$daysBeforeExpiration variable, 116
dbconn.php file, 252, 254, 256, 307, 347
Debug Gateway, 200
debuggateway.php file, 200
debugging applications

alternative trace, 389–391
error reporting in PHP, 381–385
in Flash, 385–389
overview, 381
removing helpers, 399

debugging tools, 199
debugTxt instance, 387
dedicated servers, 412
delete() method, 420
DELETE statement, 58
deleting items in caches, 420
dependencies, server, 407–408
$desc variable, 278
descendant accessor, 91–92
design, application, 240–241
development systems, 4, 406–408
$dir variable, 422
directories, backup, 422–424
disable function, 182
disableInterface function, 182
disabling auto play option, 430–431
dispatchEvent function, 180
display_errors directive, 129
displayImage function, 265
DisplayObject class, 222
Document class

class skeleton for, 352
constructor method of, 360
in Flash, 229–230
main discussion, 446–448

photo gallery, 327–329
PollItem class, 368
Timeline ActionScript, 304

Dom XML, 92–93
domain, 114
double slash, 138
downloading, 417
draw() method, 345
drawCategories function, 262, 263
drawing applications

in Flash, 336–341
overview, 335–336

Dreamweaver CS3 program, 31–32
dummyHandler method, 470
dynamic banner ads

developing PHP, 283
opening browser window, 281–282
overview, 279–281
random selection, 283–284

dynamic data, 85, 162
dynamic error documents, 43–46
dynamic objects, 121
dynamic text field, 286
dynamic XML

from database, 94–95
printing, 93–94

E
E_ALL message, 384
echo function, 383
E_COMPILE_ERROR message, 384
E_COMPILE_WARNING message, 384
E_CORE_ERROR message, 384
E_CORE_WARNING message, 384
editors, file, 373–379
E_ERROR message, 384
E4X, 89–92
element array, 327
else option, 480
else statements, 51–52, 474
elseif statements, 52
$emailInfo variable, 349
e-mailing site administrators, 349–351
empty password, 134
empty string, 254
enable function, 182
encapsulation, 225
encrypted string, 141
E_NOTICE message, 384

492

IndexD

26_258248 bindex.qxp 3/28/08 1:43 PM Page 492

ENT_COMPAT constant, 136
ENT_NOQUOTES constant, 136
ENT_QUOTES constant, 136
E_PARSE message, 384
error documents, custom

dynamic error documents, 43–46
modifying Apache, 43
overview, 42

error_log function, 382
errors

importing classes in PHP, 226
levels of, 383–385
messages, 319
optimizing Apache, 413
in remoting responses, 453–456
reporting, 259, 381–385
video player user login component, 480–481

E_STRICT message, 384
E_USER_ERROR message, 384
E_USER_NOTICE message, 384
E_USER_WARNING message, 384
evaluation stage, 239–240
Event class, 447
event handlers

contact form, 103–105
login module, 107–110
sandbox, 149
sockets, 162–163
stage, 473

event listeners, 68, 87–88, 162, 178
E_WARNING message, 384
example.org domain, 152
exit parameters, 175
exit request, 171–172
extends method, 440
Extension Manager, 194
extensions, memcached PHP, 417–418
external classes, 298
external libraries, 192, 482

F
-f option, 158
failedAttempts variable, 356, 357
false flag, 419
Fatal Error: function, 197
$feed variable, 278
feedBody TextArea function, 276
feedHandler() function, 275
file editors, 373–379

file locking, 63
file upload box, 130
file uploads, 128–130
file_get_contents function, 320, 374
fileContents object, 377
$fileContents variable, 374
fileManager.php file, 374
fileNameTxt variable, 131
files

flat, 57, 63
limiting, 421
securely writing to

classes, 137–138
magic_quotes options, 138–139
shared objects, 139–141

untarring, 10
Firefox Web browser, 389
FLA (Flash File), 321
Flash

alternative editors, 61
connecting to PHP, 71–73
connection types, 65–69
deleting shared objects, 119
determining status of PHP, 64–65
Flash-enabled devices, 62
form development, 99–100
loading data in, 85–87
loading shared objects, 118
loading XML in, 89–92
login module

code skeleton, 106–107
event handlers, 107–110
server integration for, 110–111

saving shared objects, 118–119
sockets, 161–167

Flash client, 177–188
Flash CS3, 194–196
Flash File (FLA), 321
Flash IDE, 59–61
Flash Security Sandbox

active
running applications in local sandbox, 147–150
unloading application, 150–151

applications, 151–152
sandboxType property, 145–147
setting type, 145

flashChat table, 255, 259
flashservices directory, 198
flat files, 57, 63

493

Index F

26_258248 bindex.qxp 3/28/08 1:43 PM Page 493

flickr photo galleries
building custom XML document, 332–333
interfacing with Web service, 331
overview, 326–330

flush() method, 118–119
FLVPlayback component, 430
Font tag, 247
fopen function, 374
for loop, 52–53, 152
for.. loop, 217, 252, 300, 332
for..each loop, 53, 91–92, 170, 173, 248, 262, 323, 328,

353, 422, 450
for..in loop, 207
form development, Flash, 99–100
$from variable, 350
functions

addChild, 233, 265, 324
addDataToObject, 121
addItem(), 217, 275, 376
addItemHandler, 306
addServer(), 420
addslashes(), 133, 134, 137
allowDomain(), 145, 164
anonymous, 263–266
array_search, 175
array_shift, 171
auto_increment, 255
bodyTxt TextArea, 376
callback, 87, 141, 389
callPaypal, 294
clearButtonHandler, 180
clearIndicators, 108
closeHandler, 182
connectHandler, 163
disable, 182
disableInterface, 182
dispatchEvent, 180
displayImage, 265
drawCategories, 262, 263
echo, 383
enable, 182
error_log, 382
Fatal Error:, 197
feedBody TextArea, 276
feedHandler(), 275
file_get_contents, 320, 374
fopen, 374
fwrite(), 374
getCategories(), 270, 438, 441, 444, 448–449, 451

getdate(), 201, 206, 208, 425
getPhotosFromID(), 272
getTimer(), 149, 249
gzip, 425
handleServerResp(), 286
htmlentities(), 136
imagecreatetruecolor(), 343
imagejpeg(), 343
imageLoaded, 264–265, 280
imagesetpixel, 344
import, 229
include, 226, 424
init()

developing ActionScript, 261
Flash, 244
managing messages, 247
opening browser windows, 281
photo gallery navigation, 267
running applications in local sandbox, 148
unloading applications, 150

initLoop, 169, 172
IO_ERROR, 356
is_numeric(), 132
length, 132
loadCategories(), 261–262
loadFeeds, 276
loadHitCounter(), 286
loadImage(), 264, 280
loadMessages(), 244, 247
loadMessagesHandler, 249
loginHandler, 107–108, 469–472, 483
loginMC MovieClip, 468
mail(), 349–350
md5, 477
movieclip, 323, 339
msgTxt TextInput, 180
mt_rand(), 283
mysql_close, 75–76, 409
mysql_connect(), 75, 256, 435
mysql_fetch_array(), 79, 253
mysql_num_rows(), 252, 442, 462
mysql_pconnect, 75
mysql_query(), 252, 254, 444
mysql_real_escape_string, 134, 136
mysql_select_db, 76
navigateToURL(), 65–66, 281, 294
nextImage(), 266
onResult, 207, 216
output_errors, 382

494

IndexF

26_258248 bindex.qxp 3/28/08 1:43 PM Page 494

PHP, 49–50
phpinfo(), 139
phpize, 417
populateFileList(), 377
preg_replace(), 278, 422
prevImage(), 266
print, 383, 409
print_r(), 383
removeChild, 324
removeChildAt, 150
require, 226, 424
response, 69, 143
saveCookie, 117
searchAndReplace, 206, 207
sendHandler, 102–103, 109
sendMessage, 102
sendMessageHandler, 247
sendRequest, 182
serverResponse, 70–72
set_time_limit, 156
setcookie, 115, 117
siteContainer movieclip, 352
socket_accept, 157
socket_create, 156
socket_listen, 173
socket_read, 157, 160
socket_select, 170
socket_write, 157, 173
source handler, 97
sprint(), 331–332, 348, 425, 463
{START_FILE}, 336
startTimer, 148–149
statusMessage, 183
stopServer, 169
StoreItem movieclip, 305
strlen(), 254
strpos, 130
substring, 183
table_name, 414
TextArea, 184
time(), 116, 142, 252
timerHandler, 245
trigger_ error, 453
typeof, 132
ucwords, 202
unset(), 257, 410
upperCaseWords, 205, 207
URLLoader, 275
URLRequest, 141, 265, 275, 322
varchar(), 259

whichSandbox, 146
writeLine, 182
xmlHandler, 91

fwrite() function, 374

G
gallery.php file, 273
gateway property, 304
gateway url variable, 206
gateway variable, 478
gateway.php file, 198–199, 478
GD library

gathering pixel data in Flash, 345–346
generating image in, 343–345
overview, 341–343

GET format, 317
GET request, 328, 343, 370, 374
$_GET[‘action’] variable, 273
getAlbumByGenreID method, 213
getCategories() function, 270, 438, 441, 444,

448–449, 451
getdate() function, 201, 206, 208, 425
getID method, 302
getInstance method, 224
getMessages.php file, 252
getPhotosFromID() function, 272
getPhotos.php file, 272
getproducts option, 307, 308
getsites value, 348
getters and setters

defining methods, 459–461
overview, 224–225

getTimer() function, 149, 249
getVideos method, 440, 450, 451
global variable, 283
globals, 105–106
gskinner, 192
GUI-enabled tools, 415
gzip function, 425

H
handleError method, 174
handler functions, 68–69, 87
handlers

custom playback, 431
event

contact form, 103–105
login module, 107–110
sandbox, 149

495

Index H

26_258248 bindex.qxp 3/28/08 1:43 PM Page 495

handlers (continued)
sockets, 162–163
stage, 473

mouse event, 337
stage event, 473

handleServerResp() function, 286
hardware, Apache, 412
hash method, 196
hashing algorithms, 111
header() call, 273
helloWorld method, 227
help command, 172
helpers, debug, 399
hit counter applications, 285–286
.htaccess files, 37–39, 397
HTML data, 136
HTML tags, 247
htmlentities() function, 136
httpd.conf files, 407, 413
HTTPS call, 293

I
id row, 259, 438
id variable, 368
if statements

active sandbox, 148
checking file existence, 226
control structures, 51
date values, 425
developing ActionScript, 360
developing poll application, 366
file editor, 373
interfacing with Web service, 331
logical order of data, 137
PHP cookies, 123
ShoppingCartItem class, 303
valid rows, 444
validating ZIP codes, 132

if/else statements, 409
image loader, 96–97
Image tag, 247
imagecreatetruecolor() function, 343
imageDir variable, 261
imagejpeg() function, 343
imageLoaded function, 264–265, 280
ImageMagick library, 193

images
generating in GD library, 343–345
navigating in photo gallery applications, 266–270

imagesetpixel function, 344
import function, 229
importing

classes
in Flash, 229
in PHP, 226
RSS reader applications, 275

OOP, 222
include function, 226, 424
include statement, 55
include_once() statement, 56
$incomingData variable, 157
info.php file, 382
ini path, 382
init() function

developing ActionScript, 261
Flash, 244
managing messages, 247
opening browser windows, 281
photo gallery navigation, 267
running applications in local sandbox, 148
unloading applications, 150

initialization variables, 97, 244, 336
initLoop function, 169, 172
inline comments, 396
InnoDB storage engines, 16–18
input box, 130
INSERT statements, 57–58, 255, 306, 434
Install Apache HTTP Server 2.0 programs and

shortcuts for: option, 6
installing

AMFPHP, 198–199
Apache

UNIX, 9–12
Windows, 4–9

development systems, 406–408
memcached, 416–420
MySQL, 24–26
MySQL library, 197–198
PHP

for UNIX, 33–34
for Windows, 27, 31

third-party libraries
in Flash CS3, 194–195
in PHP, 195

instance variable, 227
instantiation, class, 226–227

496

IndexH

26_258248 bindex.qxp 3/28/08 1:43 PM Page 496

interacting, with users
contact form, 101–106
form development using Flash, 99–100
login module in Flash, 106–111

interfacing, flickr photo galleries, 331
IO_ERROR function, 356
IOError event, 87
is_numeric() function, 132
isDrawing variable, 337
isset() method, 123
Italic tag, 247
ITEM_CLICK event, 259, 276, 457–458
ItemAttributes node, 320
itemLength variable, 72–73
Items node, 320

J
.jpg file extension, 128

L
label property, 275
length function, 132
libevent library, 416
libjpeg library, 407
libraries

as3CoreLib, 192, 196
custom, 403–404
external, 192, 482
GD

gathering pixel data in Flash, 345–346
generating image in, 343–345
overview, 341–343

ImageMagick, 193
MySQL, 197–198
PDF, 193
Red5, 192
SimpleXML, 278, 308, 320
spell-check, 192
third-party

AMFPHP, 198–218
commercial Flash, 192–193
in Flash CS3, 194–196
MySQL, 197–198
overview, 191–192
in PHP, 193, 195

Library classes, 230–231
line comments, 396
$link variable, 256, 441, 462
Linkage Identifier, 230

Linux, 416–420
List component, 275
List Item tag, 247
Listen directive, 13
listening, sockets, 154
ListEvent class, 275
listItemHandler method, 452–453, 464
LiveHTTPHeaders, 389
loadbtn method, 376
loadCategories() function, 261–262
loadData() method, 360
loaded data, 88–89
loadedResultsHandler() method, 323
loader variables, 70
loaderInfo object, 151
loadFeeds function, 276
loadFile method, 376
loadHitCounter() function, 286
loadImage() function, 264, 280
loading

cached data, 420
cookies

Flash, 118–122
PHP, 114–118

data
in Flash, 85–87
in PHP, 92–93
XML in Flash, 89–92

one-way, 88
PHP, RSS reader applications, 275–279
two-way, 88–89

loading processes, 88–89
loadingMessages variable, 248–249
loadMessages() function, 244, 247
loadMessagesHandler function, 249
loadPolicyFile file, 164
loadSites() method, 352
loadThumb method, 325, 330
local string, 148
LocalConnection class, 389
localhost domain, 176
localhost variable, 256
local-trusted sandbox, 145
local-with-filesystem sandbox, 145
local-with-networking-sandbox sandbox, 145
loggedIn variable, 109–110
$loggedIn variable, 477
logging

optimizing Apache, 413
slow MySQL queries, 414

497

Index L

26_258248 bindex.qxp 3/28/08 1:43 PM Page 497

logic, hit counters, 285
login

overview, 292
user login component

adding remoting, 478–481
adding to player, 482–486
LoginWindow class, 466–472
overview, 465
PHP login manager class, 476–478
testing, 473–475

login component, 473
login manager class, 476–478
login method, 221, 477–478
login module

Flash
code skeleton, 106–107
event handlers, 107–110
server integration, 110–111

form components, 106
login variable, 484
LOGIN_ATTEMPT event, 473
loginBtn method, 469
loginHandler function, 107–108, 469–472, 483
loginMC MovieClip function, 468
loginRespHandler method, 484
logins, 476
LoginWindow class

centering MovieClip, 468
close method, 468
constructor, 466–467
in Flash, 465
loginHandler method, 469–472
overview, 466
redraw method, 467–468
resetHandler method, 469
swapping placement of MovieClips, 468

LoginWindowMC file, 482
loops. See also individual loops by name

control structures, 52–54
recursive, 160

M
magic_quotes_gpc property, 138–139
mail() function, 349–350
mailing in PHP

globals, 105–106
security, 106

maintenance, application
ChangeLog, 399–400
commenting code, 395–399
custom libraries, 403–404
overview, 395
version control, 401–403

make commands, 11
makeCall() method, 233
manager class, 476–478
managing servers, 420–421
master client connections, 172–173
master connections, 154
master sockets, 154
MAX_ATTEMPTS constant, 356–357
MaxClients directive, 413
MD5 class, 196
md5 function, 477
md5 hash, 141
Member class, 222
memcached system

installing, 416–420
managing servers, 420–421
overview, 416

message buffer, 171
message node, 248
message row, 259
messages.php file, 252, 254–255
messagesTxt, 243
messagesTxt TextArea event, 246
method tables, 201, 204, 212
methods. See also individual methods by name

accessibility, 169
defined, 50
static, 223

mixing comments, 397–398
moderation script, 260
monitor.php file, 348, 350
mouse event handlers, 337
mouse handler methods, 431, 458
mouse up event, 337
MovieClip class

centering, 468
Document class, 230
login component, 465–466
StoreItem class, 296
swapping placement of, 468
video player, 447
VideoListItem class, 456

498

IndexL

26_258248 bindex.qxp 3/28/08 1:43 PM Page 498

movieclip function, 323, 339
msgTxt box, 180
msgTxt TextInput function, 180
mt_rand() function, 283
multiple application version maintenance, 401–403
multiple classes, PHP, 228
MXP file, 194
MyISAM storage engines, 16–17
myPlayBtn, 431
myPlayer, 430
MySQL

conditions
AND, 58
OR, 59
WHERE, 58

library, 197–198
line comments, 396
logging slow queries, 414
optimizing, 413–415
performance, 414
PHP

closing connections, 75–76
connecting to, 74–75
determining status of MySQL, 73–74
persistent connections, 75
selecting databases, 76

poll applications, 364–368
statements

DELETE statement, 58
INSERT statement, 57–58, 77
SELECT statement, 57

tables, 57
UNIX Web server

ownership command, 25
passwords, 27
testing, 26

video player applications
building tables in, 433–434
user tables, 476

website, 14
Windows Web server

Best Support for Multilingualism option, 20
concurrent connections, 18–19
configuration process, 22–23
database server commands, 24
Dedicated MySQL Server Machine option, 16
Detailed Configuration option, 14–15
Developer Machine option, 16
downloading, 14

Enable root access from remote machines option, 22
Enable Strict Mode option, 19
Enable TCP/IP option, 19
free memory, 16
Include Bin Directory in Windows PATH option, 21
Manual Selected Default Character Set/Collection

option, 20–21
Manual Setting option, 19
Multifunctional Database option, 16–17
networking options, 19–20
new command prompt, 23–24
Non-Transactional Database Only option, 17
OLTP option, 18
passwords, 26
security options, 22
Server Machine option, 16
Standard Character Set option, 20
Standard Configuration option, 15
testing, 23–24
Transactional Database Only option, 17
Typical install option, 14

mysql library file, 195
mysql_close function, 75–76, 409
mysql_connect() function, 75, 256, 435
mysql_fetch_array() function, 79, 253
mysql_num_rows() function, 252, 442, 462
mysql_pconnect function, 75
mysql_query() function, 252, 254, 444
mysql_query() method, 213
mysql_real_escape_string function, 134, 136
mysql_select_db function, 76
myStopBtn, 431

N
navigateToURL() function, 65–66, 281, 294
navigation, photo gallery, 266–270
net.* package, 447
NetConnection class, 205, 206, 448, 463
$newCount variable, 285
newMsgTxt instance, 243
nextImage() function, 266
nextY variable, 451–452
node values, 92–93
nodeCount variable, 320
noResponse() method, 356
notifyClients method, 174
numeric values, zip codes, 132

499

Index N

26_258248 bindex.qxp 3/28/08 1:43 PM Page 499

O
Object type, 297
Object variable, 72
object-oriented programming (OOP)

classes
building custom, 231–235
defined, 220–221
in Flash, 229–231
in PHP, 225–228

constructor, 221
getters and setters, 224–225
importing, 222
overview, 219–220
packages, 221–222
singletons, 223–224
static methods and properties, 223

objects, defined, 48–49. See also individual objects by name
Oldfilename.php file, 421
Omit Trace Actions, 399
one-way communication, 65–67
one-way loading, 88
onFault method, 207, 463
onResult function, 207, 216
OOP (object-oriented programming)

classes
building custom, 231–235
defined, 220–221
in Flash, 229–231
in PHP, 225–228

constructor, 221
getters and setters, 224–225
importing, 222
overview, 219–220
packages, 221–222
singletons, 223–224
static methods and properties, 223

operation parameters, 319
optimizing

Apache, 412–413
MySQL, 413–415
PHP, 408–412

OR condition, 59
output buffer, 409
output_errors function, 382

P
Paamayim Nekudotayim, 227
packages

crypto, 196
custom libraries, 403
overview, 221–222
standard class, 194–195

Papervision3D, 192
Paragraph tag, 247
parameters

connection, 213
exit, 175
operation, 319
search, 320
special chat, 171–172

parent reference, 302
passed-in data, 133, 210
password-creation command, 38–39
passwords

PayPal, 292
setting on UNIX, 27
setting on Windows, 26
storing using PHP, 141–142

PayPal cart applications
overview, 290–291
POST data, 293–294
sendToURL method, 294
setting up communication, 294–295
signing up for PayPal Premier, 291–293

PDF Library, 193
Pear, 193
persistent connections, 75
persistent socket server, 160–161
_person property, 225
photo gallery application

ActionScript, 261–266
developing using flickr

building custom XML document, 332–333
interfacing with Web service, 331
overview, 326–330

Document class, 327–329
navigation, 266–270
overview, 260–261
PHP for, 270–274

PhotoItem instance, 329

500

IndexO

26_258248 bindex.qxp 3/28/08 1:43 PM Page 500

PHP
AMFPHP

and ActionScript 3, 198
debug gateway, 200–201
debugging tools, 199
installing, 198
service browser, 200
testing installation, 199

coding structure, 47, 122
connecting to Flash, 71–73
connecting to MySQL, 73–84
control structures, 51–55
cookies, 114–124
determining status of, 64–65
file location, 69
functions, 49–50
mailing, 105–106
MySQL, 57–59
shared object data, 140–141
sockets, 155–161
storing passwords, 141–142
third-party libraries, 193, 197–198
type checking, 56–57
variables, 47–49, 56
on Web servers, 27–35
website, 93
XML data, 92–95

php files, 176, 304, 410
php reference, 275
PHP socket server

for chat clients, 168–171
ending connections, 175
excluding master server from communication, 171
handling errors, 174–175
master client connection, 172–173
notifying all clients, 174
notifying specific client, 173–174
server monitoring, 175
special chat parameters, 171–172

PHP User class, 478
PHPEclipse, 385
phpFile variable, 286
phpinfo file, 73–74, 197
phpinfo() function, 139
php.ini file, 129, 195, 197, 381, 384, 407, 426
phpize function, 417
pipe (|) character, 426
pixel data, for GD library, 345–346

planning stage, applications, 240–242
play method, 431
playback controls, 432
playback handlers, custom, 431
policy file, 164
poll applications

building PHP and MySQL, 364–368
developing ActionScript, 368–372
overview, 364

PollItem class, 368, 483
PollItem instances, 370
pollItem variable, 370
pollItems array, 371
populateFileList() function, 377
port numbers, 156, 176
ports, 407
POST data, 67–68, 122, 292–294, 343
prebuilt video skins, 432
predefined logins, 476
prefixes, 11
prefork module, 413
preg_replace() function, 278, 422
prevImage() function, 266
print function, 383, 409
print statement, 79
print_r() function, 383
private properties, 225
private variables, 296, 369, 437
processors, PHP, 409
programs, scalable, 219
progress bars, 7
properties. See also individual properties by name

accessibility, 169
overview, 47
private, 225
static, 223

Property inspector, 230, 432
protecting

MySQL
setting password on UNIX, 27
setting password on Windows, 26

Web server content, 38–39
pseudo-code, 240–241
public class, 220
Publish Settings dialog box, 195, 399, 404
publishing SWCs, 404
push method, 153

501

Index P

26_258248 bindex.qxp 3/28/08 1:43 PM Page 501

Q
-q option, 176
queries

MySQL, 414
SQL, 133–135

Quick Start options, 342
$quote variable, 133

R
random access memory (RAM), 409
random selection, dynamic banner ads, 283–284
$rawXml variable, 320, 331
real-world applications. See also shopping cart applications

Amazon search application
overview, 317
simplifying XML response, 319–326
using Amazon Web Service, 317–319

developing photo gallery using flickr
building custom XML document, 332–333
interfacing with Web service, 331
overview, 326–332

drawing application
in Flash, 336–341
overview, 335–336

GD library
gathering pixel data in Flash, 345–346
generating image in, 343–345
overview, 341–343

overview, 289–290, 335
PayPal cart

overview, 290–291
POST data, 293–294
sendToURL method, 294
setting up communication, 294–295
signing up for PayPal Premier, 291–293

poll application
building PHP and MySQL, 364–368
developing ActionScript, 368–372
overview, 364

simple file editor, 373–379
site monitors

developing ActionScript for, 351–359
developing PHP for, 347–349
overview, 347
using PHP to e-mail administrator, 349–351

video player
developing ActionScript, 360–364
overview, 359–360

records, valid, 462–463

RecordSet class, 214
recordset method, 449
recursive loops, 160
Red5 library, 192
redraw method, 467–468, 473–474
remote socket connections, 163–164
remoting

classes, 205–210
errors in responses, 453–456
video player integration

DatabaseConnector class, 437–439
overview, 437
testing classes, 445–446
Videos class, 439–445

video player user login component, 478–481
remove method, 303
removeAll method, 216
removeChild function, 324
removeChildAt function, 150
removeOldPhotos method, 329
removeProduct button, 301
removing comments, 399
repeating code, 49–50
reporting, error, 381–385
Representational State Transfer (REST), 317
require function, 226, 424
require statement, 54–55
require_once statement, 55
resetHandler method, 469
resize event, 474
resp property, 286
resp variable, 123–124
respond() method, 232
Responder class, 206, 463, 479
Responder instance, 448–449, 451
response function, 69, 143
$response variable, 157
responseTxt TextInput component, 196
REST (Representational State Transfer), 317
$result variable, 252, 477
Results tab, 202
reverse domain package path, 221
Rich Internet Applications (RIA), 62
root passwords, 22
$row data, 348
$rows variable, 253, 444
RSS reader applications

importing classes, 275
loading PHP, 275–279
overview, 274–275

Run dialog box, 155

502

IndexQ

26_258248 bindex.qxp 3/28/08 1:43 PM Page 502

S
sandboxType property, 145–147
save action, 373
saveCookie function, 117
saving data to caches, 418–419
scalable applications, 219, 242
Scope Resolution Operator, 227
SCPlugin version control manager, 402
ScrollPane component, 451–452, 461
search parameters, 320
SEARCH_TERMS keyword, 318
searchAndReplace function, 206, 207
searchHandler() method, 322, 327
sec variable, 150
security

connecting PHP to MySQL, 256
Flash Security Sandbox

active, 147–151
applications, 151–152
sandboxType property, 145–147
setting type, 145

mailing in PHP, 106
returning data, 143–144
sockets, 154
storing data

passwords, using PHP, 141–142
securely writing to file, 137–141

user data
file uploads, 128–130
HTML data, 136
sanitizing, 133–135
valid input, 131–132

Windows Web server, 22
Security class, 145
security trust, 164
Security.sandboxType property, 145
SELECT statement, 57, 366
selectedCatID property, 450
selectedItem object, 377
selectedItem property, 450
selection, random, 283–284
semicolon (;), 382
send() method, 247, 391
sendBtn instance name, 243
sendHandler function, 102–103, 109
sendMessage function, 102
sendMessageHandler function, 247
sendRequest function, 182
sendToURL method, 66, 294, 346
serverHandler() method, 234

serverMessage method, 174–175
serverResponse function, 70–72
servers

caching with memcached
installing, 416–420
overview, 416

development systems, 406–408
handling backups

backup management, 421–424
file management, 421
overview, 421
using PHP to back up databases, 424–427

integration, 110–111
managing, 420–421
optimizing

Apache, 412–413
MySQL, 413–415
PHP, 408–412

overview, 405
running updated, 405–406
socket

building, 156–158
responding to client connection, 157–158
simple PHP-based socket server, 156–157
testing, 158–160

UNIX Web server
Apache, 9–13
installing PHP, 34–35
MySQL, 24–26
setting passwords on, 27

Windows Web server
Apache, 4–13
installing memcached on, 418–420
MySQL, 14–24
PHP, 27–33
setting passwords on, 26

service browser, 200, 205
/services directory, 202
set_time_limit function, 156
setcookie function, 115, 117
setGatewayURL method, 304
setItem method, 457–458
setters, and getters, 224–225, 459–461
setValues method, 325, 329
shared objects

deleting, 119
loading, 118
remote settings, 122
saving, 118–119
securely writing to file, 139–141

SharedObject class, 118

503

Index S

26_258248 bindex.qxp 3/28/08 1:43 PM Page 503

shopping cart applications
building PHP

overview, 306–309
PHP code, 315–317
ShoppingCart class, 304, 309–313
ShoppingCartItem class, 298–306, 313
StoreItem class, 313–314
Timeline code, 314–315

developing ShoppingCartItem class, 298–306
developing StoreItem class, 296–298
overview, 295–296

ShoppingCart class, 304, 309–313
ShoppingCartItem class, 298–306, 313
SHOW_ERRORS property, 174–175
Simple XML, 93
SimpleSocket class, 166–167
SimpleXML library, 278, 308, 320
simplexml_ load_string() method, 331
single quote ('), 133
singletons, 223–224
site monitors

developing ActionScript for, 351–359
developing PHP for, 347–349
overview, 347
using PHP to e-mail administrator, 349–351

siteContainer movieclip function, 352
siteItem variable, 354
SiteMonitorItem class, 353, 355, 357
siteResponsedHandler() method, 356
size property, 119
skins, prebuilt video, 432
$sock variable, 156
Socket class, 162, 177
socket options, 173
socket termination method, 175
$socket variable, 156
socket_accept function, 157
socket_create function, 156
socket_listen function, 173
socket_read function, 157, 160
socket_select function, 170
socket_write function, 157, 173
sockets

building Flash client
checking text input length, 180–181
clearing message input, 180
event handler functions, 179
handling status updates, 183–188

maintaining stable interface, 181–182
overview, 177–179
sending initial request, 182
sending messages to socket server, 182–183
submit message handler, 180
trapping key presses, 179–180

connecting to socket server, 175–177
connections, 154
in Flash

class for socket connections, 164–167
event handlers, 162–163
initializing socket connection, 161–162
remote socket connections, 163–164

implementing server, 154
master, 154
overview, 153
in PHP

building server, 156–158
chat clients, 167–175
CLI, 155–156
overview, 154–156
persistent socket server, 160–161
testing server, 158–160

security, 154
$socketsChanged variable, 169
source codes, 9–11
source files, 69
SourceForge Web site, 198
sourceFunction handler, 97
Span tag, 247
Speak class, 227
specialized file extensions, 38
spell-check library, 192
sprint() function, 331–332, 348, 425, 463
Sprite class, 230
SQL queries, 133–135
$sql string, 213
sqltest.php file, 436
stage event handlers, 473
stage object, 473
standalone variables, 325
standard class package

custom classpath, 194–195
default classpaths, 195

{START_FILE} function, 336
startDrawing() method, 337
startTimer function, 148–149
startup options, MySQL, 415

504

IndexS

26_258248 bindex.qxp 3/28/08 1:43 PM Page 504

statements, 57–58. See also individual statements by name
static data, 85
static methods, 223
static properties, 223
statusMessage function, 183
stopChecking() method, 356–357
stopServer function, 169
storedFileData variable, 376
$storedPassword variable, 111
StoreItem class, 296–298, 313–314
StoreItem method, 296
StoreItem movieclip function, 305
str variable, 183
String type, 297
string variable, 171
strings, 47, 141. See also individual strings by name
strlen() function, 254
strpos function, 130
styles, for commenting code, 396–398
subdomains, 114
Submit button, 373
Submit component, 275
substring function, 183
SubVersion (SVN), 401
SWCs, 404
switch control, 54
switch..case statement, 179
system() command, 426

T
table_name function, 414
tables

checking MySQL, 414–415
video player applications

adding sample data to, 434–435
building, 433–434
user MySQL, 476

tag value, 331
tags variable, 328
teams, bug tracking with, 399–400
Telnet, 161
Test tab, 202
testing

AMFPHP, with custom service, 201–205
PHP, 31–33
socket servers, 158–160
UNIX Web server, 26
video player applications

databases, 435–437
remoting integration classes, 445–446
user login component, 473–475

Windows Web server, 23–24
test.php file, 421
text files, loading, 85–86
TextArea component

designing file editor, 373
developing chat clients, 242
loading remoting classes, 207
messagesTxt, 243
RSS readers, 275

TextArea function, 184
TextBox class, 230
TextField class, 233, 296, 298, 373
TextField instance, 263
TextInput component

Flash, 242
newMsgTxt instance, 243
usernameTxt instance, 243

$this variable, 227
$this->link property, 438
thumbnail path argument, 330
time() function, 116, 142, 252
timed backups, 421–422
Timeline ActionScript, 304
Timeline code, 314–315
time_logged_in cookie, 115
TIMER event, 244
timer handler, 244, 247
Timer object, 244
timerHandler function, 245
timerTxt textfield, 149
title argument, 330
title nodes, 320
title property, 458
titleTxt component, 330
tools

debugging, AMFPHP, 199
GUI-enabled, 415
Zend Optimizer tool, 410–411
Zend Studio tool, 411–412

TortoiseSVN version control manager, 402
trace alternatives, 389–391
trace statements, 82–84, 306, 386
tracking

bug, 399–400
video, 461–464

505

Index T

26_258248 bindex.qxp 3/28/08 1:43 PM Page 505

trigger_error function, 453
trigger_error() method, 383, 440
true flag, 419
try..catch programming style, 182
two-way communication, 68–69
two-way loading, 88–89
txt variable, 263
type checking, 56–57
type variable, 370
typeof function, 132

U
ucwords function, 202
Underline tag, 247
UNIX Web server

Apache
installing, 9–12
modifying, 13

installing PHP, 34–35
MySQL, 24–26
setting passwords on, 27

unset() function, 257, 410
untarring files, 10
updated servers, 405–406
updateList method, 303
updateTotal method, 303
updateVideoTracking method, 463–464
uppercase method, 207
upperCaseWords function, 205, 207
url property, 151
URLLoader class, 86, 103–104, 124
URLLoader function, 275
URLRequest class, 86, 103
URLRequest function, 141, 265, 275, 322
urlRequest variable, 81
URLRequestMethod class, 67–68
URLVariables class, 67, 103, 123, 124, 286
URLVariables object, 246, 346
User class, 478
user data

sanitizing
HTML data, 136
SQL queries, 133–135

security
file uploads, 128–130
valid input, 131–132

user id, 139

user login component
adding remoting, 478–481
adding to player, 482–486
LoginWindow class

centering MovieClip, 468
close method, 468
constructor, 466–467
loginHandler method, 469–472
overview, 466
redraw method, 467–468
resetHandler method, 469
swapping placement of MovieClips, 468

overview, 465
PHP login manager class, 476–478
testing, 473–475

user MySQL tables, 476
UserCredentials class, 222
username row, 259
usernameTxt instance, 243
User.php class, 476, 478
users

contact form, 101–106
form development using Flash, 99–100

V
valid input

checking for, 131–132
ZIP codes, 132

valid records, 462–463
validation variable, 144
var_dump call, 341
varchar() function, 259
variables. See also individual variables by name

ActionScript, 261
debugging, 383
PayPal, 293
PHP

arrays, 48
booleans, 48
objects, 48–49
strings, 47

and socket connections, 162
and types, 225

version control
overview, 401–403
using custom libraries with, 403

Version Cue application, 401–402
vi command, 382

506

IndexT

26_258248 bindex.qxp 3/28/08 1:43 PM Page 506

vi text editor, 12
video, 445
video class

overview, 439–445
updating, 462–463

video player applications
advanced development

categoryHandler method, 450
categoryResponseHandler method, 449–450
document class, 446–448
getCategories method, 448–449
getVideos method, 451
handling errors in remoting responses, 453–456
listItemHandler method, 452–453
overview, 446
VideoPlayer class, 448
videosResponseHandler method, 451–452

basic, 429–432
building VideoListItem class

defining getter and setter methods, 459–461
mouse handler methods, 458
overview, 456–457
setItem method, 457–458
VideoListItem constructor, 457

finalizing
adding login component, 482–486
overview, 481
using external library, 482

getting started
adding sample data to tables, 434–435
building database and MySQL tables, 433–434
overview, 432
testing database, 435–437

overview, 429
remoting integration

DatabaseConnector class, 437–439
overview, 437
testing classes, 445–446
Videos class, 439–445

user login component
adding remoting, 478–481
LoginWindow class, 465–473
overview, 465
PHP login manager class, 476–478
testing, 473–475

using Flash to develop
developing ActionScript, 360–364
overview, 359–360

video tracking, 461–464

VideoListItem class
constructor, 457
defining getter and setter methods, 459–461
mouse handler methods, 458
overview, 456–457
setItem method, 457–458
videosResponseHandler method, 451–452

VideoListItem.as file, 456
videoMetaInfo MovieClip method, 453, 464
VideoPlayer class, 359–360, 446, 448, 453, 482
VideoPlayer.as file, 446
VideoPlayer.fla file, 482
Videos class, 441, 444
Videos.php file, 442, 463
videosResponseHandler method, 451–452
$vidSQL variable, 441
vote variable, 368

W
Web servers

.htaccess files, 37–38
adding Apache to, 4–13

installing for UNIX, 9–12
installing for Windows, 4–9
modifying for Windows and UNIX, 13

Apache
determining modules installed, 40–42
determining version, 40
starting and stopping, 40

custom error documents
dynamic error documents, 43–46
modifying Apache, 43
overview, 42

protecting content, 38–39
setting up PHP on

UNIX, 33–35
Windows, 27–33

UNIX
Apache, 9–13
installing PHP, 34–35
MySQL, 24–26
setting passwords on, 27

Windows
Apache, 4–13
installing memcached on, 418–420
MySQL, 14–24
PHP, 27–33
setting passwords on, 26

507

Index W

26_258248 bindex.qxp 3/28/08 1:43 PM Page 507

